GENERALIZED ATOMIC SUBSPACES
 FOR OPERATORS IN HILBERT SPACES

Prasenjit Ghosh, Kolkata, Tapas Kumar Samanta, Howrah

Received July 24, 2020. Published online August 4, 2021.
Communicated by Marek Ptak

Abstract

We introduce the notion of a g-atomic subspace for a bounded linear operator and construct several useful resolutions of the identity operator on a Hilbert space using the theory of g-fusion frames. Also, we shall describe the concept of frame operator for a pair of g-fusion Bessel sequences and some of their properties.

Keywords: frame; atomic subspace; g-fusion frame; $K-g$-fusion frame
MSC 2020: 42C15, 46C07

1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer in 1952 to study some fundamental problems in non-harmonic Fourier series (see [7]). Later on, after some decades, frame theory was popularized by Daubechies, Grossman, Meyer (see [5]). At present, frame theory has been widely used in signal and image processing, filter bank theory, coding and communications, system modeling and so on. Several generalizations of frames, namely K-frames, g-frames, fusion frames etc. have been introduced in recent times.
K-frames were introduced by Gavruta (see [8]) to study the atomic system with respect to a bounded linear operator. Using frame theory techiques, the author also studied the atomic decompositions for operators on reproducing kernel Hilbert spaces, see [9]. Sun in [15] introduced a g-frame and a g-Riesz basis in complex Hilbert spaces and discussed several properties of them. Huang in [12] began to study K - g-frame by combining K-frame and g-frame. Casazza (see [3]) was first to introduce the notion of fusion frames or frames of subspaces and gave various ways to obtain a resolution of the identity operator from a fuison frame. The concept of
an atomic subspace with respect to a bounded linear operator were introduced by Bhandari and Mukherjee in [2]. Construction of $K-g$-fusion frames and their dual were presented by Sadri and Rahimi (see [1]) to generalize the theory of K-frame, fusion frame and g-frame. Ghosh and Samanta in [11] studied the stability of dual g-fusion frames in Hilbert spaces.

In this paper, we present some useful results about resolution of the identity operator on a Hilbert space using the theory of g-fusion frames. We give the notion of g-atomic subspace with respect to a bounded linear operator. The frame operator for a pair of g-fusion Bessel sequences are discussed and some properties are going to be established.

The paper is organized as follows: in Section 2, we briefly recall the basic definitions and results. Various ways of obtaining resolution of the identity operator on a Hilbert space in g-fusion frame are studied in Section 3. g-atomic subspaces are introduced and discussed in Section 4. In Section 5, frame operators for a pair of g-fusion Bessel sequences are given and various properties are established.

Throughout this paper, H is considered to be a separable Hilbert space with associated inner product $\langle\cdot, \cdot\rangle$ and $\left\{H_{j}\right\}_{j \in J}$ are the collection of Hilbert spaces, where J is a subset of integers \mathbb{Z}. I_{H} is the identity operator on $H . \mathcal{B}\left(H_{1}, H_{2}\right)$ is a collection of all bounded linear operators from H_{1} to H_{2}. In particular, $\mathcal{B}(H)$ denotes the space of all bounded linear operators on H. For $T \in \mathcal{B}(H)$, we denote $\mathcal{N}(T)$ and $\mathcal{R}(T)$ for null space and range of T, respectively. Also, $P_{V} \in \mathcal{B}(H)$ is the orthonormal projection onto a closed subspace $V \subset H$. Define the space

$$
l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right)=\left\{\left\{f_{j}\right\}_{j \in J}: f_{j} \in H_{j}, \sum_{j \in J}\left\|f_{j}\right\|^{2}<\infty\right\}
$$

with inner product given by

$$
\left\langle\left\{f_{j}\right\}_{j \in J},\left\{g_{j}\right\}_{j \in J}\right\rangle=\sum_{j \in J}\left\langle f_{j}, g_{j}\right\rangle_{H_{j}} .
$$

Clearly $l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right)$ is a Hilbert space with the pointwise operations (see [1]).

2. Preliminaries

Theorem 2.1 ([6], Douglas' factorization theorem). Let $U, V \in \mathcal{B}(H)$. Then the following conditions are equivalent:
(1) $\mathcal{R}(U) \subseteq \mathcal{R}(V)$.
(2) $U U^{*} \leqslant \lambda^{2} V V^{*}$ for some $\lambda>0$.
(3) $U=V W$ for some bounded linear operator W on H.

Theorem 2.2 ([13]). The set $\mathcal{S}(H)$ of all self-adjoint operators on H is a partially ordered set with respect to the partial order \leqslant which is defined as for $T, S \in \mathcal{S}(H)$

$$
T \leqslant S \Leftrightarrow\langle T f, f\rangle \leqslant\langle S f, f\rangle \quad \forall f \in H .
$$

Theorem 2.3 ([10]). Let $V \subset H$ be a closed subspace and $T \in \mathcal{B}(H)$. Then $P_{V} T^{*}=P_{V} T^{*} P_{\overline{T V}}$. If T is a unitary operator (i.e. $T^{*} T=I_{H}$), then $P_{\overline{T V}} T=T P_{V}$.

Definition 2.4 ([4]). A sequence $\left\{f_{j}\right\}_{j \in J}$ of elements in H is a frame for H if there exist constants $A, B>0$ such that

$$
A\|f\|^{2} \leqslant \sum_{j \in J}\left|\left\langle f, f_{j}\right\rangle\right|^{2} \leqslant B\|f\|^{2} \quad \forall f \in H
$$

The constants A and B are called frame bounds.
Definition 2.5 ([3]). Let $\left\{W_{j}\right\}_{j \in J}$ be a collection of closed subspaces of H and $\left\{v_{j}\right\}_{j \in J}$ be a collection of positive weights. A family of weighted closed subspaces $\left\{\left(W_{j}, v_{j}\right): j \in J\right\}$ is called a fusion frame for H if there exist constants $0<A \leqslant$ $B<\infty$ such that

$$
A\|f\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|P_{W_{j}}(f)\right\|^{2} \leqslant B\|f\|^{2} \quad \forall f \in H
$$

The constants A, B are called fusion frame bounds. If $A=B$, then the fusion frame is called a tight fusion frame, if $A=B=1$, then it is called a Parseval fusion frame.

Definition 2.6 ([2]). Let $\left\{W_{j}\right\}_{j \in J}$ be a family of closed subspaces of H and $\left\{v_{j}\right\}_{j \in J}$ be a family of positive weights and $K \in \mathcal{B}(H)$. Then $\left\{\left(W_{j}, v_{j}\right): j \in J\right\}$ is said to be an atomic subspace of H with respect to K if the following conditions hold:
(I) $\sum_{j \in J} v_{j} f_{j}$ is convergent for all $\left\{f_{j}\right\}_{j \in J} \in\left(\sum_{j \in J} \oplus W_{j}\right)_{l^{2}}$.
(II) For every $f \in H$ there exists $\left\{f_{j}\right\}_{j \in J} \in\left(\sum_{j \in J} \oplus W_{j}\right)_{l^{2}}$ such that

$$
K(f)=\sum_{j \in J} v_{j} f_{j} \quad \text { and } \quad\left\|\left\{f_{j}\right\}\right\|_{\left(\sum_{j \in J} \oplus W_{j}\right)_{l^{2}}} \leqslant C\|f\|_{H}
$$

for some $C>0$, where

$$
\left(\sum_{j \in J} \oplus W_{j}\right)_{l^{2}}=\left\{\left\{f_{j}\right\}_{j \in J}: f_{j} \in W_{j}, \sum_{j \in J}\left\|f_{j}\right\|^{2}<\infty\right\}
$$

with inner product given by $\left\langle\left\{f_{j}\right\}_{j \in J},\left\{g_{j}\right\}_{j \in J}\right\rangle=\sum_{j \in J}\left\langle f_{j}, g_{j}\right\rangle_{H}$.

