EQUIVALENCE BUNDLES OVER A FINITE GROUP AND STRONG MORITA EQUIVALENCE FOR UNITAL INCLUSIONS OF UNITAL C^{*}-ALGEBRAS

Kazunori Kodaka, Okinawa
Received January 7, 2021. Published online November 9, 2021.
Communicated by Simion Breaz

Abstract. Let $\mathcal{A}=\left\{A_{t}\right\}_{t \in G}$ and $\mathcal{B}=\left\{B_{t}\right\}_{t \in G}$ be C^{*}-algebraic bundles over a finite group G. Let $C=\bigoplus_{t \in G} A_{t}$ and $D=\underset{t \in G}{\bigoplus} B_{t}$. Also, let $A=A_{e}$ and $B=B_{e}$, where e is the unit element in G. We suppose that C and D are unital and A and B have the unit elements in C and D, respectively. In this paper, we show that if there is an equivalence $\mathcal{A}-\mathcal{B}$-bundle over G with some properties, then the unital inclusions of unital C^{*}-algebras $A \subset C$ and $B \subset D$ induced by \mathcal{A} and \mathcal{B} are strongly Morita equivalent. Also, we suppose that \mathcal{A} and \mathcal{B} are saturated and that $A^{\prime} \cap C=\mathbf{C} 1$. We show that if $A \subset C$ and $B \subset D$ are strongly Morita equivalent, then there are an automorphism f of G and an equivalence bundle $\mathcal{A}-\mathcal{B}^{f}$ bundle over G with the above properties, where \mathcal{B}^{f} is the C^{*}-algebraic bundle induced by \mathcal{B} and f, which is defined by $\mathcal{B}^{f}=\left\{B_{f(t)}\right\}_{t \in G}$. Furthermore, we give an application.

Keywords: C^{*}-algebraic bundle; equivalence bundle; inclusions of C^{*}-algebra; strong Morita equivalence

MSC 2020: 46L05, 46L08

1. Introduction

Let $\mathcal{A}=\left\{A_{t}\right\}_{t \in G}$ be a C^{*}-algebraic bundle over a finite group G. Let $C=\bigoplus_{t \in G} A_{t}$ and $A_{e}=A$, where e is the unit element in G. We suppose that C is unital and that A has the unit element in C. Then we obtain a unital inclusion of unital C^{*} algebras, $A \subset C$. We call it the unital inclusion of unital C^{*}-algebras induced by a C^{*}-algebraic bundle $\mathcal{A}=\left\{A_{t}\right\}_{t \in G}$. Let E^{A} be the canonical conditional expectation from C onto A defined by

$$
E^{A}(x)=x_{e} \quad \text { for all } x=\sum_{t \in G} x_{i} \in C
$$

Definition 1.1. Let $\mathcal{A}=\left\{A_{t}\right\}_{t \in G}$ be a C^{*}-algebraic bundle over a finite group G. We say that \mathcal{A} is saturated if $\overline{A_{t} A_{t}^{*}}=A$ for all $t \in G$.

Since A is unital, in our case we do not need to take the closure in Definition 1.1. If \mathcal{A} is saturated, by [9], Corollary $3.2, E^{A}$ is of index-finite type and its Watatani index $\operatorname{Ind}_{W}\left(E^{A}\right)=|G|$, where $|G|$ is the order of G.

Let $\mathcal{B}=\left\{B_{t}\right\}_{t \in G}$ be another C^{*}-algebraic bundle over G. Let $D=\bigoplus_{t \in G} B_{t}$ and $B=B_{e}$. Also, we suppose that \mathcal{B} has the same conditions as \mathcal{A}. Let $B \subset D$ be the unital inclusion of unital C^{*}-algebras induced by \mathcal{B}.

Let $\mathcal{X}=\left\{X_{t}\right\}_{t \in G}$ be an $\mathcal{A}-\mathcal{B}$-equivalence bundle defined by Abadie and Ferraro (see [1], Definition 2.2). Moreover, we suppose that

$$
{ }_{C}\left\langle X_{t}, X_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle X_{t}, X_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in G$, where ${ }_{C}\left\langle X_{t}, X_{s}\right\rangle$ means the linear span of the set

$$
\left\{c\langle x, y\rangle \in A_{t s^{-1}}: x \in X_{t}, y \in X_{s}\right\}
$$

and $\left\langle X_{t}, X_{s}\right\rangle_{D}$ means the linear span of the similar set to the above. The above two properties are stronger than properties (7R) and (7L) in [1], Definition 2.1.

In the present paper, we show that if there is an $\mathcal{A}-\mathcal{B}$-equivalence bundle $\mathcal{X}=$ $\left\{X_{t}\right\}_{t \in G}$ such that ${ }_{C}\left\langle X_{t}, X_{s}\right\rangle=A_{t s^{-1}}$ and $\left\langle X_{t}, X_{s}\right\rangle_{D}=B_{t^{-1} s}$ for any $t, s \in G$, then the unital inclusions of unital C^{*}-algebras $A \subset C$ and $B \subset D$ induced by \mathcal{A} and \mathcal{B} are strongly Morita equivalent. Also, we suppose that \mathcal{A} and \mathcal{B} are saturated and that $A^{\prime} \cap C=\mathbf{C} 1$. We show that if $A \subset C$ and $B \subset D$ are strongly Morita equivalent, then there are an automorphism f of G and an $\mathcal{A}-\mathcal{B}^{f}$-equivalence bundle $\mathcal{X}=\left\{X_{t}\right\}_{t \in G}$ such that ${ }_{C}\left\langle X_{t}, X_{s}\right\rangle=A_{t s^{-1}}$ and $\left\langle X_{t}, X_{s}\right\rangle_{D}=B_{f\left(t^{-1} s\right)}$ for any $t, s \in G$, where \mathcal{B}^{f} is the C^{*}-algebraic bundle induced by $\mathcal{B}=\left\{B_{t}\right\}_{t \in G}$ and f, which is defined by $\mathcal{B}^{f}=\left\{B_{f(t)}\right\}_{t \in G}$.

Let A and B be unital C^{*}-algebras and X an $A-B$-equivalence bimodule. Then we denote its left A-action and right B-action on X by $a \cdot x$ and $x \cdot b$ for any $a \in A$, $b \in B$ and $x \in X$, respectively. Also, we mean by the words "Hilbert C^{*}-bimodules" Hilbert C^{*}-bimodules in the sense of Brown, Mingo and Shen, see [3].

2. Equivalence bundles over a finite group

Let $\mathcal{A}=\left\{A_{t}\right\}_{t \in G}$ and $\mathcal{B}=\left\{B_{t}\right\}_{t \in G}$ be C^{*}-algebraic bundles over a finite group G. Let e be the unit element in G. Let $C=\bigoplus_{t \in G} A_{t}, D=\bigoplus_{t \in G} B_{t}$ and $A=A_{e}, B=B_{e}$. We suppose that C and D are unital and that A and B have the unit elements in C and D, respectively. Let $\mathcal{X}=\left\{X_{t}\right\}_{t \in G}$ be an $\mathcal{A}-\mathcal{B}$-equivalence bundle over G such that

$$
{ }_{C}\left\langle X_{t}, X_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle X_{t}, X_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in G$. Let $Y=\bigoplus_{t \in G} X_{t}$ and $X=X_{e}$. Then Y is a $C-D$-equivalence bimodule by Abadie and Ferraro (see [1], Definitions 2.1 and 2.2). Also, X is an $A-B$-equivalence bimodule since ${ }_{C}\langle X, X\rangle=A$ and $\langle X, X\rangle_{D}=B$.

