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Abstract. We obtain some new sufficient conditions for the oscillation of the solutions of
the second-order quasilinear difference equations with delay and advanced neutral terms.
The results established in this paper are applicable to equations whose neutral coefficients
are unbounded. Thus, the results obtained here are new and complement some known
results reported in the literature. Examples are also given to illustrate the applicability and
strength of the obtained conditions over the known ones.
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1. Introduction

We are dealing with the oscillatory properties of solutions of a second-order quasi-

linear difference equation with delay and advanced neutral terms of the form

(1.1) ∆(ζ(i)(∆χ(i))α) + ̺(i)ψβ(σ(i)) = 0, i > i0 > 0,

where χ(i) = ψ(i)+ ̺1(i)ψ(i−κ)+ ̺2(i)ψ(i+ l), subject to the following conditions:

(C1) {ζ(i)} and {̺(i)} are real positive sequences with
∞
∑

i=i0

ζ−1/α(i) = ∞;

(C2) α, β are ratios of odd positive integers and l and κ are positive integers;

(C3) {σ(i)} is a sequence of integers and lim
i→∞

σ(i) = ∞;
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(C4) {̺1(i)} and {̺2(i)} are real sequences with ̺1(i) > 0, ̺2(i) > 1, and ̺2(i) 6≡ 1

eventually;

(C5) {̺1(i)} and {̺2(i)} are real sequences with ̺2(i) > 0, ̺1(i) > 1, and ̺1(i) 6≡ 1

eventually.

We say a real sequence {ψ(i)} is a solution of (1.1) if it is defined and satis-

fies (1.1) for all i > i0. We consider only those solutions of {ψ(i)} of (1.1) that

satisfy sup{|ψ(i)| : i > N} > 0 for all N > i0; moreover, we assume tacitly that (1.1)

possesses such solutions. Such a solution {ψ(i)} of (1.1) is said to be oscillatory if it

is neither eventually positive nor eventually negative, and nonoscillatory otherwise.

Equation (1.1) is said to be oscillatory if all solutions of (1.1) are oscillatory.

The problem of oscillation and asymptotic behavior solutions to various classes of

delay and advanced type neutral difference equations have been widely investigated

in the literature, see for example [1], [2], [4], [5], [9], [10], [13], [14], [16], [17], [21]–[27]

and the references cited therein. However, oscillation results for mixed type neutral

difference equations are relatively scarce in the literature; some results can be found,

for example, in [3], [6], [7], [8], [11], [12], [15], [19], [18], [20] and the references cited

therein.

From the review of literature, we note that results obtained in [3], [6], [7], [8], [11],

[12], [15], [18], [19], [20] require both of {̺1(i)} and {̺2(i)} to be constant or bounded

sequences, and hence, the results established in these papers cannot be applied to the

cases where lim
i→∞

̺1(i) = ∞ and/or lim
i→∞

̺2(i) = ∞. Motivated by this observation,

we wish to develop new sufficient conditions which can be applied to the cases where

lim
i→∞

̺1(i) = ∞ and/or lim
i→∞

̺2(i) = ∞. Therefore, the results obtained in the present

paper are new and complement some existing results in the literature. Thus, we

hope that the present paper will contribute significantly to the study of oscillation

of the solutions of the second-order mixed type neutral difference equations.

2. Auxiliary lemmas

In this section, we present some lemmas that will play a significant role in es-

tablishing our main results. For the sake of convenience, we define the following

notation:

F (i) =

i−1
∑

s=N

ζ−1/α(s), ξ(i) =
1

̺2(i − l)

(

1−
1

̺2(i− 2l)
−

̺1(i− l)

̺2(i − κ− 2l)

)

> 0,

ϕ(i) =
1

̺1(i + κ)

(

1−
1

̺1(i + 2κ)

F (i + 2κ)

F (i+ κ)
−

̺2(i+ κ)

̺1(i+ 2κ+ l)

F (i+ 2κ+ l)

F (i + κ)

)

> 0,

for any N > i0 and for all sufficiently large i.
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Lemma 2.1 ([28]). If E > 0, D > 0 and α > 0, then

Du− Eu1+1/α 6
αα

(α+ 1)α+1

Dα+1

Eα
,

where equality holds if and only if D = E.