Definition 2.7 ([15]). A sequence $\left\{\Lambda_{j} \in \mathcal{B}\left(H, H_{j}\right): j \in J\right\}$ is called a generalized frame or g-frame for H with respect to $\left\{H_{j}\right\}_{j \in J}$ if there are two positive constants A and B such that

$$
A\|f\|^{2} \leqslant \sum_{j \in J}\left\|\Lambda_{j} f\right\|^{2} \leqslant B\|f\|^{2} \quad \forall f \in H
$$

The constants A and B are called the lower and upper frame bounds, respectively.
Definition 2.8 ([14], [1]). Let $\left\{W_{j}\right\}_{j \in J}$ be a collection of closed subspaces of H and $\left\{v_{j}\right\}_{j \in J}$ be a collection of positive weights and let $\Lambda_{j} \in \mathcal{B}\left(H, H_{j}\right)$ for each $j \in J$. Then the family $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ is called a generalized fusion frame or a g fusion frame for H with respect to $\left\{H_{j}\right\}_{j \in J}$ if there exist constants $0<A \leqslant B<\infty$ such that

$$
\begin{equation*}
A\|f\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \leqslant B\|f\|^{2} \quad \forall f \in H \tag{2.1}
\end{equation*}
$$

The constants A and B are called the lower and upper bounds of g-fusion frame, respectively. If $A=B$, then Λ is called tight g-fusion frame and if $A=B=1$, then we say Λ is a Parseval g-fusion frame. If Λ satisfies only the condition

$$
\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \leqslant B\|f\|^{2} \quad \forall f \in H
$$

then it is called a g-fusion Bessel sequence with bound B in H.
Definition 2.9 ([1]). Let $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ be a g-fusion Bessel sequence in H with a bound B. The synthesis operator T_{Λ} of Λ is defined as

$$
T_{\Lambda}: l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right) \rightarrow H, \quad T_{\Lambda}\left(\left\{f_{j}\right\}_{j \in J}\right)=\sum_{j \in J} v_{j} P_{W_{j}} \Lambda_{j}^{*} f_{j} \quad \forall\left\{f_{j}\right\}_{j \in J} \in l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right)
$$

and the analysis operator is given by

$$
T_{\Lambda}^{*}: H \rightarrow l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right), \quad T_{\Lambda}^{*}(f)=\left\{v_{j} \Lambda_{j} P_{W_{j}}(f)\right\}_{j \in J} \quad \forall f \in H .
$$

The g-fusion frame operator $S_{\Lambda}: H \rightarrow H$ is defined as

$$
S_{\Lambda}(f)=T_{\Lambda} T_{\Lambda}^{*}(f)=\sum_{j \in J} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}(f)
$$

and it can be easily verified that

$$
\left\langle S_{\Lambda}(f), f\right\rangle=\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \quad \forall f \in H
$$

Furthermore, if Λ is a g-fusion frame with bounds A and B, then from (2.1),

$$
\langle A f, f\rangle \leqslant\left\langle S_{\Lambda}(f), f\right\rangle \leqslant\langle B f, f\rangle \quad \forall f \in H .
$$

The operator S_{Λ} is bounded, self-adjoint, positive and invertible. Now, according to Theorem 2.2, we can write $A I_{H} \leqslant S_{\Lambda} \leqslant B I_{H}$ and this gives

$$
B^{-1} I_{H} \leqslant S_{\Lambda}^{-1} \leqslant A^{-1} I_{H}
$$

Definition 2.10 ([1]). Let $\left\{W_{j}\right\}_{j \in J}$ be a collection of closed subspaces of H and $\left\{v_{j}\right\}_{j \in J}$ be a collection of positive weights and let $\Lambda_{j} \in \mathcal{B}\left(H, H_{j}\right)$ for each $j \in J$ and $K \in \mathcal{B}(H)$. Then the family $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ is called a K - g-fusion frame for H if there exist constants $0<A \leqslant B<\infty$ such that

$$
\begin{equation*}
A\left\|K^{*} f\right\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \leqslant B\|f\|^{2} \quad \forall f \in H \tag{2.2}
\end{equation*}
$$

Theorem 2.11 ([1]). Let Λ be a g-fusion Bessel sequence in H. Then Λ is a K - g-fusion frame for H if and only if there exists $A>0$ such that $S_{\Lambda} \geqslant A K K^{*}$.

Definition 2.12 ([3]). A family of bounded operators $\left\{T_{j}\right\}_{j \in J}$ on H is called a resolution of identity operator on H if for all $f \in H$ we have $f=\sum_{j \in J} T_{j}(f)$, provided the series converges unconditionally for all $f \in H$.

3. Resolution of the identity operator in g-Fusion frame

In this section, we present several useful results of resolution of the identity operator on a Hilbert space using the theory of g-fusion frames.

Theorem 3.1. Let $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ be a g-fusion frame for H with frame bounds C, D and S_{Λ} be its associated g-fusion frame operator. Then the family $\left\{v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}\right\}_{j \in J}$ is the resolution of the identity operator on H, where $T_{j}=$ $\Lambda_{j} P_{W_{j}} S_{\Lambda}^{-1}, j \in J$. Furthermore, for all $f \in H$ we have

$$
\frac{C}{D^{2}}\|f\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|T_{j}(f)\right\|^{2} \leqslant \frac{D}{C^{2}}\|f\|^{2} .
$$

Proof. For any $f \in H$ we have the reconstruction formula for g-fusion frame:

$$
f=S_{\Lambda} S_{\Lambda}^{-1}(f)=\sum_{j \in J} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}} S_{\Lambda}^{-1}(f)=\sum_{j \in J} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}(f)
$$

Thus, $\left\{v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}\right\}_{j \in J}$ is a resolution of the identity operator on H. Since Λ is a g-fusion frame with bounds C and D, for each $f \in H$ we have

$$
\begin{aligned}
\sum_{j \in J} v_{j}^{2}\left\|T_{j}(f)\right\|^{2} & =\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}} S_{\Lambda}^{-1}(f)\right\|^{2} \leqslant D\left\|S_{\Lambda}^{-1}(f)\right\|^{2} \leqslant D\left\|S_{\Lambda}^{-1}\right\|^{2}\|f\|^{2} \\
& \leqslant \frac{D}{C^{2}}\|f\|^{2} \quad\left(\text { since } D^{-1} I_{H} \leqslant S_{\Lambda}^{-1} \leqslant C^{-1} I_{H}\right)
\end{aligned}
$$

On the other hand,

$$
\sum_{j \in J} v_{j}^{2}\left\|T_{j}(f)\right\|^{2}=\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}} S_{\Lambda}^{-1}(f)\right\|^{2} \geqslant C\left\|S_{\Lambda}^{-1}(f)\right\|^{2} \geqslant \frac{C}{D^{2}}\|f\|^{2}
$$

Therefore

$$
\frac{C}{D^{2}}\|f\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|T_{j}(f)\right\|^{2} \leqslant \frac{D}{C^{2}}\|f\|^{2} \quad \forall f \in H
$$

Theorem 3.2. Let $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ be a g-fusion frame for H with frame bounds C, D and let $T_{j}: H \rightarrow H_{j}$ be a bounded operator such that $\left\{v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}\right\}_{j \in J}$ is a resolution of the identity operator on H. Then

$$
\frac{1}{D}\left\|\sum_{j \in J} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}(f)\right\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|T_{j}(f)\right\|^{2} \quad \forall f \in H
$$

Proof. Assume $I \subset J$ with $|I|<\infty$. If our inequality holds for all finite subsets, then it would hold for all subsets. Let $f \in H$ and set $g=\sum_{j \in I} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}(f)$. Then

$$
\begin{aligned}
\|g\|^{4} & =\langle g, g\rangle^{2}=\left\langle g, \sum_{j \in I} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}(f)\right\rangle^{2}=\left(\sum_{j \in I} v_{j}\left\langle\Lambda_{j} P_{W_{j}}(g), v_{j} T_{j}(f)\right\rangle\right)^{2} \\
& \leqslant\left(\sum_{j \in I} v_{j}\left\|\Lambda_{j} P_{W_{j}}(g)\right\|\left\|v_{j} T_{j}(f)\right\|\right)^{2} \leqslant \sum_{j \in I} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(g)\right\|^{2} \sum_{j \in I}\left\|v_{j} T_{j}(f)\right\|^{2} \\
& \leqslant D\|g\|^{2} \sum_{j \in I}\left\|v_{j} T_{j}(f)\right\|^{2} \quad \text { (since } \Lambda \text { is a } g \text {-fusion frame) } \\
& \Rightarrow \frac{1}{D}\|g\|^{2} \leqslant \sum_{j \in I}\left\|v_{j} T_{j}(f)\right\|^{2} \\
& \Rightarrow \frac{1}{D}\left\|\sum_{j \in I} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}(f)\right\|^{2} \leqslant \sum_{j \in I} v_{j}^{2}\left\|T_{j}(f)\right\|^{2} \quad \forall f \in H .
\end{aligned}
$$

Since the inequality holds for any finite subset $I \subset J$, we have

$$
\frac{1}{D}\left\|\sum_{j \in J} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}(f)\right\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|T_{j}(f)\right\|^{2} \quad \forall f \in H
$$

This completes the proof.
Theorem 3.3. Let $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ be a g-fusion frame for H with frame bounds C, D and let $T_{j}: H \rightarrow H_{j}$ be a bounded operator such that $\left\{v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}\right\}_{j \in J}$ is a resolution of the identity operator on H. If $T_{j}^{*} \Lambda_{j} P_{W_{j}}=T_{j}$, then

$$
\frac{1}{D}\|f\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|T_{j}(f)\right\|^{2} \leqslant D E\|f\|^{2} \quad \forall f \in H
$$

where $E=\sup _{j}\left\|T_{j}\right\|^{2}<\infty$.
Proof. Since $\left\{v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}\right\}_{j \in J}$ is a resolution of the identity on H,

$$
f=\sum_{j \in J} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}(f), \quad f \in H .
$$