Proposition 2.1. Let $\mathcal{A}=\left\{A_{t}\right\}_{t \in G}$ and $\mathcal{B}=\left\{B_{t}\right\}_{t \in G}$ be C^{*}-algebraic bundles over a finite group G. Let $C=\bigoplus_{t \in G} A_{t}$ and $D=\bigoplus_{t \in G} B_{t}$. Also, let $A=A_{e}$ and $B=B_{e}$, where e is the unit element in G. We suppose that C and D are unital and that A and B have the unit elements in C and D, respectively. Also, we suppose that there is an $\mathcal{A}-\mathcal{B}$-equivalence bundle $\mathcal{X}=\left\{X_{t}\right\}_{t \in G}$ over G such that

$$
{ }_{C}\left\langle X_{t}, X_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle X_{t}, X_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in G$. Then the unital inclusions of unital C^{*}-algebras $A \subset C$ and $B \subset D$ are strongly Morita equivalent.

Proof. Let $Y=\bigoplus_{t \in G} X_{t}$ and $X=X_{e}$. By the above discussions and [10], Definition 2.1, we only have to show that

$$
{ }_{C}\langle Y, X\rangle=C, \quad\langle Y, X\rangle_{D}=D
$$

Let $x \in X$ and $y=\sum_{t \in G} y_{t} \in Y$, where $y_{t} \in X_{t}$ for any $t \in G$. Then

$$
{ }_{C}\langle y, x\rangle=\sum_{t \in G}{ }_{C}\left\langle y_{t}, x\right\rangle, \quad\langle y, x\rangle_{D}=\sum_{t \in G}\left\langle y_{t}, x\right\rangle_{D}
$$

We note that ${ }_{C}\left\langle y_{t}, x\right\rangle \in A_{t}$ and $\left\langle y_{t}, x\right\rangle_{D} \in B_{t}$ for any $t \in G$. Since ${ }_{D}\left\langle X_{t}, X_{s}\right\rangle=A_{t s^{-1}}$ and $\left\langle X_{t}, X_{s}\right\rangle_{D}=B_{t^{-1} s}$ for any $t, s \in G$, by the above computations, we can see that

$$
{ }_{C}\langle Y, X\rangle=C, \quad\langle Y, X\rangle_{D}=D
$$

Therefore we obtain the conclusion.

Next, we give an example of an equivalence bundle $\mathcal{X}=\left\{X_{t}\right\}_{t \in G}$ over G satisfying the above properties. In order to do this, we prepare a lemma. Let $\mathcal{A}=\left\{A_{t}\right\}_{t \in G}$ and $\mathcal{B}=\left\{B_{t}\right\}_{t \in G}$ be as above. Let $\mathcal{X}=\left\{X_{t}\right\}_{t \in G}$ be a complex Banach bundle over G with the maps defined by

$$
\begin{aligned}
& (y, d) \in Y \times D \mapsto y \cdot d \in Y, \quad(y, z) \in Y \times Y \mapsto\langle y, z\rangle_{D} \in D, \\
& (c, y) \in C \times Y \mapsto c \cdot y \in Y, \quad(y, z) \in Y \times Y \mapsto_{C}\langle y, z\rangle \in C,
\end{aligned}
$$

where $Y=\bigoplus_{t \in G} X_{t}$.
Lemma 2.2. With the above notation, we suppose that by the above maps, Y is a $C-D$-equivalence bimodule satisfying that

$$
{ }_{C}\left\langle X_{t}, X_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle X_{t}, X_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in G$. If \mathcal{X} satisfies Conditions (1R)-(3R) and (1L)-(3L) in [1], Definition 2.1, then \mathcal{X} is an $\mathcal{A}-\mathcal{B}$-equivalence bundle.

Proof. Since Y is a $C-D$-equivalence bimodule, \mathcal{X} has Conditions (4R)-(6R) and $(4 \mathrm{~L})-(6 \mathrm{~L})$ in $[1]$, Definition 2.1 except that X_{t} is complete with the norms $\left\|\langle\cdot, \cdot\rangle_{D}\right\|^{1 / 2}=\left\|_{C}\langle\cdot, \cdot\rangle\right\|^{1 / 2}$ for any $t \in G$. But we know that if Y is complete with two different norms, then the two norms are equivalent. Hence, X_{t} is complete with the norms $\left\|\langle\cdot, \cdot\rangle_{D}\right\|^{1 / 2}=\left\|_{C}\langle\cdot, \cdot\rangle\right\|^{1 / 2}$ for any $t \in G$. Furthermore, since

$$
{ }_{C}\left\langle X_{t}, X_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle X_{t}, X_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in G, \mathcal{X}$ has Conditions (7R) and (7L) in [1], Definition 2.1. Therefore we obtain the conclusion.

We give an example of an $\mathcal{A}-\mathcal{B}$-equivalence bundle $\mathcal{X}=\left\{X_{t}\right\}_{t \in G}$ such that

$$
{ }_{C}\left\langle X_{t}, X_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle X_{t}, X_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in G$.
Example 2.3. Let G be a finite group. Let α be an action of G on a unital C^{*}-algebra A. Let u_{t} be implementing unitary elements of α, that is, $\alpha_{t}=\operatorname{Ad}\left(u_{t}\right)$ for any $t \in G$. Then the crossed product of A by $\alpha, A \rtimes_{\alpha} G$ is

$$
A \rtimes_{\alpha} G=\left\{\sum_{t \in G} a_{t} u_{t}: a_{t} \in A \text { for any } t \in G\right\} .
$$

Let $A_{t}=A u_{t}$ for any $t \in G$. By routine computations, we see that $\mathcal{A}_{\alpha}=\left\{A_{t}\right\}_{t \in G}$ is a C^{*}-algebraic bundle over G. We call \mathcal{A}_{α} the C^{*}-algebraic bundle over G induced by an action α. Let β be an action of G on a unital C^{*}-algebra B and let $\mathcal{A}_{\beta}=\left\{B_{t}\right\}_{t \in G}$
induced by β, where $B_{t}=B v_{t}$ for any $t \in G$ and v_{t} are implementing unitary elements of β. We suppose that α and β are strongly Morita equivalent with respect to an action λ of G on an $A-B$-equivalence bimodule X. Let $X \rtimes_{\lambda} G$ be the crossed product of X by λ defined by Kajiwara and Watatani (see [5], Definition 1.4), that is, the direct sum of n-copies of X as a vector space, where n is the order of G. And its elements are written as formal sums so that

$$
X \rtimes_{\lambda} G=\left\{\sum_{t \in G} x_{t} w_{t}: x_{t} \in X \text { for any } t \in G\right\}
$$

where w_{t} are indeterminates for all $t \in G$. Let $C=A \rtimes_{\alpha} G, D=B \rtimes_{\beta} G$ and $Y=X \rtimes_{\lambda} G$. Then by [5], Proposition 1.7, Y is a $C-D$-equivalence bimodule, where we define the left C-action and the right D-action on Y by

$$
\left(a u_{t}\right) \cdot\left(x w_{s}\right)=\left(a \cdot \lambda_{t}(x)\right) w_{t s}, \quad\left(x w_{s}\right) \cdot\left(b v_{t}\right)=\left(x \cdot \beta_{s}(b)\right) v_{s t}
$$

for any $a \in A, b \in B, x \in X$ and $t, s \in G$ and we define the left C-valued inner product and the right D-valued inner product on Y by extending linearly the following:

$$
{ }_{C}\left\langle x w_{t}, y w_{s}\right\rangle={ }_{A}\left\langle x, \lambda_{t s^{-1}}(y)\right\rangle u_{t s^{-1}}, \quad\left\langle x w_{t}, y w_{s}\right\rangle_{D}=\beta_{t^{-1}}\left(\langle x, y\rangle_{B}\right) v_{t^{-1} s}
$$

for any $x, y \in X, t, s \in G$. Let $X_{t}=X w_{t}$ for any $t \in G$ and $\mathcal{X}_{\lambda}=\left\{X_{t}\right\}_{t \in G}$. Then $Y=\bigoplus_{t \in G} X_{t}$. Also, \mathcal{X}_{λ} has Conditions (1R)-(3R) and (1L)-(3L) in [1], Definition 2.1. Furthermore, X is an $A-B$-equivalence bimodule and \mathcal{X}_{λ} satisfies

$$
{ }_{C}\left\langle X_{t}, X_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle X_{t}, X_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in G$. Therefore \mathcal{X}_{λ} is an $\mathcal{A}_{\alpha}-\mathcal{A}_{\beta}$-equivalence bundle by Lemma 2.2.