Lemma 2.2. Assume that (C1)–(C4) (or (C1)–(C3) and (C5)) hold, and let {ψ(i)}

be an eventually positive solution of (1.1). Then there is an integer i1 > i0 such that,

for i > i1,

(2.1) χ(i) > 0, ∆χ(i) > 0 and ∆(ζ(i)(∆χ(i))α) < 0.

P r o o f. The proof is standard and so we omit the details. �

Lemma 2.3. Assume that (C1)–(C4) (or (C1)–(C3) and (C5)) hold, and {ψ(i)}

is a positive solution of (1.1) such that (2.1) holds. Then

(2.2) χ(i) > F (i)ζ1/α(i)∆χ(i)

and

(2.3)
{ χ(i)

F (i)

}

is decreasing for all i > N > i1.

P r o o f. Since {ζ(i)(∆χ(i))α} is decreasing for all i > i1, we have

χ(i) = χ(i1) +

i−1
∑

s=i1

(ζ(s)(∆χ(s))α)1/α

ζ1/α(s)
> ζ1/α(i)F (i)∆χ(i).

Furthermore,

∆
( χ(i)

F (i)

)

=
1

ζ1/α(i)

F (i)ζ1/α(i)∆χ(i)− χ(i)

F (i)F (i+ 1)
6 0, since ∆F (i) =

1

ζ1/α(i)
.

The proof is now completed. �

Lemma 2.4. Assume that (C1)–(C4) hold. If {ψ(i)} is an eventually positive

solution of (1.1) such that (2.1) holds, then {χ(i)} satisfies the inequality

(2.4) ∆(ζ(i)(∆χ(i))α) + ̺(i)ξβ(σ(i))χβ(σ(i) − l) 6 0

for sufficiently large i.
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P r o o f. Let {ψ(i)} be an eventually positive solution of (1.1) such that ψ(i) > 0,

ψ(i − κ) > 0, ψ(i + l) > 0, ψ(σ(i)) > 0 and χ(i) satisfies (2.1) for all i > i1 for an

integer i1 > i0. From the definition of χ(i) we obtain

(2.5) ψ(i) =
1

̺2(i − l)
(χ(i − l)− ψ(i − l)− ̺1(i− l)ψ(i− κ− l))

and

(2.6) ψ(i) <
1

̺2(i− l)
χ(i− l).

Using (2.6) in (2.5), we have

(2.7) ψ(i) >
1

̺2(i − l)

(

χ(i− l)−
1

̺2(i − 2l)
χ(i− 2l)−

̺1(i − l)

̺2(i− κ− 2l)
χ(i− κ− 2l)

)

>
1

̺2(i − l)

(

1−
1

̺2(i− 2l)
−

̺1(i − l)

̺2(i− κ− 2l)

)

χ(i − l)

for i > i1, where we have used {χ(i)} is strictly increasing. Since lim
i→∞

σ(i) = ∞, we

can choose an integer i2 > i1 such that σ(i) > i2 for all i > i2. From (2.7) we have

(2.8) ψ(σ(i)) > ξ(σ(i))χ(σ(i) − l), i > i2.

Combining (1.1) with (2.8), we conclude that (2.4) is satisfied. The proof of the

lemma is complete. �

Lemma 2.5. Assume that (C1)–(C3) and (C5) hold. If {ψ(i)} is an eventually

positive solution of (1.1) such that (2.1) holds, then {χ(i)} satisfies the inequality

(2.9) ∆(ζ(i)(∆χ(i))α) + ̺(i)ϕβ(σ(i))χβ(σ(i) + κ) 6 0

for sufficiently large i.