Now, for each $f \in H$, using Theorem 3.2, we get

$$
\begin{aligned}
\frac{1}{D}\|f\|^{2} & =\frac{1}{D}\left\|\sum_{j \in J} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} T_{j}(f)\right\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|T_{j}(f)\right\|^{2} \\
& =\sum_{j \in J} v_{j}^{2}\left\|T_{j}^{*} \Lambda_{j} P_{W_{j}}(f)\right\|^{2} \quad\left(\text { since } T_{j}^{*} \Lambda_{j} P_{W_{j}}=T_{j}\right) \\
& \leqslant \sum_{j \in J} v_{j}^{2}\left\|T_{j}\right\|^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \\
& \left.\leqslant E \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \quad \text { (using } E=\sup _{j}\left\|T_{j}\right\|^{2}\right) \\
& \leqslant D E\|f\|^{2} \quad \text { (since } \Lambda \text { is a } g \text {-fusion frame) } .
\end{aligned}
$$

This completes the proof.
Theorem 3.4. Let $\left\{W_{j}\right\}_{j \in J}$ be a family of closed subspaces of H and $\left\{v_{j}\right\}_{j \in J}$ be a family of bounded weights and let $\Lambda_{j} \in \mathcal{B}\left(H, H_{j}\right), j \in J$. Then $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ is a g-fusion frame for H if the following conditions hold:
(I) For all $f \in H$ there exists $A>0$ such that

$$
\sum_{j \in J}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \leqslant \frac{1}{A}\|f\|^{2} .
$$

(II) $\left\{v_{j} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}\right\}_{j \in J}$ is a resolution of the identity operator on H.

Proof. Since $\left\{v_{j} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}\right\}_{j \in J}$ is a resolution of the identity operator on H, for $f \in H$ we have

$$
f=\sum_{j \in J} v_{j} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}(f) .
$$

By Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
\|f\|^{4}=\langle f, f\rangle^{2} & =\left\langle\sum_{j \in J} v_{j} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}(f), f\right\rangle^{2} \\
& =\left(\sum_{j \in J} v_{j}\left\langle\Lambda_{j} P_{W_{j}}(f), \Lambda_{j} P_{W_{j}}(f)\right\rangle\right)^{2}=\left(\sum_{j \in J} v_{j}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}\right)^{2} \\
& \leqslant \sum_{j \in J}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \\
& \leqslant \frac{1}{A}\|f\|^{2} \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \quad \text { (using given condition (I)) } \\
& \Rightarrow A\|f\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} & \leqslant B \sum_{j \in J}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \quad\left(\text { where } B=\sup _{j \in J}\left\{v_{j}^{2}\right\}\right) \\
& \leqslant \frac{B}{A}\|f\|^{2} \quad \text { (using given condition (I)) }
\end{aligned}
$$

and hence, Λ is a g-fusion frame.

4. g-ATOMIC SUBSPACE

In this section, we define a generalized atomic subspace or a g-atomic subspace of a Hilbert space with respect to a bounded linear operator.

Definition 4.1. Let $K \in \mathcal{B}(H)$ and $\left\{W_{j}\right\}_{j \in J}$ be a collection of closed subspaces of H, let $\left\{v_{j}\right\}_{j \in J}$ be a collection of positive weights and $\Lambda_{j} \in \mathcal{B}\left(H, H_{j}\right)$ for each $j \in J$. Then the family $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ is said to be a generalized atomic subspace or g-atomic subspace of H with respect to K if the following statements hold:
(I) Λ is a g-fusion Bessel sequence in H.
(II) For every $f \in H$ there exists $\left\{f_{j}\right\}_{j \in J} \in l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right)$ such that

$$
K(f)=\sum_{j \in J} v_{j} P_{W_{j}} \Lambda_{j}^{*} f_{j} \quad \text { and } \quad\left\|\left\{f_{j}\right\}_{j \in J}\right\|_{l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right)} \leqslant C\|f\|_{H}
$$

for some $C>0$.

Theorem 4.2. Let $K \in \mathcal{B}(H)$ and $\left\{W_{j}\right\}_{j \in J}$ be a collection of closed subspaces of H, let $\left\{v_{j}\right\}_{j \in J}$ be a collection of positive weights and $\Lambda_{j} \in \mathcal{B}\left(H, H_{j}\right)$ for each $j \in J$. Then the following statements are equivalent:
(I) $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ is a g-atomic subspace of H with respect to K.
(II) Λ is a K - g-fusion frame for H.

Proof. (I) \Rightarrow (II): Suppose Λ is a g-atomic subspace of H with respect to K. Then Λ is a g-fusion Bessel sequence, so there exists $B>0$ such that

$$
\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \leqslant B\|f\|^{2} \quad \forall f \in H
$$

Now, for any $f \in H$ we have

$$
\left\|K^{*} f\right\|=\sup _{\|g\|=1}\left|\left\langle K^{*} f, g\right\rangle\right|=\sup _{\|g\|=1}|\langle f, K g\rangle|,
$$

by Definition 4.1, for $g \in H$ there exists $\left\{f_{j}\right\}_{j \in J} \in l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right)$ such that

$$
K(g)=\sum_{j \in J} v_{j} P_{W_{j}} \Lambda_{j}^{*} f_{j} \quad \text { and } \quad\left\|\left\{f_{j}\right\}_{j \in J}\right\|_{l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right)} \leqslant C\|g\|_{H}
$$

for some $C>0$. Thus

$$
\begin{aligned}
\left\|K^{*} f\right\| & =\sup _{\|g\|=1}\left|\left\langle f, \sum_{j \in J} v_{j} P_{W_{j}} \Lambda_{j}^{*} f_{j}\right\rangle\right|=\sup _{\|g\|=1}\left|\sum_{j \in J} v_{j}\left\langle\Lambda_{j} P_{W_{j}}(f), f_{j}\right\rangle\right| \\
& \leqslant \sup _{\|g\|=1}\left(\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}\right)^{1 / 2}\left(\sum_{j \in J}\left\|f_{j}\right\|^{2}\right)^{1 / 2} \\
& \leqslant C \sup _{\|g\|=1}\left(\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}\right)^{1 / 2}\|g\| \\
& \Rightarrow \frac{1}{C^{2}}\left\|K^{*} f\right\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}
\end{aligned}
$$

Therefore Λ is a $K-g$-fusion frame for H with bounds $1 / C^{2}$ and B.
$(\mathrm{II}) \Rightarrow(\mathrm{I})$: Suppose that Λ is a $K-g$-fusion frame with the corresponding synthesis operator T_{Λ}. Then obviously Λ is a g-fusion Bessel sequence in H. Now, for each $f \in H$,

$$
A\left\|K^{*} f\right\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}=\left\|T_{\Lambda}^{*} f\right\|^{2}
$$

gives $A K K^{*} \leqslant T_{\Lambda} T_{\Lambda}^{*}$ and by Theorem 2.1, exists $L \in \mathcal{B}\left(H, l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right)\right)$ such that $K=T_{\Lambda} L$. Define $L(f)=\left\{f_{j}\right\}_{j \in J}$ for every $f \in H$. Then for each $f \in H$ we have

$$
K(f)=T_{\Lambda} L(f)=T_{\Lambda}\left(\left\{f_{j}\right\}_{j \in J}\right)=\sum_{j \in J} v_{j} P_{W_{j}} \Lambda_{j}^{*} f_{j}
$$

and

$$
\left\|\left\{f_{j}\right\}_{j \in J}\right\|_{l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right)}=\|L(f)\|_{l^{2}\left(\left\{H_{j}\right\}_{j \in J}\right)} \leqslant C\|f\|,
$$

where $C=\|L\|$. Hence, Λ is a g-atomic subspace of H with respect to K.
Theorem 4.3. Let $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ be a g-fusion frame for H. Then Λ is a g-atomic subspace of H with respect to its g-fusion frame operator S_{Λ}.

Proof. Since Λ is a g-fusion frame in H, there exist $A, B>0$ such that

$$
A\|f\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \leqslant B\|f\|^{2} \quad \forall f \in H
$$

Since $\mathcal{R}\left(T_{\Lambda}\right)=H=\mathcal{R}\left(S_{\Lambda}\right)$, by Theorem 2.1, there exists $\alpha>0$ such that $\alpha S_{\Lambda} S_{\Lambda}^{*} \leqslant$ $T_{\Lambda} T_{\Lambda}^{*}$ and therefore for each $f \in H$ we have

$$
\alpha\left\|S_{\Lambda}^{*} f\right\|^{2} \leqslant\left\|T_{\Lambda}^{*} f\right\|^{2}=\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \leqslant B\|f\|^{2}
$$

Thus, Λ is a $S_{\Lambda^{-}} g$-fusion frame and hence by Theorem $4.2, \Lambda$ is a g-atomic subspace of H with respect to S_{Λ}.