3. Saturated C^{*}-algebraic bundles over a finite group

Let $\mathcal{A}=\left\{A_{t}\right\}_{t \in G}$ be a saturated C^{*}-algebraic bundle over a finite group G. Let e be the unit element in G. Let $C=\bigoplus_{t \in G} A_{t}$ and $A=A_{e}$. We suppose that C is unital and that A has the unit element in C. Let E^{A} be the canonical conditional expectation from C onto A defined in Section 1, which is of Watatani index-finite type. Let C_{1} be the C^{*}-basic construction of C and e_{A} the Jones' projection for E^{A}. By [9], Lemma 3.7, there is an action $\alpha^{\mathcal{A}}$ of G on C_{1} induced by \mathcal{A} defined as follows: Since \mathcal{A} is saturated and A is unital, there is a finite set $\left\{x_{i}^{t}\right\}_{i=1}^{n_{t}} \subset A_{t}$ such that $\sum_{i=1}^{n_{t}} x_{i}^{t} x_{i}^{t *}=1$ for any $t \in G$. Let $e_{t}=\sum_{i=1}^{n_{t}} x_{i}^{t} e_{A} x_{i}^{t *}$ for all $t \in G$. Then by [9],

Lemmas 3.3, 3.5 and Remark 3.4, $\left\{e_{t}\right\}_{t \in G}$ are mutually orthogonal projections in $A^{\prime} \cap C_{1}$, which are independent of the choice of $\left\{x_{i}^{t}\right\}_{i=1}^{n_{t}}$, with $\sum_{t \in G} e_{t}=1$ such that C and e_{t} generate the C^{*}-algebra C_{1} for all $t \in G$. We define $\alpha^{\mathcal{A}}$ by $\alpha_{t}^{\mathcal{A}}(c)=c$ and $\alpha_{t}^{\mathcal{A}}\left(e_{A}\right)=e_{t^{-1}}$ for any $t \in G, c \in C$. Let $\mathcal{A}_{1}=\left\{Y_{\alpha_{t}^{\mathcal{A}}}\right\}_{t \in G}$ be the C^{*}-algebraic bundle over G induced by the action $\alpha^{\mathcal{A}}$ of G which is defined in [9], Sections 5, 6, that is, let $Y_{\alpha_{t}^{\mathcal{A}}}=e_{A} C_{1} \alpha_{t}^{\mathcal{A}}\left(e_{A}\right)=e_{A} C_{1} e_{t^{-1}}$ for any $t \in G$. The product \bullet and the involution $\#$ in \mathcal{A}_{1} are defined as follows:

$$
\begin{gathered}
(x, y) \in Y_{\alpha_{t}^{\mathcal{A}}} \times Y_{\alpha_{s}^{\mathcal{A}}} \mapsto x \bullet y=x \alpha_{t}^{\mathcal{A}}(y) \in Y_{\alpha_{t s}^{\mathcal{A}}} \\
x \in Y_{\alpha_{t}^{\mathcal{A}}} \mapsto x^{\sharp}=\alpha_{t^{-1}}^{\mathcal{A}}\left(x^{*}\right) \in Y_{\alpha_{t^{-1}}^{\mathcal{A}}} .
\end{gathered}
$$

Lemma 3.1. With the above notation, \mathcal{A} and \mathcal{A}_{1} are isomorphic as C^{*}-algebraic bundles over G.

Proof. Since $C_{1}=C e_{A} C$, for any $t \in G$

$$
Y_{\alpha_{t}^{A}}=e_{A} C e_{A} C e_{t^{-1}}=e_{A} A C e_{t^{-1}}=e_{A} C e_{t^{-1}}
$$

Let x be any element in C. Then we can write that $x=\sum_{s \in G} x_{s}$, where $x_{s} \in A_{s}$. Hence

$$
\begin{aligned}
e_{A} x e_{t^{-1}} & =\sum_{s, i} e_{A} x_{s} x_{i}^{t^{-1}} e_{A} x_{i}^{t^{-1} *}=\sum_{s, i} E^{A}\left(x_{s} x_{i}^{t^{-1}}\right) e_{A} x_{i}^{t^{-1} *} \\
& =\sum_{i} x_{t} x_{i}^{t^{-1}} e_{A} x_{i}^{t^{-1} *}=e_{A} x_{t} \sum_{i} x_{i}^{t^{-1}} x_{i}^{t^{-1} *}=e_{A} x_{t}
\end{aligned}
$$

Thus, $Y_{\alpha_{t}^{A}}=e_{A} C e_{t^{-1}}=e_{A} A_{t}$ for any $t \in G$. Let π_{t} be the map from A_{t} to $Y_{\alpha_{t}^{A}}$ defined by $\pi_{t}(x)=e_{A} x$ for any $x \in A_{t}$ and $t \in G$. By the above discussions π_{t} is a linear map from A_{t} onto $Y_{\alpha_{t}^{A}}$. Then

$$
\left\|\pi_{t}(x)\right\|^{2}=\left\|e_{A} x x^{*} e_{A}\right\|=\left\|E^{A}\left(x x^{*}\right) e_{A}\right\|=\left\|E^{A}\left(x x^{*}\right)\right\|=\left\|x x^{*}\right\|=\|x\|^{2}
$$

Hence, π_{t} is injective for any $t \in G$. Thus, $A_{t} \cong e_{A} C_{1} \alpha_{t}^{\mathcal{A}}\left(e_{A}\right)$ as Banach spaces for any $t \in G$. Also, for any $x \in A_{t}, y \in A_{s}, t, s \in G$,

$$
\begin{aligned}
\pi_{t}(x) \bullet \pi_{s}(y) & =e_{A} x \alpha_{t}^{\mathcal{A}}\left(e_{A} y\right)=e_{A} x e_{t^{-1}} y=e_{A} \sum_{i} x x_{i}^{t^{-1}} e_{A} x_{i}^{t^{-1} *} y \\
& =e_{A} \sum_{i} x x_{i}^{t^{-1}} x_{i}^{t^{-1} *} y=e_{A} x y=\pi_{t s}(x y), \\
\pi_{t}(x)^{\sharp} & =\alpha_{t^{-1}}^{\mathcal{A}}\left(\pi_{t}(x)^{*}\right)=\alpha_{t^{-1}}^{\mathcal{A}}\left(\left(e_{A} x\right)^{*}\right)=\alpha_{t^{-1}}^{\mathcal{A}}\left(x^{*} e_{A}\right)=x^{*} e_{t} \\
& =\sum_{i} x^{*} x_{i}^{t} e_{A} x_{i}^{t *}=e_{A} \sum_{i} x^{*} x_{i}^{t} x_{i}^{t *}=e_{A} x^{*}=\pi_{t^{-1}}\left(x^{*}\right) .
\end{aligned}
$$

Therefore $\mathcal{A}=\left\{A_{t}\right\}_{t \in G}$ and $\mathcal{A}_{1}=\left\{Y_{\alpha_{t}^{A}}\right\}_{t \in G}$ are isomorphic as C^{*}-algebraic bundles over G.