P r o o f. Let {ψ(i)} be an eventually positive solution of (1.1) such that ψ(i) > 0,

ψ(i − κ) > 0, ψ(i + l) > 0, ψ(σ(i)) > 0 and χ(i) satisfies (2.1) for all i > i1 for

an integer i1 > i0. Following a similar argument as in the proof of Lemma 2.4 and

taking into account that {χ(i)/F (i)} is decreasing for all i > i2 for an integer i2 > i1,

we obtain

(2.10) ψ(i) >
1

̺1(i + κ)

(

χ(i + κ)−
χ(i + 2κ)

̺1(i + 2κ)
−
̺2(i+ κ)χ(i + 2κ+ l)

̺1(i+ 2κ+ l)

)

>
1

̺1(i + κ)

(

1−
F (i+ 2κ)

F (i + κ)̺1(i+ 2κ)
−
̺2(i + κ)F (i+ 2κ+ l)

̺1(i + 2κ+ l)F (i+ κ)

)

χ(i+ κ).
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Since lim
i→∞

σ(i) = ∞, we choose an integer i3 > i2 such that σ(i) > i3 for all i > i3.

Thus, from (2.10) we obtain

(2.11) ψ(σ(i)) = ϕ(σ(i))χ(σ(i) + κ), i > i3.

Combining (1.1) and (2.11), we conclude that (2.9) is satisfied. The proof of the

lemma is complete. �

3. Main results

In this section, we present several sufficient conditions for the oscillation of all

solutions of (1.1).

Theorem 3.1. Assume that (C1)–(C4) hold and i+ l > σ(i). If β = α and there

exists a positive nondecreasing sequence {η(i)} such that for all sufficiently large

integer N > i1,

(3.1) lim sup
i→∞

i
∑

s=N

(

η(s)̺(s)ξα(σ(s))
Fα(σ(s)− l)

Fα(s)
−

∆η(s)

Fα(s+ 1)

)

= ∞,

then every solution of (1.1) is oscillatory.

P r o o f. Let {ψ(i)} be a nonoscillatory solution of (1.1). With no loss of gener-

ality, we may assume that there is an integer i1 > i0 such that ψ(i) > 0, ψ(i−κ) > 0,

ψ(i + l) > 0, ψ(σ(i)) > 0 and χ(i) satisfies (2.1) for all i > i1. Proceeding as in the

proof of Lemmas 2.3 and 2.4, we see that (2.2), (2.3) and (2.4) hold for all i > i1.

Define

(3.2) ω(i) = η(i)
ζ(i)(∆χ(i))α

χα(i)
, i > i1.

Clearly ω(i) > 0 for i > i1, and from (2.4) we obtain

(3.3) ∆ω(i) 6 − η(i)̺(i)
ξα(σ(i))χα(σ(i − l))

χα(i)
+

∆η(i)ζ(i + 1)(∆χ(i + 1))α

χα(i + 1)

−
η(i)ζ(i + 1)(∆χ(i + 1))α

χα(i)χα(i + 1)
∆χα(i).

From i > σ(i) − l and by (2.3) we get

(3.4)
χ(σ(i)− l)

χ(i)
>
F (σ(i)− l)

F (i)
, i > i2 > i1.
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Using (3.4) in (3.3) yields

(3.5) ∆ω(i) 6 − η(i)̺(i)ξα(σ(i))
Fα(σ(i)− l)

Fα(i)
+ ∆η(i)

ζ(i + 1)(∆χ(i + 1))α

χα(i+ 1)

−
η(i)ζ(i)(∆χ(i))α

χα(i)χα(i+ 1)
∆χα(i), i > i2.

From (2.2), it is easy to see that

(3.6)
1

Fα(i + 1)
> ζ(i + 1)

(∆χ(i + 1))α

χα(i+ 1)
.