Theorem 4.4. Let $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ and $\Gamma=\left\{\left(W_{j}, \Gamma_{j}, v_{j}\right)\right\}_{j \in J}$ be two g atomic subspaces of H with respect to $K \in \mathcal{B}(H)$ with the corresponding synthesis operators T_{Λ} and T_{Γ}, respectively. If $T_{\Lambda} T_{\Gamma}^{*}=\theta_{H}\left(\theta_{H}\right.$ is a null operator on H) and $U, V \in \mathcal{B}(H)$ such that $U+V$ is invertible operator on H with $K(U+V)=(U+V) K$, then

$$
\left\{\left((U+V) W_{j},\left(\Lambda_{j}+\Gamma_{j}\right) P_{W_{j}}(U+V)^{*}, v_{j}\right)\right\}_{j \in J}
$$

is a g-atomic subspace of H with respect to K.
Proof. Since Λ and Γ are g-atomic subspaces with respect to K, by Theorem 4.2, they are $K-g$-fusion frames for H. So, for each $f \in H$ there exist positive constants $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ such that

$$
A_{1}\left\|K^{*} f\right\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \leqslant B_{1}\|f\|^{2}
$$

and

$$
A_{2}\left\|K^{*} f\right\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|\Gamma_{j} P_{W_{j}}(f)\right\|^{2} \leqslant B_{2}\|f\|^{2}
$$

Since $T_{\Lambda} T_{\Gamma}^{*}=\theta_{H}$, for any $f \in H$ we have

$$
\begin{equation*}
T_{\Lambda}\left\{v_{j} \Gamma_{j} P_{W_{j}}(f)\right\}_{j \in J}=\sum_{j \in J} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} \Gamma_{j} P_{W_{j}}(f)=0 \tag{4.1}
\end{equation*}
$$

Also, $U+V$ is invertible, so
(4.2) $\left\|K^{*} f\right\|^{2}=\left\|\left((U+V)^{-1}\right)^{*}(U+V)^{*} K^{*} f\right\|^{2} \leqslant\left\|(U+V)^{-1}\right\|^{2}\left\|(U+V)^{*} K^{*} f\right\|^{2}$.

Now, for any $f \in H$ we have

$$
\begin{aligned}
\sum_{j \in J} v_{j}^{2} \| & \left(\Lambda_{j}+\Gamma_{j}\right) P_{W_{j}}(U+V)^{*} P_{(U+V) W_{j}}(f) \|^{2} \\
& =\sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j}+\Gamma_{j}\right) P_{W_{j}}(U+V)^{*}(f)\right\|^{2} \quad \text { (using Theorem 2.3) } \\
& \left.=\sum_{j \in J} v_{j}^{2}\left\langle\left(\Lambda_{j}+\Gamma_{j}\right) P_{W_{j}}\left(T^{*} f\right),\left(\Lambda_{j}+\Gamma_{j}\right) P_{W_{j}}\left(T^{*} f\right)\right\rangle \quad \text { (taking } T=U+V\right) \\
& =\sum_{j \in J} v_{j}^{2}\left(\left\|\Lambda_{j} P_{W_{j}}\left(T^{*} f\right)\right\|^{2}+\left\|\Gamma_{j} P_{W_{j}}\left(T^{*} f\right)\right\|^{2}+2 \operatorname{Re}\left\langle T P_{W_{j}} \Lambda_{j}^{*} \Gamma_{j} P_{W_{j}}\left(T^{*} f\right), f\right\rangle\right) \\
& =\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}\left(T^{*} f\right)\right\|^{2}+\sum_{j \in J} v_{j}^{2}\left\|\Gamma_{j} P_{W_{j}}\left(T^{*} f\right)\right\|^{2} \quad \text { (using (4.1)) } \\
& \leqslant B_{1}\left\|T^{*} f\right\|^{2}+B_{2}\left\|T^{*} f\right\|^{2} \quad \text { (since } \Lambda, \Gamma \text { are } K \text { - } g \text {-fusion frames) } \\
& \left.=\left(B_{1}+B_{2}\right)\left\|(U+V)^{*} f\right\|^{2} \quad \text { (since } T=U+V\right) \\
& \leqslant\left(B_{1}+B_{2}\right)\|U+V\|^{2}\|f\|^{2} \quad \text { (as } U+V \text { is bounded). }
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j}+\Gamma_{j}\right) P_{W_{j}}(U+V)^{*} P_{(U+V) W_{j}}(f)\right\|^{2} \\
&=\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(U+V)^{*} f\right\|^{2}+\sum_{j \in J} v_{j}^{2}\left\|\Gamma_{j} P_{W_{j}}(U+V)^{*} f\right\|^{2} \\
& \geqslant \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(U+V)^{*} f\right\|^{2} \\
& \geqslant A_{1}\left\|K^{*}(U+V)^{*} f\right\|^{2} \quad(\text { since } \Lambda \text { is } K \text { - } g \text {-fusion frame }) \\
&=A_{1}\left\|(U+V)^{*} K^{*} f\right\|^{2} \quad(\text { using } K(U+V)=(U+V) K) \\
& \geqslant A_{1}\left\|(U+V)^{-1}\right\|^{-2}\left\|K^{*} f\right\|^{2} \quad(\text { using }(4.2))
\end{aligned}
$$

Therefore $\left\{\left((U+V) W_{j},\left(\Lambda_{j}+\Gamma_{j}\right) P_{W_{j}}(U+V)^{*}, v_{j}\right)\right\}_{j \in J}$ is a K - g-fusion frame and by Theorem 4.2, it is a g-atomic subspace of H with respect to K.

Corollary 4.5. Let $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ and $\Gamma=\left\{\left(W_{j}, \Gamma_{j}, v_{j}\right)\right\}_{j \in J}$ be two g atomic subspaces of H with respect to $K \in \mathcal{B}(H)$ with the corresponding synthesis operators T_{Λ} and T_{Γ}. If $T_{\Lambda} T_{\Gamma}^{*}=\theta_{H}$ and $U \in \mathcal{B}(H)$ is an invertible operator with $K U=U K$, then $\left\{\left(U W_{j},\left(\Lambda_{j}+\Gamma_{j}\right) P_{W_{j}} U^{*}, v_{j}\right)\right\}_{j \in J}$ is a g-atomic subspace of H with respect to K.

Proof. The proof of this Corollary directly follows from Theorem 4.4 by putting $V=\theta_{H}$.

Theorem 4.6. Let $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ is a g-atomic subspace for $K \in \mathcal{B}(H)$ and S_{Λ} be the frame operator of Λ. If $U \in \mathcal{B}(H)$ is a positive and invertible operator on H, then $\Lambda^{\prime}=\left\{\left(\left(I_{H}+U\right) W_{j}, \Lambda_{j} P_{W_{j}}\left(I_{H}+U\right)^{*}, v_{j}\right)\right\}_{j \in J}$ is a g-atomic subspace of H with respect to K. Moreover, for any natural number $n, \Lambda^{\prime \prime}=\left\{\left(\left(I_{H}+U^{n}\right) W_{j}\right.\right.$, $\left.\left.\Lambda_{j} P_{W_{j}}\left(I_{H}+U^{n}\right)^{*}, v_{j}\right)\right\}_{j \in J}$ is a g-atomic subspace of H with respect to K.