4. Strong Morita equivalence for unital inclusions of unital C^{*}-ALGEBRAS

Let $\mathcal{A}=\left\{A_{t}\right\}_{t \in G}$ and $\mathcal{B}=\left\{B_{t}\right\}_{t \in G}$ be saturated C^{*}-algebraic bundles over a finite group G. Let e be the unit element in G. Let $C=\bigoplus_{t \in G} A_{t}, D=\bigoplus_{t \in G} B_{t}$ and $A=A_{e}$, $B=B_{e}$. We suppose that C and D are unital and that A and B have the unit elements in C and D, respectively. Let E^{A} and E^{B} be the canonical conditional expectations from C and D onto A and B defined in Section 1, respectively. They are of Watatani index-finite type. Let $A \subset C$ and $B \subset D$ be the unital inclusions of unital C^{*}-algebras induced by \mathcal{A} and \mathcal{B}, respectively. We suppose that $A \subset C$ and $B \subset D$ are strongly Morita equivalent with respect to a $C-D$-equivalence bimodule Y and its closed subspace X. Also, we suppose that $A^{\prime} \cap C=\mathbf{C} 1$. Then by [10], Lemma $10.3, B^{\prime} \cap D=\mathbf{C} 1$ and by [7], Lemma 4.1 and its proof, there is a unique conditional expectation E^{X} from Y onto X with respect to E^{A} and E^{B}.

Let C_{1} and D_{1} be the C^{*}-basic constructions of C and D and e_{A} and e_{B} the Jones' projections for E^{A} and E^{B}, respectively. Let $\alpha^{\mathcal{A}}$ and $\alpha^{\mathcal{B}}$ be actions of G on C_{1} and D_{1} induced by \mathcal{A} and \mathcal{B}, respectively. Furthermore, let C_{2} and D_{2} be the C^{*}-basic constructions of C_{1} and D_{1} for the dual conditional expectations E^{C} of E^{A} and E^{D} of E^{B}, which are isomorphic to $C_{1} \rtimes_{\alpha^{\mathcal{A}}} G$ and $D_{1} \rtimes_{\alpha^{\mathcal{B}}} G$, respectively. We identify C_{2} and D_{2} with $C_{1} \rtimes_{\alpha^{\mathcal{A}}} G$ and $D_{1} \rtimes_{\alpha^{\mathcal{B}}} G$, respectively. By [10], Corollary 6.3, the unital inclusions $C_{1} \subset C_{2}$ and $D_{1} \subset D_{2}$ are strongly Morita equivalent with respect to a $C_{2}-D_{2}$-equivalence bimodule Y_{2} and its closed subspace Y_{1}, where Y_{1} and Y_{2} are the $C_{1}-D_{1}$-equivalence bimodule and the $C_{2}-D_{2}$-equivalence bimodule defined in [10], Section 6, respectively, and Y_{1} is regarded as a closed subspace of Y_{2} in the same way as in [10], Section 6. Also, $C_{1}^{\prime} \cap C_{2}=\mathbf{C} 1$ by the proof of Watatani (see [13], Proposition 2.7.3) since $A^{\prime} \cap C=\mathbf{C} 1$. Hence, by [11], Corollary 6.5, there are an automorphism f of G, a $C_{1}-D_{1}$-equivalence bimodule Z and an action λ of G on Z such that $\alpha^{\mathcal{A}}$ and β, the action of G on D_{1} defined by $\beta_{t}(d)=\alpha_{f(t)}^{\mathcal{B}}(d)$ for any $t \in G, d \in D$, are strongly Morita equivalent with respect to λ.

Let $\mathcal{A}_{1}=\left\{Y_{\alpha_{t}^{A}}\right\}_{t \in G}$ and $\mathcal{B}_{1}=\left\{Y_{\alpha_{t}^{\mathcal{B}}}\right\}_{t \in G}$ be the C^{*}-algebraic bundles over G induced by the actions $\alpha^{\mathcal{A}}$ and $\alpha^{\mathcal{B}}$, which are defined in Section 3. Furthermore, let $\mathcal{B}^{f}=\left\{B_{f(t)}\right\}_{t \in G}$ be the C^{*}-algebraic bundle over G induced by \mathcal{B} and f and let $\mathcal{B}_{1}^{f}=$ $\left\{Y_{\beta_{t}}\right\}_{t \in G}$ be the C^{*}-algebraic bundle over G induced by the action β, which is defined in Section 3. We construct an $\mathcal{A}_{1}-\mathcal{B}_{1}^{f}$-equivalence bundle $\mathcal{Z}=\left\{Z_{t}\right\}_{t \in G}$ over G.

Let $Z_{t}=e_{A} \cdot Z \cdot \beta_{t}\left(e_{B}\right)$ for any $t \in G$ and let $W=\bigoplus_{t \in G} Z_{t}$. Also, by Lemma 3.1 and its proof, $\bigoplus_{t \in G} Y_{\alpha_{t}^{A}} \cong C$ and $\bigoplus_{t \in G} Y_{\beta_{t}} \cong D$ as C^{*}-algebras. We identify $\bigoplus_{t \in G} Y_{\alpha_{t}^{A}}$ and $\underset{t \in G}{\bigoplus} Y_{\beta_{t}}$ with C and D, respectively. We define the left C-action \diamond and the left
C-valued inner product ${ }_{C}\langle\cdot, \cdot\rangle$ on W by

$$
\begin{aligned}
& e_{A} x \alpha_{t}^{\mathcal{A}}\left(e_{A}\right) \diamond\left[e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right)\right] \stackrel{\text { def }}{=} e_{A} x \alpha_{t}^{\mathcal{A}}\left(e_{A}\right) \cdot \lambda_{t}\left(e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right)\right) \\
&=e_{A} \cdot\left[x \alpha_{t}^{\mathcal{A}}\left(e_{A}\right) \cdot \lambda_{t}(z)\right] \cdot \beta_{t s}\left(e_{B}\right), \\
& C_{C}\left\langle e_{A} \cdot w \cdot \beta_{t}\left(e_{B}\right), e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right)\right\rangle \stackrel{\text { def }}{=} C_{1}\left\langle e_{A} \cdot w \cdot \beta_{t}\left(e_{B}\right), \lambda_{t s^{-1}}\left(e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right)\right)\right\rangle \\
&=e_{A C_{1}}\left\langle w \cdot \beta_{t}\left(e_{B}\right), \lambda_{t s^{-1}}(z) \cdot \beta_{t}\left(e_{B}\right)\right\rangle \alpha_{t s^{-1}}^{\mathcal{A}}\left(e_{A}\right),
\end{aligned}
$$

where $e_{A} x \alpha_{t}^{\mathcal{A}}\left(e_{A}\right) \in e_{A} C_{1} \alpha_{t}^{\mathcal{A}}\left(e_{A}\right), e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right) \in Z_{s}, e_{A} \cdot w \cdot \beta_{t}\left(e_{B}\right) \in Z_{t}$. Also, we define the right D-action, which is also denoted by the same symbol \diamond and the D-valued inner product $\langle\cdot, \cdot\rangle_{D}$ on W by

$$
\begin{aligned}
{\left[e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right)\right] \diamond e_{B} x \beta_{s}\left(e_{B}\right) } & \stackrel{\text { def }}{=} e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right) \beta_{t}(x) \beta_{t s}\left(e_{B}\right) \\
& =e_{A} \cdot\left[z \cdot \beta_{t}\left(e_{B}\right) \beta_{t}(x)\right] \cdot \beta_{t s}\left(e_{B}\right), \\
\left\langle e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right), e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right)\right\rangle_{D} & \stackrel{\text { def }}{=} \beta_{t^{-1}}\left(\left\langle e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right), e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right)\right\rangle_{D_{1}}\right) \\
& =e_{B} \beta_{t^{-1}}\left(\left\langle e_{A} \cdot z, e_{A} \cdot w\right\rangle_{D_{1}}\right) \beta_{t^{-1} s}\left(e_{B}\right),
\end{aligned}
$$

where $e_{B} x \beta_{s}\left(e_{B}\right) \in e_{B} D_{1} \beta_{s}\left(e_{B}\right), e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right) \in Z_{t}, e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right) \in Z_{s}$. By the above definitions, \mathcal{Z} has Conditions (1R) $-(3 \mathrm{R})$ and (1L) $-(3 \mathrm{~L})$ in [1], Definition 2.1. We show that \mathcal{Z} has Conditions $(4 \mathrm{R})$ and $(4 \mathrm{~L})$ in [1], Definition 2.1 and that \mathcal{Z} is an $\mathcal{A}_{1}-\mathcal{B}_{1}^{f}$-bundle in the same way as in Example 2.3.