In view of (3.6), χ(i) > 0 and ∆χ(i) > 0, (3.5) yields

(3.7) ∆ω(i) 6 −η(i)̺(i)ξα(σ(i))
Fα(σ(i)− l)

Fα(i)
+

∆η(i)

Fα(i+ 1)

for i > i2. Summing up (3.7) from i2 to i, we get

i
∑

s=i2

(

η(s)̺(s)ξα(σ(s))
Fα(σ(s) − l)

Fα(s)
−

∆η(s)

Fα(s+ 1)

)

6 ω(i2),

which contradicts (3.1). The proof of the theorem is complete. �

Theorem 3.2. Assume that (C1)–(C4) hold and i + l > σ(i). If there exists

a positive nondecreasing sequence {η(i)} such that for all sufficiently large integers

N > i1,

(3.8) lim sup
i→∞

i
∑

s=N

(

E1(s)−
(α

β

)α (∆η(i))α+1f(s)

(α+ 1)α+1ηα(s)δα(s)

)

= ∞,

where

E1(i) = η(i)̺(i)ξβ(σ(i))
F β(σ(i) − l)

F β(i)
and δ(i) =











1 if α= β,

M1 if α < β,

M2F
−1+β/α(i+ 1) if α > β

for all M1 > 0, M2 > 0, then every solution of (1.1) is oscillatory.

P r o o f. Let {ψ(i)} be a nonoscillatory solution of (1.1). With no loss of gener-

ality, we may assume that there is an integer i1 > i0 such that ψ(i) > 0, ψ(i−κ) > 0,

ψ(i+ l) > 0, ψ(σ(i)) > 0 and χ(i) satisfies (2.1) for all i > i1. Define

(3.9) ω(i) = η(i)
ζ(i)(∆χ(i))α

χβ(i)
, i > i1.
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Clearly ω(i) > 0 for i > i1, and from (2.4) and (3.9) we get

(3.10) ∆ω(i) 6 − η(i)̺(i)ξβ(σ(i))
χβ(σ(i)− l)

χβ(i)
+

∆η(i)

η(i + 1)
ω(i+ 1)

−
η(i)

η(i+ 1)
ω(i+ 1)

∆χβ(i)

χβ(i)
, i > i2 > i1.

By discrete mean value theorem (see [1]), we have

∆χβ(i) > β
χβ(i)

χ(i+ 1)
∆χ(i).

Using this and (3.4) in (3.10) gives

(3.11) ∆ω(i) 6 −E1(i) +
∆η(i)

η(i+ 1)
ω(i+ 1)− β

η(i)

η(i+ 1)
ω(i+ 1)

∆χ(i)

χ(i+ 1)
.

Since f1/α(i)∆χ(i) is decreasing, we have from (3.9) and (3.11)

(3.12)

∆ω(i) 6 − E1(i) +
∆η(i)

η(i + 1)
ω(i+ 1)− β

η(i)

η1+1/α(i+ 1)
ω1+1/α(i+ 1)χ−1+β/α(i+ 1)

6 − E1(i) +
∆η(i)

η(i + 1)
ω(i+ 1)− β

η(i)δ(i)

η1+1/α(i+ 1)ζ1/α(i)
ω1+1/α(i+ 1),

where we have used that χ(i) is increasing for β > α and χ(i)/F (i) is decreasing for

β < α. Applying Lemma 2.1 with

D =
∆η(i)

η(i + 1)
, E =

βη(i)δ(i)

η1+1/α(i+ 1)ζ1/α(i)
,

we have from (3.12) that

∆ω(i) 6 −E1(i) +
(α/β)α(∆η(i))α+1ζ(i)

(α+ 1)α+1ηα(i)δα(i)
, i > i2.

Summing up the last inequality from i2 to i, we get

i
∑

s=i2

(

−E1(s) +
(α/β)α(∆η(s))α+1ζ(s)

(α+ 1)α+1ηα(s)δα(s)

)

6 ω(i2),

which contradicts (3.8). The proof of the theorem is complete. �
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Theorem 3.3. Assume that (C1)–(C4) hold, α = β and i + l 6 σ(i). If there

exists a positive nondecreasing real sequence {η(i)} such that for all sufficiently

large N > i1 > i0,

(3.13) lim sup
i→∞

i
∑

s=N

(

η(s)̺(s)ξα(σ(s)) −
∆η(s)

Fα(s+ 1)

)

= ∞,

then every solution of (1.1) is oscillatory.