Proof. Since Λ is a g-atomic subspace with respect to K, by Theorem 4.2, it is a $K-g$-fusion frame for H. Then according to Theorem 2.11, there exists $A>0$ such that $S_{\Lambda} \geqslant A K K^{*}$. Now, for each $f \in H$ we have

$$
\begin{aligned}
& \sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{j}}(f)\right\|^{2} \\
&=\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}\left(I_{H}+U\right)^{*}(f)\right\|^{2} \quad(\text { using Theorem 2.3 }) \\
& \leqslant B\left\|\left(I_{H}+U\right)^{*}(f)\right\|^{2} \quad(\text { since } \Lambda \text { is a } K \text { - } g \text {-fusion frame }) \\
& \leqslant B\left\|I_{H}+U\right\|^{2}\|f\|^{2} \quad\left(\text { since }\left(I_{H}+U\right) \in \mathcal{B}(H)\right)
\end{aligned}
$$

Thus, Λ^{\prime} is a g-fusion Bessel sequence in H. Also, for each $f \in H$ we have

$$
\begin{aligned}
\sum_{j \in J} v_{j}^{2} & P_{\left(I_{H}+U\right) W_{j}}\left(\Lambda_{j} P_{W_{j}}\left(I_{H}+U\right)^{*}\right)^{*} \Lambda_{j} P_{W_{j}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{j}}(f) \\
& =\sum_{j \in J} v_{j}^{2} P_{\left(I_{H}+U\right) W_{j}}\left(I_{H}+U\right) P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{j}}(f) \\
& =\sum_{j \in J} v_{j}^{2}\left(P_{W_{j}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{j}}\right)^{*} \Lambda_{j}^{*} \Lambda_{j}\left(P_{W_{j}}\left(I_{H}+U\right)^{*} P_{\left(I_{H}+U\right) W_{j}}(f)\right) \\
& =\sum_{j \in J} v_{j}^{2}\left(P_{W_{j}}\left(I_{H}+U\right)^{*}\right)^{*} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}\left(I_{H}+U\right)^{*}(f) \quad \text { (using Theorem 2.3) } \\
& =\sum_{j \in J} v_{j}^{2}\left(I_{H}+U\right) P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}\left(I_{H}+U\right)^{*}(f) \\
& =\left(I_{H}+U\right) \sum_{j \in J} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}\left(I_{H}+U\right)^{*}(f)=\left(I_{H}+U\right) S_{\Lambda}\left(I_{H}+U\right)^{*}(f)
\end{aligned}
$$

This shows that the frame operator of Λ^{\prime} is $\left(I_{H}+U\right) S_{\Lambda}\left(I_{H}+U\right)^{*}$. Now,

$$
\left(I_{H}+U\right) S_{\Lambda}\left(I_{H}+U\right)^{*} \geqslant S_{\Lambda} \geqslant A K K^{*} \quad \text { (since } U, S_{\Lambda} \text { are positive). }
$$

Then by Theorem 2.11, we can conclude that Λ^{\prime} is a $K-g$-fusion frame and therefore by Theorem 4.2, Λ^{\prime} is a g-atomic subspace of H with respect to K. According to the preceding procedure, for any natural number n, the frame operator of $\Lambda^{\prime \prime}$ is $\left(I_{H}+U^{n}\right) S_{\Lambda}\left(I_{H}+U^{n}\right)^{*}$ and similarly, it can be shown that $\Lambda^{\prime \prime}$ is a g-atomic subspace of H with respect to K.

5. Frame operator for a pair of g-fusion Bessel sequences

In this section, we shall discuss the frame operator for a pair of g-fusion Bessel sequences and establish some properties relative to frame operator. At the end of this section, we shall construct a new g-fusion frame for the Hilbert space $H \oplus X$, using the g-fusion frames of the Hilbert spaces H and X.

Definition 5.1. Let $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, w_{j}\right)\right\}_{j \in J}$ and $\Gamma=\left\{\left(V_{j}, \Gamma_{j}, v_{j}\right)\right\}_{j \in J}$ be two g-fusion Bessel sequences in H with bounds D_{1} and D_{2}. Then the operator $S_{\Gamma \Lambda}: H \rightarrow H$, defined by

$$
S_{\Gamma \Lambda}(f)=\sum_{j \in J} v_{j} w_{j} P_{V_{j}} \Gamma_{j}^{*} \Lambda_{j} P_{W_{j}}(f) \quad \forall f \in H
$$

is called the frame operator for the pair of g-fusion Bessel sequences Λ and Γ.

Theorem 5.2. The frame operator $S_{\Gamma \Lambda}$ for the pair of g-fusion Bessel sequences Λ and Γ is bounded and $S_{\Gamma \Lambda}^{*}=S_{\Lambda \Gamma}$.

Proof. For each $f, g \in H$ we have

$$
\begin{equation*}
\left\langle S_{\Gamma \Lambda}(f), g\right\rangle=\left\langle\sum_{j \in J} v_{j} w_{j} P_{V_{j}} \Gamma_{j}^{*} \Lambda_{j} P_{W_{j}}(f), g\right\rangle=\sum_{j \in J} v_{j} w_{j}\left\langle\Lambda_{j} P_{W_{j}}(f), \Gamma_{j} P_{V_{j}}(g)\right\rangle \tag{5.1}
\end{equation*}
$$

By the Cauchy-Schwarz inequality, we obtain

$$
\begin{align*}
\left|\left\langle S_{\Gamma \Lambda}(f), g\right\rangle\right| & \leqslant\left(\sum_{j \in J} v_{j}^{2}\left\|\Gamma_{j} P_{V_{j}}(g)\right\|^{2}\right)^{1 / 2}\left(\sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}\right)^{1 / 2} \tag{5.2}\\
& \leqslant \sqrt{D_{2}}\|g\| \sqrt{D_{1}}\|f\|
\end{align*}
$$

This shows that $S_{\Gamma \Lambda}$ is a bounded operator with $\left\|S_{\Gamma \Lambda}\right\| \leqslant \sqrt{D_{1} D_{2}}$. Now,

$$
\begin{align*}
\left\|S_{\Gamma \Lambda} f\right\| & =\sup _{\|g\|=1}\left|\left\langle S_{\Gamma \Lambda}(f), g\right\rangle\right| \tag{5.3}\\
& \leqslant \sup _{\|g\|=1} \sqrt{D_{2}}\|g\|\left(\sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}\right)^{1 / 2} \quad(\text { using }(5.2)) \\
& \leqslant \sqrt{D_{2}}\left(\sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}\right)^{1 / 2}
\end{align*}
$$

and similarly, it can be shown that

$$
\begin{equation*}
\left\|S_{\Gamma \Lambda}^{*} g\right\| \leqslant \sqrt{D_{1}}\left(\sum_{j \in J} v_{j}^{2}\left\|\Gamma_{j} P_{V_{j}}(g)\right\|^{2}\right)^{1 / 2} . \tag{5.4}
\end{equation*}
$$

Also, for each $f, g \in H$ we have

$$
\begin{aligned}
\left\langle S_{\Gamma \Lambda}(f), g\right\rangle & =\left\langle\sum_{j \in J} v_{j} w_{j} P_{V_{j}} \Gamma_{j}^{*} \Lambda_{j} P_{W_{j}}(f), g\right\rangle=\sum_{j \in J} v_{j} w_{j}\left\langle f, P_{W_{j}} \Lambda_{j}^{*} \Gamma_{j} P_{V_{j}}(g)\right\rangle \\
& =\left\langle f, \sum_{j \in J} w_{j} v_{j} P_{W_{j}} \Lambda_{j}^{*} \Gamma_{j} P_{V_{j}}(g)\right\rangle=\left\langle f, S_{\Lambda \Gamma}(g)\right\rangle
\end{aligned}
$$

and hence $S_{\Gamma \Lambda}^{*}=S_{\Lambda \Gamma}$.
Theorem 5.3. Let $S_{\Gamma \Lambda}$ be the frame operator for a pair of g-fusion Bessel sequences Λ and Γ with bounds D_{1} and D_{2}, respectively. Then the following statements are equivalent:
(I) $S_{\Gamma \Lambda}$ is bounded below.
(II) There exists $K \in \mathcal{B}(H)$ such that $\left\{T_{j}\right\}_{j \in J}$ is a resolution of the identity operator on H, where $T_{j}=v_{j} w_{j} K P_{V_{j}} \Gamma_{j}^{*} \Lambda_{j} P_{W_{j}}, j \in J$.
If one of the given conditions holds, then Λ is a g-fusion frame.
Proof. (I) \Rightarrow (II): Suppose that $S_{\Gamma \Lambda}$ is bounded below. Then for each $f \in H$ there exists $A>0$ such that

$$
\|f\|^{2} \leqslant A\left\|S_{\Gamma \Lambda} f\right\|^{2} \Rightarrow\left\langle I_{H} f, f\right\rangle \leqslant A\left\langle S_{\Gamma \Lambda}^{*} S_{\Gamma \Lambda} f, f\right\rangle \Rightarrow I_{H}^{*} I_{H} \leqslant A S_{\Gamma \Lambda}^{*} S_{\Gamma \Lambda} .
$$

So, by Theorem 2.1, there exists $K \in \mathcal{B}(H)$ such that $K S_{\Gamma \Lambda}=I_{H}$. Therefore for each $f \in H$ we have
$f=K S_{\Gamma \Lambda}(f)=K \sum_{j \in J} v_{j} w_{j} P_{V_{j}} \Gamma_{j}^{*} \Lambda_{j} P_{W_{j}}(f)=\sum_{j \in J} v_{j} w_{j} K P_{V_{j}} \Gamma_{j}^{*} \Lambda_{j} P_{W_{j}}(f)=\sum_{j \in J} T_{j}(f)$
and hence $\left\{T_{j}\right\}_{j \in J}$ is a resolution of the identity operator on H, where $T_{j}=$ $v_{j} w_{j} K P_{V_{j}} \Gamma_{j}^{*} \Lambda_{j} P_{W_{j}}$.
$(\mathrm{II}) \Rightarrow(\mathrm{I})$: Since $\left\{T_{j}\right\}_{j \in J}$ is a resolution of the identity operator on H, for any $f \in H$ we have
$f=\sum_{j \in J} T_{j}(f)=\sum_{j \in J} v_{j} w_{j} K P_{V_{j}} \Gamma_{j}^{*} \Lambda_{j} P_{W_{j}}(f)=K \sum_{j \in J} v_{j} w_{j} P_{V_{j}} \Gamma_{j}^{*} \Lambda_{j} P_{W_{j}}(f)=K S_{\Gamma \Lambda}(f)$.
Thus, $I_{H}=K S_{\Gamma \Lambda}$. So, by Theorem 2.1, there exists $\alpha>0$ such that $I_{H} I_{H}^{*} \leqslant$ $\alpha S_{\Gamma \Lambda} S_{\Gamma \Lambda}^{*}$ and hence $S_{\Gamma \Lambda}$ is bounded below.