Lemma 4.1. With the above notation, \mathcal{Z} has Conditions (4R) and (4L) in [1], Definition 2.1.

Proof. Let $e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right) \in Z_{t}, e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right) \in Z_{s}$ and $e_{B} x \beta_{r}\left(e_{B}\right) \in e_{B} D_{1} \beta_{r}\left(e_{B}\right)$, where $t, s, r \in G$. Then by routine computations, we can see that

$$
\begin{aligned}
\left\langle e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right),\right. & {\left.\left[e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right)\right] \diamond e_{B} x \beta_{r}\left(e_{B}\right)\right\rangle_{D} } \\
& =\left\langle e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right), e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right)\right\rangle_{D} \bullet e_{B} x \beta_{r}\left(e_{B}\right)
\end{aligned}
$$

and that

$$
\left\langle e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right), e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right)\right\rangle_{D}^{\sharp}=\left\langle e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right), e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right)\right\rangle_{D} .
$$

Hence, \mathcal{Z} has Condition (4R) in [1], Definition 2.1. Next, let $e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right) \in Z_{t}$, $e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right) \in Z_{s}$ and $e_{A} x \alpha_{r}^{\mathcal{A}}\left(e_{A}\right) \in e_{A} C_{1} \alpha_{r}^{\mathcal{A}}\left(e_{A}\right)$, where $t, s, r \in G$. Then by routine computations, we can see that

$$
\begin{aligned}
&{ }_{C}\left\langle e_{A} x \alpha_{r}^{\mathcal{A}}\left(e_{A}\right)\right.\left.\diamond\left[e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right)\right], e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right)\right\rangle \\
&=e_{A} x \alpha_{r}^{\mathcal{A}}\left(e_{A}\right) \bullet{ }_{C}\left\langle e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right), e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right)\right\rangle, \\
&{ }_{C}\left\langle e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right), e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right)\right\rangle^{\sharp}={ }_{C}\left\langle e_{A} \cdot w \cdot \beta_{s}\left(e_{B}\right), e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right)\right\rangle .
\end{aligned}
$$

Hence, \mathcal{Z} has Condition (4L) in [1], Definition 2.1.

By Lemma 4.1, W is a $C-D$-bimodule having Properties (1)-(6) in [5], Lemma 1.3. In order to prove that \mathcal{Z} has Conditions (5R), (6R) and (5L), (6L) in [1], Definition 2.1 using [5], Lemma 1.3, we show that W has Properties (7)-(10) in [5], Lemma 1.3.

Lemma 4.2. With the above notation, W has the following:
(1) $\left(e_{A} x \alpha_{t}^{\mathcal{A}}\left(e_{A}\right) \diamond\left[e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right)\right]\right) \diamond e_{B} y \beta_{r}\left(e_{B}\right)=e_{A} x \alpha_{t}^{\mathcal{A}}\left(e_{A}\right) \diamond\left(\left[e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right)\right] \diamond\right.$ $\left.e_{B} y \beta_{r}\left(e_{B}\right)\right)$,
(2) $\left\langle e_{A} x \alpha_{t}^{\mathcal{A}}\left(e_{A}\right) \diamond\left[e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right)\right], e_{A} \cdot w \cdot \beta_{r}\left(e_{B}\right)\right\rangle_{D}=\left\langle e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right),\left(e_{A} x \alpha_{t}^{\mathcal{A}}\left(e_{A}\right)\right)^{\sharp} \diamond\right.$ $\left.\left[e_{A} \cdot w \cdot \beta_{r}\left(e_{B}\right)\right]\right\rangle_{D}$,
(3) ${ }_{C}\left\langle e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right),\left[e_{A} \cdot w \cdot \beta_{r}\left(e_{B}\right)\right] \diamond e_{B} y \beta_{t}\left(e_{B}\right)\right\rangle={ }_{C}\left\langle\left[e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right)\right] \diamond\left(e_{B} y \beta_{t}\left(e_{B}\right)\right)^{\sharp}\right.$, $\left.e_{A} \cdot w \cdot \beta_{r}\left(e_{B}\right)\right\rangle$,
where $x \in C_{1}, y \in D_{1}, z, w \in Z, t, s, r \in G$.
Proof. We can show the lemma by routine computations.
By Lemma 4.2, W has Properties (7), (8) in [5], Lemma 1.3.
Lemma 4.3. With the above notation, there are finite subsets $\left\{u_{i}\right\}_{i}$ and $\left\{v_{j}\right\}_{j}$ of W such that

$$
\sum_{i} u_{i} \diamond\left\langle u_{i}, x\right\rangle_{D}=x=\sum_{j}{ }_{C}\left\langle x, v_{j}\right\rangle \diamond v_{j} \quad \text { for any } x \in W
$$

Proof. Since Z is a $C_{1}-D_{1}$-equivalence bimodule, there are finite subsets $\left\{z_{i}\right\}_{i}$ and $\left\{w_{j}\right\}_{j}$ of Z such that

$$
\sum_{i} z_{i} \cdot\left\langle z_{i}, z\right\rangle_{D_{1}}=z=\sum_{j} C_{1}\left\langle z, w_{j}\right\rangle \cdot w_{j}
$$

for any $z \in Z$. Then for any $z \in Z, s \in G$,

$$
\begin{aligned}
& \sum_{i, t}\left[e_{A} \cdot z_{i} \cdot \beta_{t}\left(e_{B}\right)\right] \diamond\left\langle e_{A} \cdot z_{i} \cdot \beta_{t}\left(e_{B}\right), e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right)\right\rangle_{D} \\
& \quad=\sum_{i, t} e_{A} \cdot z_{i} \cdot \beta_{t}\left(e_{B}\right) \diamond \beta_{t^{-1}}\left(\left\langle e_{A} \cdot z_{i} \cdot \beta_{t}\left(e_{B}\right), e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right)\right\rangle_{D_{1}}\right) \\
& = \\
& =\sum_{i, t} e_{A} \cdot z_{i} \cdot \beta_{t}\left(e_{B}\right) \diamond e_{B} \beta_{t^{-1}}\left(\left\langle e_{A} \cdot z_{i}, e_{A} \cdot z\right\rangle_{D_{1}}\right) \beta_{t^{-1} s}\left(e_{B}\right) \\
& = \\
& =\sum_{i, t} e_{A} \cdot z_{i} \cdot \beta_{t}\left(e_{B}\right)\left\langle e_{A} \cdot z_{i}, e_{A} \cdot z\right\rangle_{D_{1}} \beta_{s}\left(e_{B}\right) \\
& = \\
& =\sum_{i, t} e_{A} \cdot\left[z_{i} \cdot\left\langle z_{i} \cdot \beta_{t}\left(e_{B}\right), e_{A} \cdot z\right\rangle_{D_{1}}\right] \cdot \beta_{s}\left(e_{B}\right) \\
& \quad=\left[z_{i} \cdot\left\langle z_{i}, e_{A} \cdot z\right\rangle_{D_{1}}\right] \cdot \beta_{s}\left(e_{B}\right)=e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right)
\end{aligned}
$$

since $\sum_{t \in G} \beta_{t}\left(e_{B}\right)=1$ by [9], Remark 3.4. Also, by the same way and the same reason, for any $z \in Z, s \in G$,

$$
\sum_{j, t}{ }_{C}\left\langle e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right), e_{A} \cdot \lambda_{t}\left(w_{j}\right) \cdot \beta_{t}\left(e_{B}\right)\right\rangle \diamond\left[e_{A} \cdot \lambda_{t}\left(w_{j}\right) \cdot \beta_{t}\left(e_{B}\right)\right]=e_{A} \cdot z \cdot \beta_{s}\left(e_{B}\right) .
$$

Therefore we obtain the conclusion.
Remark 4.4. By Lemma 4.2, $\left\{e_{A} \cdot z_{i} \cdot \beta_{t}\left(e_{B}\right)\right\}_{i, t}$ is a right D-basis and $\left\{e_{A} \cdot \lambda_{t}\left(w_{j}\right) \cdot \beta_{t}\left(e_{B}\right)\right\}_{j, t}$ is a left C-basis of W in the sense of Kajiwara and Watatani (see [6]).