P r o o f. Let {ψ(i)} be a nonoscillatory solution of (1.1). With no loss of gener-

ality, we may assume that there is an integer i1 > i0 such that ψ(i) > 0, ψ(i−κ) > 0,

ψ(i + l) > 0, ψ(σ(i)) > 0 and χ(i) satisfies (2.1) for all i > i1. Proceeding as in the

proof of Theorem 3.1, we arrive at (3.3) for i > i2 > i1. From i + κ 6 σ(i) we have

i 6 σ(i)− l and so

(3.14)
χ(σ(i) − l)

χ(i)
> 1.

Using (3.14) in (3.3) yields

(3.15) ∆ω(i) 6 − η(i)̺(i)ξα(σ(i)) + ∆η(i)
ζ(i + 1)(∆χ(i + 1))α

χα(i+ 1)

−
η(i)ζ(i)(∆χ(i))α∆χα(i)

χα(i)χα(i + 1)
, i > i2.

Taking into account that (2.2) holds and using the fact that ∆χ(i) > 0, (3.15) takes

the form

∆ω(i) 6 −η(i)̺(i)ξα(σ(i)) +
∆η(i)

Fα(i + 1)
, i > i2.

The remaining part of the proof is similar to that of Theorem 3.1 and the details are

omitted. The proof of the theorem is complete. �

Theorem 3.4. Assume that (C1)–(C4) hold and i+l 6 σ(i). If there exists a posi-

tive nondecreasing real sequence {η(i)} such that for all sufficiently largeN > i1 > i0,

(3.16) lim sup
i→∞

i
∑

s=N

(

η(s)̺(s)ξβ(σ(s)) −
(α

β

)α (∆η(s))α+1ζ(s)

(α + 1)α+1ηα(s)δα(s)

)

= ∞,

where δ(i) is defined as in Theorem 3.3, then every solution of (1.1) is oscillatory.

P r o o f. The proof follows from Theorem 3.2 and (3.14) and so the details are

omitted. �
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Theorem 3.5. Assume that α = β, (C1)–(C3) and (C5) hold, and i−κ > σ(i). If

there exists a positive nondecreasing real sequence {η(i)} such that for all sufficiently

large N > i1 > i0,

(3.17) lim sup
i→∞

i
∑

s=N

(

E2(s)−
∆η(s)

Fα(s+ 1)

)

= ∞,

where

E2(i) = η(i)̺(i)ϕα(σ(i))
Fα(σ(i) + κ)

Fα(i)
,

then every solution of (1.1) is oscillatory.

P r o o f. Let {ψ(i)} be a nonoscillatory solution of (1.1). With no loss of gener-

ality, we may assume that there is an integer i1 > i0 such that ψ(i) > 0, ψ(i−κ) > 0,

ψ(i + l) > 0, ψ(σ(i)) > 0 and χ(i) satisfies (2.1) for all i > i1. Proceeding as in the

proof of Lemmas 2.3 and 2.5, we have (2.2), (2.3) and (2.9) hold for i > i2 for an

integer i2 > i1. Define ω(i) by (3.2). Then it follows from (3.2) and (2.9) that

(3.18) ∆ω(i) 6 − η(i)̺(i)ϕα(σ(i))
χα(σ(i) + κ)

χα(i)
+ ∆η(i)

ζ(i + 1)(∆χ(i+ 1))α

χα(i + 1)

−
η(i)ζ(i + 1)(∆χ(i + 1))α∆χα(i)

χα(i)χα(i+ 1)
, i > i2.

Since i− κ > σ(i), we have i+ 1 > i > σ(i) + κ, and from (2.3) we get

(3.19)
χ(σ(i) + κ)

χ(i)
>
F (σ(i) + κ)

F (i)
.