Last part: First we suppose that $S_{\Gamma \Lambda}$ is bounded below. Then for all $f \in H$ there exists $M>0$ such that $\left\|S_{\Gamma \Lambda} f\right\| \geqslant M\|f\|$ and this implies that

$$
\begin{aligned}
M^{2}\|f\|^{2} \leqslant\left\|S_{\Gamma \Lambda} f\right\|^{2} & \leqslant D_{2} \sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} \quad \text { (using (5.3)) } \\
& \Rightarrow \frac{M^{2}}{D_{2}}\|f\|^{2} \leqslant \sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}
\end{aligned}
$$

Hence, Λ is a g-fusion frame for H with bounds M^{2} / D_{2} and D_{1}.
Next, we suppose that the given condition (II) holds. Then for any $f \in H$ we have

$$
f=\sum_{j \in J} v_{j} w_{j} K P_{V_{j}} \Gamma_{j}^{*} \Lambda_{j} P_{W_{j}}(f), \quad K \in \mathcal{B}(H)
$$

By Cauchy-Schwarz inequality, for each $f \in H$ we have

$$
\begin{aligned}
\|f\|^{2}=\langle f, f\rangle & =\left\langle\sum_{j \in J} v_{j} w_{j} K P_{V_{j}} \Gamma_{j}^{*} \Lambda_{j} P_{W_{j}}(f), f\right\rangle=\sum_{j \in J} v_{j} w_{j}\left\langle\Lambda_{j} P_{W_{j}}(f), \Gamma_{j} P_{V_{j}}\left(K^{*} f\right)\right\rangle \\
& \leqslant\left(\sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}\right)^{1 / 2}\left(\sum_{j \in J} v_{j}^{2}\left\|\Gamma_{j} P_{V_{j}}\left(K^{*} f\right)\right\|^{2}\right)^{1 / 2} \\
& \leqslant \sqrt{D_{2}\left\|K^{*} f\right\|\left(\sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}\right)^{1 / 2}} \\
& \leqslant \sqrt{D_{2}}\|K\|\|f\|\left(\sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}\right)^{1 / 2} \\
& \Rightarrow \frac{1}{D_{2}\|K\|^{2}}\|f\|^{2} \leqslant \sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} .
\end{aligned}
$$

Therefore, in this case Λ is also a g-fusion frame for H.
Theorem 5.4. Let $S_{\Gamma \Lambda}$ be the frame operator for a pair of g-fusion Bessel sequences Λ and Γ with bounds D_{1} and D_{2}, respectively. Suppose $\lambda_{1}<1, \lambda_{2}>-1$ such that for each $f \in H,\left\|f-S_{\Gamma \Lambda} f\right\| \leqslant \lambda_{1}\|f\|+\lambda_{2}\left\|S_{\Gamma \Lambda} f\right\|$. Then Λ is a g-fusion frame for H.

Proof. For each $f \in H$ we have

$$
\begin{align*}
\|f\|- & \left\|S_{\Gamma \Lambda} f\right\| \leqslant\left\|f-S_{\Gamma \Lambda} f\right\| \leqslant \lambda_{1}\|f\|+\lambda_{2}\left\|S_{\Gamma \Lambda} f\right\| \\
& \Rightarrow\left(1-\lambda_{1}\right)\|f\| \leqslant\left(1+\lambda_{2}\right) \| S_{\Gamma \Lambda} f \\
& \Rightarrow\left(\frac{1-\lambda_{1}}{1+\lambda_{2}}\right)\|f\| \leqslant \sqrt{D_{2}}\left(\sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}\right)^{1 / 2} \quad(\text { using (5.3)) } \\
& \Rightarrow \frac{1}{D_{2}}\left(\frac{1-\lambda_{1}}{1+\lambda_{2}}\right)^{2}\|f\|^{2} \leqslant \sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2} . \tag{5.5}
\end{align*}
$$

Thus, Λ is a g-fusion frame for H with bounds $\left(1-\lambda_{1}\right)^{2}\left(1+\lambda_{2}\right)^{-2} D_{2}^{-1}$ and D_{1}.
Theorem 5.5. Let $S_{\Gamma \Lambda}$ be the frame operator for a pair of g-fusion Bessel sequences Λ and Γ of bounds D_{1} and D_{2}, respectively. Assume $\lambda \in[0,1)$ such that

$$
\left\|f-S_{\Gamma \Lambda} f\right\| \leqslant \lambda\|f\| \quad \forall f \in H
$$

Then Λ and Γ are g-fusion frames for H.
Proof. By putting $\lambda_{1}=\lambda$ and $\lambda_{2}=0$ in (5.5), we get

$$
\frac{(1-\lambda)^{2}}{D_{2}}\|f\|^{2} \leqslant \sum_{j \in J} w_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|^{2}
$$

and therefore Λ is a g-fusion frame. Now, for each $f \in H$ we have

$$
\begin{aligned}
\left\|f-S_{\Gamma \Lambda}^{*} f\right\| & =\left\|\left(I_{H}-S_{\Gamma \Lambda}\right)^{*} f\right\| \leqslant\left\|\left(I_{H}-S_{\Gamma \Lambda}\right)\right\|\|f\| \leqslant \lambda\|f\| \\
& \Rightarrow(1-\lambda)\|f\| \leqslant\left\|S_{\Gamma \Lambda}^{*} f\right\| \leqslant \sqrt{D_{1}}\left(\sum_{j \in J} v_{j}^{2}\left\|\Gamma_{j} P_{V_{j}}(f)\right\|^{2}\right)^{1 / 2} \quad(\text { using (5.4)) } \\
& \Rightarrow \sum_{j \in J} v_{j}^{2}\left\|\Gamma_{j} P_{V_{j}}(f)\right\|^{2} \geqslant \frac{(1-\lambda)^{2}}{D_{1}}\|f\|^{2} \quad \forall f \in H
\end{aligned}
$$

Hence, Γ is a g-fusion frame with bounds $(1-\lambda)^{2} / D_{1}$ and D_{2}.
Definition 5.6. Let H and X be two Hilbert spaces. Define

$$
H \oplus X=\{(f, g): f \in H, g \in X\}
$$

Then $H \oplus X$ forms a Hilbert space with respect to point-wise operations and inner product defined by

$$
\left\langle(f, g),\left(f^{\prime}, g^{\prime}\right)\right\rangle=\left\langle f, f^{\prime}\right\rangle_{H}+\left\langle g, g^{\prime}\right\rangle_{X} \quad \forall f, f^{\prime} \in H \text { and } \forall g, g^{\prime} \in X
$$

Now, if $U \in \mathcal{B}(H, Z), V \in \mathcal{B}(X, Y)$, then for all $f \in H, g \in X$ we define

$$
U \oplus V \in \mathcal{B}(H \oplus X, Z \oplus Y) \quad \text { by }(U \oplus V)(f, g)=(U f, V g)
$$

and $(U \oplus V)^{*}=U^{*} \oplus V^{*}$, where Z, Y are Hilbert spaces and also we define $P_{M \oplus N}(f, g)=\left(P_{M} f, P_{N} g\right)$, where P_{M}, P_{N} and $P_{M \oplus N}$ are orthonormal projections onto the closed subspaces $M \subset H, N \subset X$ and $M \oplus N \subset H \oplus X$, respectively.

From here we assume that for each $j \in J, W_{j} \oplus V_{j}$ are the closed subspaces of $H \oplus X$ and $\Gamma_{j} \in \mathcal{B}\left(X, X_{j}\right)$, where $\left\{X_{j}\right\}_{j \in J}$ is the collection of Hilbert spaces and $\Lambda_{j} \oplus \Gamma_{j} \in \mathcal{B}\left(H \oplus X, H_{j} \oplus X_{j}\right)$.