By Lemma 4.2, W has Properties (9), (10) in [5], Lemma 1.3. Hence, by [5], Lemma 1.3, W is a Hilbert $C-D$ - bimodule in the sense of [5], Definition 1.1. Thus, \mathcal{Z} has Conditions (5R), (6R) and (5L), (6L) in [1], Definition 2.1.

Proposition 4.5. With the above notation, \mathcal{Z} is an $\mathcal{A}_{1}-\mathcal{B}_{1}^{f}$-equivalence bundle over G such that

$$
\mathcal{A}_{1}\left\langle Z_{t}, Z_{s}\right\rangle=Y_{\alpha_{t s} \mathcal{A}^{-1}}, \quad\left\langle Z_{t}, Z_{s}\right\rangle_{\mathcal{B}_{1}^{f}}=Y_{\beta_{t^{-1}}}
$$

for any $t, s \in G$.
Proof. First, we show that the left C-valued inner product and the right D valued inner product on W are compatible. Let $y, z, w \in Z$ and $t, s, r \in G$. Since Z is a $C_{1}-D_{1}$-equivalence bimodule, by routine computations, we can see that

$$
\begin{aligned}
{ }_{C}\left\langle e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right)\right. & \left., e_{A} \cdot y \cdot \beta_{s}\left(e_{B}\right)\right\rangle \diamond\left[e_{A} \cdot w \cdot \beta_{r}\left(e_{B}\right)\right] \\
& =\left[e_{A} \cdot z \cdot \beta_{t}\left(e_{B}\right)\right] \diamond\left\langle e_{A} \cdot y \cdot \beta_{s}\left(e_{B}\right), e_{A} \cdot w \cdot \beta_{r}\left(e_{B}\right)\right\rangle_{D} .
\end{aligned}
$$

Hence, the left C-valued inner product and the right D-valued inner product are compatible. Thus, by Lemmas 4.1-4.3, \mathcal{Z} is an $\mathcal{A}_{1}-\mathcal{B}_{1}^{f}$-equivalence bundle over G. Next, we show that

$$
\mathcal{A}_{1}\left\langle Z_{t}, Z_{s}\right\rangle=Y_{\alpha_{t s}{ }^{-1}}, \quad\left\langle Z_{t}, Z_{s}\right\rangle_{\mathcal{B}_{1}^{f}}=Y_{\beta_{t^{-1}}}
$$

for any $t, s \in G$. Let $t, s \in G$. Since E^{B} is of Watatani index-finite type, there is a quasi-basis $\left\{\left(d_{j}, d_{j}^{*}\right)\right\} \subset D \times D$ for E^{B}. Thus $\sum_{j} d_{j} e_{B} d_{j}^{*}=1$. Since Z is a $C_{1}-D_{1-}$ equivalence bimodule, there is a finite subset $\left\{z_{i}\right\}$ of Z such that $\sum_{i} C_{1}\left\langle z_{i}, z_{i}\right\rangle=1$.

Let $c \in C$. Then

$$
\begin{aligned}
\sum_{i, j}{ }_{C} & \left\langle e_{A} c \cdot \lambda_{t}\left(z_{i}\right) \cdot \beta_{t}\left(d_{j} e_{B}\right), e_{A} \cdot \lambda_{s}\left(z_{i}\right) \cdot \beta_{s}\left(d_{j} e_{B}\right)\right\rangle \\
& =\sum_{i, j} C_{1}\left\langle e_{A} c \cdot \lambda_{t}\left(z_{i}\right) \cdot \beta_{t}\left(d_{j} e_{B}\right), \lambda_{t s^{-1}}\left(e_{A} \cdot \lambda_{s}\left(z_{i}\right) \cdot \beta_{s}\left(d_{j} e_{B}\right)\right)\right\rangle \\
& =\sum_{i, j} C_{1}\left\langle e_{A} c \cdot \lambda_{t}\left(z_{i}\right) \cdot \beta_{t}\left(d_{j} e_{B}\right), \alpha_{t s^{-1}}^{\mathcal{A}}\left(e_{A}\right) \cdot \lambda_{t}\left(z_{i}\right) \cdot \beta_{t}\left(d_{j} e_{B}\right)\right\rangle \\
& =\sum_{i, j} e_{A C_{1}}\left\langle c \cdot \lambda_{t}\left(z_{i}\right) \cdot \beta_{t}\left(d_{j} e_{B} d_{j}^{*}\right), \lambda_{t}\left(z_{i}\right)\right\rangle \alpha_{t s^{-1}}^{\mathcal{A}}\left(e_{A}\right) \\
& =\sum_{i} e_{A} c_{C_{1}}\left\langle\lambda_{t}\left(z_{i}\right), \lambda_{t}\left(z_{i}\right)\right\rangle \alpha_{t s^{-1}}^{\mathcal{A}}\left(e_{A}\right) \\
& =\sum_{i} e_{A} c \alpha_{t}^{\mathcal{A}}\left(c_{1}\left\langle z_{i}, z_{i}\right\rangle\right) \alpha_{t s^{-1}}^{\mathcal{A}}\left(e_{A}\right)=e_{A} c \alpha_{t s^{-1}}^{\mathcal{A}}\left(e_{A}\right) .
\end{aligned}
$$

Hence, we obtain that ${ }_{C}\left\langle Z_{t}, Z_{s}\right\rangle=Y_{\alpha_{t s}{ }^{\mathcal{A}}}$ for any $t, s \in G$. Also, since E^{A} is of Watatani index-finite type, there is a quasi-basis $\left\{\left(c_{j}, c_{j}^{*}\right)\right\} \subset C \times C$ for E^{A}. Thus $\sum_{j} c_{j} e_{A} c_{j}^{*}=1$. Since Z is a $C_{1}-D_{1}$-equivalence bimodule, there is a finite subset $\left\{w_{i}\right\}$ of Z such that $\sum_{i}\left\langle w_{i}, w_{i}\right\rangle_{D_{1}}=1$. In the same way as above, for any $d \in D_{1}$,

$$
\sum_{i, j}\left\langle e_{A} c_{j}^{*} \cdot w_{i} \cdot \beta_{t}\left(e_{B}\right), e_{A} c_{j}^{*} \cdot w_{i} \cdot d \beta_{s}\left(e_{B}\right)\right\rangle_{D}=e_{B} \beta_{t^{-1}}(d) \beta_{t^{-1} s}\left(e_{B}\right)
$$

Hence, we obtain that $\left\langle Z_{t}, Z_{s}\right\rangle_{D}=Y_{\beta_{t-1}}$ for any $t, s \in G$. Therefore we obtain the conclusion.