Substituting (3.19) into (3.18) yields

∆ω(i) 6 −E2(i) + ∆η(i)
ζ(i + 1)(∆χ(i + 1))α

χα(i+ 1)
−
η(i)ζ(i + 1)(∆χ(i+ 1))α∆χα(i)

χα(i)χα(i+ 1)
,

where i > i2. The rest of the proof is similar to that of Theorem 3.1 and hence the

details are not repeated. The proof of the theorem is complete. �

Theorem 3.6. Assume that (C1)–(C3) and (C5) hold and i − κ > σ(i). If there

exists a positive nondecreasing real sequence {η(i)} such that for all sufficiently large

integers N > i1,

(3.20) lim sup
i→∞

i
∑

s=N

(

E3(s)−
(α

β

)α (∆η(s))α+1ζ(s)

(α+ 1)α+1ηα(s)δα(s)

)

= ∞,

where

E3(i) = η(i)̺(i)ϕβ(σ(i))
F β(σ(i) + κ)

F β(i+ 1)
,

then every solution of (1.1) is oscillatory.
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P r o o f. The proof follows from Theorem 3.2 by using (3.19) instead of (3.4),

and so the details are not repeated. This completes the proof. �

Theorem 3.7. Assume that (C1)–(C3) and (C5) hold α = β and i− κ 6 σ(i). If

there exists a positive nondecreasing real sequence {η(i)} such that for all sufficiently

large integers N > i1 > i0,

(3.21) lim sup
i→∞

i
∑

s=N

(

E4(s)−
∆η(s)

Fα(s+ 1)

)

= ∞,

where

E4(i) = η(i)̺(i)ϕα(σ(i)),

then every solution of (1.1) is oscillatory.

P r o o f. Proceeding as in the proof of Theorem 3.5, we arrive at (3.18). For

i−κ 6 σ(i), we see that i 6 σ(i)+κ, and so since using {χ(i)} is increasing, we have

(3.22)
χ(σ(i) + κ)

χ(i)
> 1.

Using (3.22) in (3.18), we obtain

∆ω(i) 6 E4(i) + ∆η(i)
ζ(i + 1)(∆χ(i + 1))α

χα(i+ 1)

−
η(i)ζ(i + 1)(∆χ(i + 1))α∆χα(i)

χα(i)χα(i + 1)
, i > i2.

The remaining part of the proof is similar to that of Theorem 3.5 and so the details

are omitted. The proof of the theorem is complete. �

Theorem 3.8. Assume that (C1)–(C3) and (C5) hold and i − κ 6 σ(i). If there

exists a positive nondecreasing real sequence {η(i)} such that for all sufficiently large

integers N > i1 > i0,

(3.23) lim sup
i→∞

i
∑

s=N

(

E5(s)−
(α

β

)α (∆η(i))α+1ζ(s)

(α+ 1)α+1ηα(s)δα(s)

)

= ∞,

where δ(i) is defined as in Theorem 3.2 and E5(i) = η(i)̺(i)ϕβ(σ(i)), then every

solution of (1.1) is oscillatory.
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P r o o f. Proceeding as in the proof of Theorem 3.2 and using (2.9) instead

of (2.4) we obtain

(3.24) ∆ω(i) 6 − η(i)̺(i)ϕβ(σ(i))
χβ(σ(i) + κ)

χβ(i)
+

∆η(i)

η(i + 1)
ω(i+ 1)

−
η(i)

η(i+ 1)
ω(i+ 1)

∆χβ(i)

χβ(i)
, i > i2.

Using (3.22) in (3.24) yields

∆ω(i) 6 −E5(i) +
∆η(i)

η(i+ 1)
ω(i+ 1)−

η(i)

η(i + 1)
ω(i+ 1)

∆χβ(i)

χβ(i)
.

The rest part of the proof is similar to that of Theorem 3.2 and so the details are

omitted. The proof of the theorem is complete. �

4. Examples

In this section, we present several examples to illustrate the importance of the

main results.

E x am p l e 4.1. Consider the second-order neutral difference equation

(4.1) ∆((∆(ψ(i) + ψ(i − 1) + iψ(i+ 2)))3) + (i4 + 1)ψ3(i+ 1) = 0, i > 10.