Theorem 5.7. Let $\Lambda=\left\{\left(W_{j}, \Lambda_{j}, v_{j}\right)\right\}_{j \in J}$ be a g-fusion frame for H with bounds A, B and $\Gamma=\left\{\left(V_{j}, \Gamma_{j}, v_{j}\right)\right\}_{j \in J}$ be a g-fusion frame for X with bounds C, D. Then $\Lambda \oplus \Gamma=\left\{\left(W_{j} \oplus V_{j}, \Lambda_{j} \oplus \Gamma_{j}, v_{j}\right)\right\}_{j \in J}$ is a g-fusion frame for $H \oplus X$ with bounds $\min \{A, C\}, \max \{B, D\}$. Furthermore, if S_{Λ}, S_{Γ} and $S_{\Lambda \oplus \Gamma}$ are g-fusion frame operators for Λ, Γ and $\Lambda \oplus \Gamma$, respectively, then we have $S_{\Lambda \oplus \Gamma}=S_{\Lambda} \oplus S_{\Gamma}$.

Proof. Let $(f, g) \in H \oplus X$ be an arbitrary element. Then

$$
\begin{aligned}
\sum_{j \in J} v_{j}^{2} & \left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}}(f, g)\right\|^{2} \\
& =\sum_{j \in J} v_{j}^{2}\left\langle\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}}(f, g),\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}}(f, g)\right\rangle \\
& =\sum_{j \in J} v_{j}^{2}\left\langle\Lambda_{j} \oplus \Gamma_{j}\left(P_{W_{j}}(f), P_{V_{j}}(g)\right), \Lambda_{j} \oplus \Gamma_{j}\left(P_{W_{j}}(f), P_{V_{j}}(g)\right)\right\rangle \\
& =\sum_{j \in J} v_{j}^{2}\left\langle\left(\Lambda_{j} P_{W_{j}}(f), \Gamma_{j} P_{V_{j}}(g)\right),\left(\Lambda_{j} P_{W_{j}}(f), \Gamma_{j} P_{V_{j}}(g)\right)\right\rangle \\
& =\sum_{j \in J} v_{j}^{2}\left(\left\langle\Lambda_{j} P_{W_{j}}(f), \Lambda_{j} P_{W_{j}}(f)\right\rangle_{H}+\left\langle\Gamma_{j} P_{V_{j}}(g), \Gamma_{j} P_{V_{j}}(g)\right\rangle_{X}\right) \\
& =\sum_{j \in J} v_{j}^{2}\left(\left\|\Lambda_{j} P_{W_{j}}(f)\right\|_{H}^{2}+\left\|\Gamma_{j} P_{V_{j}}(g)\right\|_{X}^{2}\right) \\
& =\sum_{j \in J} v_{j}^{2}\left\|\Lambda_{j} P_{W_{j}}(f)\right\|_{H}^{2}+\sum_{j \in J} v_{j}^{2}\left\|\Gamma_{j} P_{V_{j}}(g)\right\|_{X}^{2} \\
& \leqslant B\|f\|_{H}^{2}+D\|g\|_{X}^{2} \quad(\operatorname{since} \Lambda, \Gamma \operatorname{are} g \text {-fusion frames }) \\
& \leqslant \max \{B, D\}\left(\|f\|_{H}^{2}+\|g\|_{X}^{2}\right)=\max \{B, D\}\|(f, g)\|^{2} .
\end{aligned}
$$

Similarly, it can be shown that

$$
\min \{A, C\}\|(f, g)\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}}(f, g)\right\|^{2}
$$

Therefore, for all $(f, g) \in H \oplus X$ we have

$$
A_{1}\|(f, g)\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}}(f, g)\right\|^{2} \leqslant B_{1}\|(f, g)\|^{2}
$$

and hence $\Lambda \oplus \Gamma$ is a g-fusion frame for $H \oplus X$ with bounds $A_{1}=\min \{A, C\}$ and $B_{1}=\max \{B, D\}$. Furthermore, for $(f, g) \in H \oplus X$ we have

$$
\begin{aligned}
S_{\Lambda \oplus \Gamma}(f, g) & =\sum_{j \in J} v_{j}^{2} P_{W_{j} \oplus V_{j}}\left(\Lambda_{j} \oplus \Gamma_{j}\right)^{*}\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}}(f, g) \\
& =\sum_{j \in J} v_{j}^{2} P_{W_{j} \oplus V_{j}}\left(\Lambda_{j} \oplus \Gamma_{j}\right)^{*}\left(\Lambda_{j} \oplus \Gamma_{j}\right)\left(P_{W_{j}}(f), P_{V_{j}}(g)\right) \\
& =\sum_{j \in J} v_{j}^{2} P_{W_{j} \oplus V_{j}}\left(\Lambda_{j} \oplus \Gamma_{j}\right)^{*}\left(\Lambda_{j} P_{W_{j}}(f), \Gamma_{j} P_{V_{j}}(g)\right) \\
& =\sum_{j \in J} v_{j}^{2} P_{W_{j} \oplus V_{j}}\left(\Lambda_{j}^{*} \oplus \Gamma_{j}^{*}\right)\left(\Lambda_{j} P_{W_{j}}(f), \Gamma_{j} P_{V_{j}}(g)\right) \\
& =\sum_{j \in J} v_{j}^{2} P_{W_{j} \oplus V_{j}}\left(\Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}(f), \Gamma_{j}^{*} \Gamma_{j} P_{V_{j}}(g)\right) \\
& =\sum_{j \in J} v_{j}^{2}\left(P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}(f), P_{V_{j}} \Gamma_{j}^{*} \Gamma_{j} P_{V_{j}}(g)\right) \\
& =\left(\sum_{j \in J} v_{j}^{2} P_{W_{j}} \Lambda_{j}^{*} \Lambda_{j} P_{W_{j}}(f), \sum_{j \in J} v_{j}^{2} P_{V_{j}} \Gamma_{j}^{*} \Gamma_{j} P_{V_{j}}(g)\right) \\
& =\left(S_{\Lambda}(f), S_{\Gamma}(g)\right) \quad \\
& =\left(S_{\Lambda} \oplus S_{\Gamma}\right)(f, g) \quad \forall(f, g) \in H \oplus X .
\end{aligned}
$$

Hence, $S_{\Lambda \oplus \Gamma}=S_{\Lambda} \oplus S_{\Gamma}$. This completes the proof.

Theorem 5.8. Let $\Lambda \oplus \Gamma=\left\{\left(W_{j} \oplus V_{j}, \Lambda_{j} \oplus \Gamma_{j}, v_{j}\right)\right\}_{j \in J}$ be a g-fusion frame for $H \oplus X$ with frame operator $S_{\Lambda \oplus \Gamma}$. Then

$$
\Delta^{\prime}=\left\{\left(S_{\Lambda \oplus \Gamma}^{-1 / 2}\left(W_{j} \oplus V_{j}\right),\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1 / 2}, v_{j}\right)\right\}_{j \in J}
$$

is a Parseval g-fusion frame for $H \oplus X$.

Proof. Since $S_{\Lambda \oplus \Gamma}$ is a positive operator, there exists a unique positive square root $S_{\Lambda \oplus \Gamma}^{1 / 2}\left(\right.$ or $\left.S_{\Lambda \oplus \Gamma}^{-1 / 2}\right)$ and they commute with $S_{\Lambda \oplus \Gamma}$ and $S_{\Lambda \oplus \Gamma}^{-1}$. Therefore, each $(f, g) \in H \oplus X$ can be written as

$$
\begin{aligned}
(f, g) & =S_{\Lambda \oplus \Gamma}^{-1 / 2} S_{\Lambda \oplus \Gamma} S_{\Lambda \oplus \Gamma}^{-1 / 2}(f, g) \\
& =\sum_{j \in J} v_{j}^{2} S_{\Lambda \oplus \Gamma}^{-1 / 2} P_{W_{j} \oplus V_{j}}\left(\Lambda_{j} \oplus \Gamma_{j}\right)^{*}\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1 / 2}(f, g) .
\end{aligned}
$$

Now, for each $(f, g) \in H \oplus X$ we have

$$
\begin{aligned}
\|(f, g)\|^{2} & =\langle(f, g),(f, g)\rangle \\
& =\left\langle\sum_{j \in J} v_{j}^{2} S_{\Lambda \oplus \Gamma}^{-1 / 2} P_{W_{j} \oplus V_{j}}\left(\Lambda_{j} \oplus \Gamma_{j}\right)^{*}\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1 / 2}(f, g),(f, g)\right\rangle \\
& =\sum_{j \in J} v_{j}^{2}\left\langle\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1 / 2}(f, g),\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1 / 2}(f, g)\right\rangle \\
& =\sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1 / 2}(f, g)\right\|^{2} \\
& =\sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1 / 2} P_{\left(S_{\Lambda \oplus \Gamma}^{-1 / 2}\left(W_{j} \oplus V_{j}\right)\right)}(f, g)\right\|^{2}
\end{aligned}
$$

(by Theorem 2.3).