Theorem 4.6. Let $\mathcal{A}=\left\{A_{t}\right\}_{t \in G}$ and $\mathcal{B}=\left\{B_{t}\right\}_{t \in G}$ be saturated C^{*}-algebraic bundles over a finite group G. Let e be the unit element in G. Let $C=\bigoplus_{t \in G} A_{t}$, $D=\bigoplus_{t \in G} B_{t}$ and $A=A_{e}, B=B_{e}$. We suppose that C and D are unital and that A and B have the unit elements in C and D, respectively. Let $A \subset C$ and $B \subset D$ be the unital inclusions of unital C^{*}-algebras induced by \mathcal{A} and \mathcal{B}, respectively. Also, we suppose that $A^{\prime} \cap C=\mathbf{C} 1$. If $A \subset C$ and $B \subset D$ are strongly Morita equivalent, then there are an automorphism f of G and an $\mathcal{A}-\mathcal{B}^{f}$-equivalence bundle $\mathcal{Z}=\left\{Z_{t}\right\}_{t \in G}$ satisfying that

$$
{ }_{C}\left\langle Z_{t}, Z_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle Z_{t}, Z_{s}\right\rangle_{D}=B_{f\left(t^{-1} s\right)}
$$

for any $t, s \in G$, where \mathcal{B}^{f} is the C^{*}-algebraic bundle over G induced by \mathcal{B} and f defined by $\mathcal{B}^{f}=\left\{B_{f(t)}\right\}_{t \in G}$.

Proof. This is immediate by Lemma 3.1 and Proposition 4.5.

5. Application

Let A and B be unital C^{*}-algebras and X a Hilbert $A-B$-bimodule. Let \widetilde{X} be its dual Hilbert $B-A$-bimodule. For any $x \in X, \widetilde{x}$ denotes the element in \widetilde{X} induced by $x \in X$.

Lemma 5.1. Let A, B and C be unital C^{*}-algebras. Let X be a Hilbert $A-B$ bimodule and Y a Hilbert $B-C$-bimodule. Then $\widetilde{X \otimes_{B} Y} \cong \widetilde{Y} \otimes_{B} \widetilde{X}$ as Hilbert $C-A$-bimodules.

Proof. Let π be the map from $\widetilde{X \otimes_{B} Y}$ to $\tilde{Y} \otimes_{B} \widetilde{X}$ defined by $\pi(\widetilde{x \otimes y})=\widetilde{y} \otimes \widetilde{x}$ for any $x \in X, y \in Y$. Then by routine computations, we can see that π is a Hilbert $C-A$-bimodule isomorphism of $\widetilde{X \otimes_{B} Y}$ onto $\widetilde{Y} \otimes_{B} \widetilde{X}$.

We identify $\widetilde{X \otimes_{B} Y}$ with $\widetilde{Y} \otimes_{B} \widetilde{X}$ by the isomorphism π defined in the proof of Lemma 5.1. Next, we give the definition of an involutive Hilbert $A-A$-bimodule modifying [8].

Definition 5.2. We say that a Hilbert $A-A$-bimodule X is involutive if there exists a conjugate linear map $x \in X \mapsto x^{\natural} \in X$ such that
(1) $\left(x^{\natural}\right)^{\natural}=x, x \in X$,
(2) $(a \cdot x \cdot b)^{\natural}=b^{*} \cdot x^{\natural} \cdot a^{*}, x \in X, a, b \in A$,
(3) ${ }_{A}\left\langle x, y^{\natural}\right\rangle=\left\langle x^{\natural}, y\right\rangle_{A}, x, y \in X$.

We call the above conjugate linear map \bigsqcup an involution on X. If X is full with the both inner products, X is an involutive $A-A$-equivalence bimodule. For each involutive Hilbert $A-A$-bimodule, let L_{X} be the linking C^{*}-algebra induced by X and C_{X} the C^{*}-subalgebra of L_{X}, which is defined in [8], that is,

$$
C_{X}=\left\{\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\natural} & a
\end{array}\right]: a \in A, x \in X\right\} .
$$

We note that C_{X} acts on $X \oplus A$ (see Brown, Green and Rieffel [2] and Rieffel [12]). The norm of C_{X} is defined as the operator norm on $X \oplus A$.

Let A be a unital C^{*}-algebra and X an involutive Hilbert $A-A$-bimodule. Let \widetilde{X} be its dual Hilbert $A-A$-bimodule. We define the map ${ }^{\natural}$ on \widetilde{X} by $(\widetilde{x})^{\natural}=\widetilde{\left(x^{\natural}\right)}$ for any $\widetilde{x} \in \widetilde{X}$.

Lemma 5.3. With the above notation, the above map ${ }^{\natural}$ is an involution on \widetilde{X}.
Proof. This is immediate by direct computations.

For each involutive Hilbert $A-A$-bimodule X, we regard \tilde{X} as an involutive $A-A$-bimodule in the same manner as in Lemma 5.3.

Let $\mathbf{Z}_{2}=\mathbf{Z} / 2 \mathbf{Z}$ and we suppose that \mathbf{Z}_{2} consists of the unit element 0 and another element 1. Let X be an involutive Hilbert $A-A$-bimodule. We construct a C^{*} algebraic bundle over \mathbf{Z}_{2} induced by X. Let $A_{0}=A$ and $A_{1}=X$. Let $\mathcal{A}_{X}=$ $\left\{A_{t}\right\}_{t \in \mathbf{Z}_{2}}$. We define a product \bullet and an involution \sharp as follows:
(1) $a \bullet b=a b, a, b \in A$,
(2) $a \bullet x=a \cdot x, x \bullet a=x \cdot a, a \in A, x \in X$,
(3) $x \bullet y={ }_{A}\left\langle x, y^{\natural}\right\rangle=\left\langle x^{\natural}, y\right\rangle_{A}, x, y \in X$,
(4) $a^{\sharp}=a^{*}, a \in A$,
(5) $x^{\sharp}=x^{\natural}, x \in X$.

Then $A \oplus X$ is a $*$-algebra and by routine computations, $A \oplus X$ is isomorphic to C_{X} as $*$-algebras. We identify $A \oplus X$ with C_{X} as $*$-algebras. We define a norm of $A \oplus X$ as the operator norm on $X \oplus A$. Hence, \mathcal{A}_{X} is a C^{*}-algebraic bundle over \mathbf{Z}_{2}. Thus, we obtain a correspondence from the involutive Hilbert $A-A$ bimodules to the C^{*}-algebraic bundles over \mathbf{Z}_{2}. Next, let $\mathcal{A}=\left\{A_{t}\right\}_{t \in \mathbf{Z}_{2}}$ be a C^{*} algebraic bundle over \mathbf{Z}_{2}. Then A_{1} ia an involutive Hilbert $A-A$-bimodule. Hence, we obtain a correspondence from the C^{*}-algebraic bundles over \mathbf{Z}_{2} to the involutive Hilbert $A-A$-bimodules. Clearly, the above two correspondences are the inverse correspondences of each other. Furthermore, the inclusion of unital C^{*}-algebras $A \subset C_{X}$ induced by X and the inclusion of unital C^{*}-algebras $A \subset A \oplus X$ induced by the C^{*}-algebraic bundle \mathcal{A}_{X} coincide.

Lemma 5.4. Let X and Y be involutive Hilbert $A-A$-bimodules and \mathcal{A}_{X} and \mathcal{A}_{Y} the C^{*}-algebraic bundles over \mathbf{Z}_{2} induced by X and Y, respectively. Then $\mathcal{A}_{X} \cong \mathcal{A}_{Y}$ as C^{*}-algebraic bundles over \mathbf{Z}_{2} if and only if $X \cong Y$ as involutive Hilbert $A-A$ bimodules.