Here, α = β = 3, ζ(i) = ̺1(i) = 1, ̺2(i) = n, ̺(i) = n4 + 1, κ = 1, l = 2 and

σ(i) = i+ 1. It is clear that (C1)–(C4) hold, i+ κ > σ(i), and

ξ(i) =
1

i− 2

(

1−
1

i− 4
−

1

i− 5

)

=
1

i− 2

i2 − 11i+ 29

(i− 4)(i− 5)
> 0,

F (i) =

i−1
∑

s=N

1

ζ1/α(s)
=

i−1
∑

s=10

∆s = i− 10.

With η(i) = 1, we see that (3.1) becomes

lim sup
i→∞

i
∑

s=10

(s4 + 1)

(s− 2)3
(s2 − 11s+ 29)3

(s− 4)3(s− 5)3
(s− 11)3

(s− 10)3
= ∞,

which, in view of Theorem 3.1, means that all solutions of (4.1) are oscillatory.
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E x am p l e 4.2. Consider the second-order neutral difference equation

(4.2) ∆
( 1

i1/3
(∆(ψ(i)+2ψ(i−1)+8ψ(i+2)))1/3

)

+(i2+1)ψ1/3(i+3) = 0, i > 2.

Here, α = β = 1

3
, ζ(i) = i−1/3, ̺1(i) = 2, ̺2(i) = 8, ̺(i) = i2 + 1, κ = 1, l = 2, and

σ(i) = i+ 3. It is clear that (C1)–(C4) hold, σ(i) > (i+ κ) and

ξ(i) =
1

8

(

1−
1

8
−

2

8

)

=
5

64
> 0, F (i) =

i−1
∑

s=2

s =
i2 − i− 2

2
.

With η(i) = 1, (3.13) becomes

lim sup
i→∞

i
∑

s=2

(s2 + 1)
( 5

64

)1/3

= ∞,

which, in view of Theorem 3.3, means that all solutions of (4.2) are oscillatory.

E x am p l e 4.3. Consider the second-order neutral difference equation

(4.3) ∆((∆(ψ(i) + 3iψ(i− 1) + iψ(i+ 2)))3) + i5ψ3(i− 2) = 0, i > 2.

Here, α = β = 3, ζ(i) = 1, ̺1(i) = 3i, ̺2(i) = i, ̺(i) = i5, κ = 1, l = 2, and

σ(i) = i− 2. It is clear that (C1)–(C3) and (C5) hold, i− κ > σ(i) and

ϕ(i) =
1

3(i+ 1)

(

1−
1

3(i+ 2)

i

i− 1
−

i+ 1

3(i+ 4)

(i + 1)

(i − 1)

)

=
1

3(i+ 1)

6i4 + 24i3 − 39i2 − 69i+ 14

9(i4 + 4i3 − 3i2 − 10i+ 8)
> 0.

With η(i) = 1, we see that (3.17) holds for N > 2. Therefore, in view of Theorem 3.5,

every solution of (4.3) is oscillatory.

E x am p l e 4.4. Consider the second-order neutral difference equation

(4.4) ∆2(ψ(i) + 2iψ(i− 2) + ψ(i + 1)) + 9(2i)ψ(i − 1) = 0, i > 5.

Here, α = β = 1, ζ(i) = ̺2(i) = 1, ̺1(i) = 2i, ̺(i) = 9(2i), κ = 2, l = 1,

and σ(i) = i − 1. It is clear that (C1)–(C3) and (C5) hold and i − κ < σ(i). Also

F (i) = i− 5 and so

ϕ(i) =
1

4i+1

(

2i −
9i− 8

32(i− 3)

)

> 0.

With η(i) = 1, it is easy to see that (3.21) holds. Therefore, in view of Theorem 3.7,

every solution of (4.4) is oscillatory. In fact, {ψ(i)} = {(−1)i} is such a solution.
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5. Conclusion

In this paper, we have established several new oscillation theorems for equa-

tion (1.1) by using Ricatti transformation technique and summation averaging

method. Furthermore, none of the results obtained in the literature can be used for

the above examples to get any conclusion since the coefficients {̺1(i)} and {̺2(i)}

are unbounded. Thus, the results established in this paper are new and complement

the existing results.
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