This shows that Δ^{\prime} is a Parseval g-fusion frame for $H \oplus X$.

Theorem 5.9. Let $\Lambda \oplus \Gamma=\left\{\left(W_{j} \oplus V_{j}, \Lambda_{j} \oplus \Gamma_{j}, v_{j}\right)\right\}_{j \in J}$ be a g-fusion frame for $H \oplus X$ with bounds A_{1}, B_{1} and $S_{\Lambda \oplus \Gamma}$ be the corresponding frame operator. Then

$$
\Delta=\left\{\left(S_{\Lambda \oplus \Gamma}^{-1}\left(W_{j} \oplus V_{j}\right),\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}, v_{j}\right)\right\}_{j \in J}
$$

is a g-fusion frame for $H \oplus X$ with frame operator $S_{\Lambda \oplus \Gamma}^{-1}$.
Proof. For any $(f, g) \in H \oplus X$ we have

$$
\begin{align*}
(f, g) & =S_{\Lambda \oplus \Gamma} S_{\Lambda \oplus \Gamma}^{-1}(f, g) \tag{5.6}\\
& =\sum_{j \in J} v_{j}^{2} P_{W_{j} \oplus V_{j}}\left(\Lambda_{j} \oplus \Gamma_{j}\right)^{*}\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}(f, g) .
\end{align*}
$$

By Theorem 2.3, for any $(f, g) \in H \oplus X$ we have

$$
\begin{align*}
\sum_{j \in J} v_{j}^{2} \| & \left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{j} \oplus V_{j}\right)}(f, g)\right\|^{2} \tag{5.7}\\
& =\sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}(f, g)\right\|^{2} \\
& \leqslant B_{1}\left\|S_{\Lambda \oplus \Gamma}^{-1}\right\|^{2}\|(f, g)\|^{2} \quad \text { (since } \Lambda \oplus \Gamma \text { is } g \text {-fusion frame) }
\end{align*}
$$

On the other hand, using (5.6), we get

$$
\begin{aligned}
&\|(f, g)\|^{4}=|\langle(f, g),(f, g)\rangle|^{2} \\
&=\left|\left\langle\sum_{j \in J} v_{j}^{2} P_{W_{j} \oplus V_{j}}\left(\Lambda_{j} \oplus \Gamma_{j}\right)^{*}\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}(f, g),(f, g)\right\rangle\right|^{2} \\
&=\left|\sum_{j \in J} v_{j}^{2}\left\langle\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}(f, g),\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}}(f, g)\right\rangle\right|^{2} \\
& \leqslant \sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}(f, g)\right\|^{2} \sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}}(f, g)\right\|^{2} \\
& \leqslant \sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}(f, g)\right\|^{2} B_{1}\|(f, g)\|^{2} \\
&= \quad(\text { as } \Lambda \oplus \Gamma \text { is } g \text {-fusion frame) } \\
&=B_{1}\|(f, g)\|^{2} \sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{j} \oplus V_{j}\right)}(f, g)\right\|^{2} \\
& \quad(\text { from (5.7)). }
\end{aligned}
$$

Therefore

$$
B_{1}^{-1}\|(f, g)\|^{2} \leqslant \sum_{j \in J} v_{j}^{2}\left\|\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{j} \oplus V_{j}\right)}(f, g)\right\|^{2} .
$$

Hence, Δ is a g-fusion frame for $H \oplus X$. Let S_{Δ} be the g-fusion frame operator for Δ and take $\Delta_{j}=\Lambda_{j} \oplus \Gamma_{j}$. Now, for each

$$
\begin{aligned}
(f, g) & \in H \oplus X, S_{\Delta}(f, g) \\
& =\sum_{j \in J} v_{j}^{2} P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{j} \oplus V_{j}\right)}\left(\Delta_{j} P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}\right)^{*}\left(\Delta_{j} P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}\right) P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{j} \oplus V_{j}\right)}(f, g) \\
& =\sum_{j \in J} v_{j}^{2}\left(P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{j} \oplus V_{j}\right)}\right)^{*} \Delta_{j}^{*} \Delta_{j}\left(P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1}\left(W_{j} \oplus V_{j}\right)}\right)(f, g) \\
& =\sum_{j \in J} v_{j}^{2}\left(P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}\right)^{*} \Delta_{j}^{*} \Delta_{j}\left(P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}\right)(f, g) \quad \text { (using Theorem 2.3) } \\
& =\sum_{j \in J} v_{j}^{2} S_{\Lambda \oplus \Gamma}^{-1} P_{W_{j} \oplus V_{j}}\left(\Lambda_{j} \oplus \Gamma_{j}\right)^{*}\left(\Lambda_{j} \oplus \Gamma_{j}\right)\left(P_{W_{j} \oplus V_{j}} S_{\Lambda \oplus \Gamma}^{-1}\right)(f, g) \\
& =S_{\Lambda \oplus \Gamma}^{-1}\left(\sum_{j \in J} v_{j}^{2} P_{W_{j} \oplus V_{j}}\left(\Lambda_{j} \oplus \Gamma_{j}\right)^{*}\left(\Lambda_{j} \oplus \Gamma_{j}\right) P_{W_{j} \oplus V_{j}}\left(S_{\Lambda \oplus \Gamma}^{-1}(f, g)\right)\right) \\
& =S_{\Lambda \oplus \Gamma}^{-1} S_{\Lambda \oplus \Gamma}\left(S_{\Lambda \oplus \Gamma}^{-1}(f, g)\right) \quad\left(\text { by definition of } S_{\Lambda \oplus \Gamma}\right) \\
& =S_{\Lambda \oplus \Gamma}^{-1}(f, g) .
\end{aligned}
$$

Thus, $S_{\Delta}=S_{\Lambda \oplus \Gamma}^{-1}$. This completes the proof.

Note 5.10. Form Theorem 5.9 we can conclude that if $\Lambda \oplus \Gamma$ is a g-fusion frame for $H \oplus K$, then Δ is also a g-fusion frame for $H \oplus K$. The g-fusion frame Δ is a called the canonical dual g-fusion frame of $\Lambda \oplus \Gamma$.

References

[1] R. Ahmadi, G. Rahimlou, V. Sadri, R. Zarghami Farfar: Constructions of K-g-fusion frames and their duals in Hilbert spaces. Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 13 (2020), 17-32.
[2] A. Bhandari, S. Mukherjee: Atomic subspaces for operators. Indian J. Pure Appl. Math. 51 (2020), 1039-1052.
[3] P. G. Casazza, G. Kutyniok: Frames of subspaces. Wavelets, Frames and Operator Theory. Contemporary Mathematics 345. American Mathematical Society, Providence, 2004, pp. 87-114.
[4] O. Christensen: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel, 2016.

Zbl MR doi
Zbl MR doi
[5] I. Daubechies, A. Grossmann, Y. Meyer: Painless nonorthogonal expansions. J. Math. Phys. 27 (1986), 1271-1283.

Zbl MR doi
[6] R.G. Douglas: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17 (1966), 413-415.
zbl MR doi
[7] R. J. Duffin, A. C. Schaeffer: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72 (1952), 341-366.
[8] L. Găvruf̧a: Frames for operators. Appl. Comput. Harmon. Anal. 32 (2012), 139-144.
[9] L. Găvruţa: Atomic decompositions for operators in reproducing kernel Hilbert spaces. Math. Rep., Buchar. 17 (2015), 303-314.
[10] P. Găvruţa: On the duality of fusion frames. J. Math. Anal. Appl. 333 (2007), 871-879.
[11] P. Ghosh, T. K. Samanta: Stability of dual g-fusion frames in Hilbert spaces. Methods Funct. Anal. Topology 26 (2020), 227-240.
zbl MR doi
zbl MR doi

12] D. Hua, Y. Huang: K-g-frames and stability of K-g-frames in Hilbert spaces. J. Korean Math. Soc. 53 (2016), 1331-1345.
zbl MR doi
[13] K. J. Pawan, P.A. Om: Functional Analysis. New Age International Publisher, New Delhi, 1995.
[14] V.Sadri, G. Rahimlou, R.Ahmadi, R. Zarghami: Generalized fusion frames in Hilbert spaces. Available at https://arxiv.org/abs/1806.03598v1 (2018), 16 pages.
[15] W. Sun: g-frames and g-Riesz bases. J. Math. Anal. Appl. 322 (2006), 437-452.
Authors' addresses: Prasenjit Ghosh, Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India, e-mail: prasenjitpuremath@gmail.com; Tapas Kumar Samanta, Department of Mathematics, Uluberia College, Uluberia, Howrah, 711315, West Bengal, India, e-mail: mumpu_tapas5@ yahoo.co.in.