Proof. We suppose that $\mathcal{A}_{X} \cong \mathcal{A}_{Y}$ as C^{*}-algebraic bundles over \mathbf{Z}_{2}. Then there is a C^{*}-algebraic bundle isomorphism $\left\{\pi_{t}\right\}_{t \in \mathbf{Z}_{2}}$ of \mathcal{A}_{X} onto \mathcal{A}_{Y}. We identify A with $\pi_{0}(A)$. Then π_{1} is an involutive Hilbert $A-A$-bimodule isomorphism of X onto Y. Next, we suppose that there is an involutive Hilbert $A-A$-bimodule isomorphism π of X onto Y. Let $\pi_{0}=\operatorname{id}_{A}$ and $\pi_{1}=\pi$. Then $\left\{\pi_{t}\right\}_{t \in \mathbf{Z}_{2}}$ is a C^{*}-algebraic bundle isomorphism \mathcal{A}_{X} onto \mathcal{A}_{Y}.

Lemma 5.5. Let X be an involutive Hilbert $A-A$-bimodule and \mathcal{A}_{X} the C^{*} algebraic bundle over \mathbf{Z}_{2} induced by X. Then X is full with the both inner products if and only if \mathcal{A}_{X} is saturated.

Proof. We suppose that X is full with the both inner products. Then

$$
A_{1} \bullet A_{1}^{\sharp}={ }_{A}\langle X, X\rangle=A=A_{0} .
$$

Also,

$$
\begin{aligned}
& A_{0} \bullet A_{1}^{\sharp}=A \cdot X^{\natural}=A \cdot X=X=A_{1}, \\
& A_{1} \bullet A_{0}^{\sharp}=X \cdot A^{*}=X \cdot A=X=A_{1}
\end{aligned}
$$

by [3], Proposition 1.7. Clearly $A_{0} \bullet A_{0}=A A=A=A_{0}$. Hence \mathcal{A}_{X} is saturated. Next, we suppose that \mathcal{A}_{X} is saturated. Then

$$
{ }_{A}\langle X, X\rangle=A_{1} \bullet A_{1}^{\sharp}=A_{1}=A, \quad\langle X, X\rangle_{A}={ }_{A}\left\langle X^{\natural}, X^{\natural}\right\rangle={ }_{A}\langle X, X\rangle=A .
$$

Thus, X is full with the both inner products.
Remark 5.6. Let X be an involutive Hilbert $A-A$-bimodule. Then by the above proof, we see that X is full with the left A-valued inner product if and only if X is full with the right A-valued inner product.

Lemma 5.7. Let A and B be unital C^{*}-algebras and M an $A-B$-equivalence bimodule. Let X be an involutive Hilbert $A-A$-bimodule. Then $\widetilde{M} \otimes_{A} X \otimes_{A} M$ is an involutive Hilbert B - B-bimodule whose involution \ddagger is defined by

$$
(\widetilde{m} \otimes x \otimes n)^{\natural}=\widetilde{n} \otimes x^{\natural} \otimes m
$$

for any $m, n \in M, x \in X$.
Proof. This is immediate by routine computations.
Let A, B, X and M be as in Lemma 5.7. Let Y be an involutive Hilbert $B-B$ bimodule. We suppose that there is an involutive Hilbert $B-B$-bimodule isomorphism Φ of $\widetilde{M} \otimes_{A} X \otimes_{A} M$ onto Y. Let $\widetilde{\Phi}$ be the linear map from $\widetilde{M} \otimes_{A} \widetilde{X} \otimes_{A} M$ onto \widetilde{Y} defined by

$$
\widetilde{\Phi}(\widetilde{m} \otimes \widetilde{x} \otimes n)=\widetilde{\Phi}\left((\widetilde{n} \otimes x \otimes m)^{\sim}\right)=[\Phi(\widetilde{n} \otimes x \otimes m)]^{\sim}
$$

for any $m, n \in M, x \in X$.
Lemma 5.8. With the above notation, $\widetilde{\Phi}$ is an involutive Hilbert $B-B$-bimodule isomorphism of $\widetilde{M} \otimes_{A} \widetilde{X} \otimes_{A} M$ onto \widetilde{Y}.

Proof. This is immediate by routine computations.

Again, let A, B, X and M be as in Lemma 5.7. Let Y be an involutive Hilbert $B-B$-bimodule. We suppose that there is an involutive Hilbert $B-B$-bimodule isomorphism Φ of $\widetilde{M} \otimes_{A} X \otimes_{A} M$ onto Y. We identify A and X with $M \otimes_{B} \widetilde{M}$ and $A \otimes_{A} X$ by the isomorphisms defined by

$$
m \otimes n \in M \otimes_{B} \widetilde{M} \mapsto_{A}\langle m, n\rangle \in A, \quad a \otimes x \in A \otimes_{A} X \mapsto a \cdot x \in X
$$

respectively. Since M is an $A-B$-equivalence bimodule, there is a finite subset $\left\{u_{i}\right\}$ of M with $\sum_{i}{ }_{A}\left\langle u_{i}, u_{i}\right\rangle=1$. Let $x \in X, m \in M$. Then

$$
x \otimes m=1_{A} \cdot x \otimes m=\sum_{i}\left\langle u_{i}, u_{i}\right\rangle \cdot x \otimes m=\sum_{i} u_{i} \otimes \widetilde{u}_{i} \otimes x \otimes m
$$

Hence, there is the linear map Ψ from $X \otimes_{A} M$ to $M \otimes_{B} Y$ defined by

$$
\Psi(x \otimes m)=\sum_{i} u_{i} \otimes \Phi\left(\widetilde{u_{i}} \otimes x \otimes m\right)
$$

for any $x \in X, m \in M$. By the definition of Ψ, we can see that Ψ is a Hilbert $A-B$-bimodule isomorphism of $X \otimes_{A} M$ onto $M \otimes_{B} Y$.

Lemma 5.9. With the above notation, the Hilbert A - B-bimodule isomorphism Ψ of $X \otimes_{A} M$ onto $M \otimes_{B} Y$ is independent of the choice of a finite subset $\left\{u_{i}\right\}$ of M with $\sum_{i}{ }_{A}\left\langle u_{i}, u_{i}\right\rangle=1$.

Proof. Let $\left\{v_{j}\right\}$ be another finite subset of M with $\sum_{j} A\left\langle v_{j}, v_{j}\right\rangle=1$. Then for any $x \in X, m \in M$,

$$
\begin{aligned}
\sum_{i} u_{i} \otimes & \Phi\left(\widetilde{u}_{i} \otimes x \otimes m\right) \\
& =\sum_{i, j}{ }_{A}\left\langle v_{j}, v_{j}\right\rangle \cdot u_{i} \otimes \Phi\left(\widetilde{u_{i}} \otimes x \otimes m\right)=\sum_{i, j} v_{j} \cdot\left\langle v_{j}, u_{i}\right\rangle_{B} \otimes \Phi\left(\widetilde{u}_{i} \otimes x \otimes m\right) \\
& =\sum_{i, j} v_{j} \otimes \Phi\left(\left[u_{i} \cdot\left\langle u_{i}, v_{j}\right\rangle_{B}\right]^{\sim} \otimes x \otimes m\right)=\sum_{j} v_{j} \otimes \Phi\left(\widetilde{v_{j}} \otimes x \otimes m\right) .
\end{aligned}
$$

Therefore, we obtain the conclusion.
Similarly, let $\widetilde{\Psi}$ be the Hilbert $A-B$-bimodule isomorphism of $\widetilde{X} \otimes_{A} M$ onto $M \otimes_{B} \widetilde{Y}$ defined by

$$
\widetilde{\Psi}(\widetilde{x} \otimes m)=\sum_{i} u_{i} \otimes \widetilde{\Phi}\left(\widetilde{u}_{i} \otimes \widetilde{x} \otimes m\right)
$$

for any $x \in X, m \in M$. We construct the inverse map of Ψ, which is a Hilbert $A-B$-bimodule isomorphism of $M \otimes_{B} Y$ onto $X \otimes_{A} M$. Let Θ be the linear map from $M \otimes_{B} Y$ to $X \otimes_{A} M$ defined by

$$
\Theta(m \otimes y)=m \otimes \Phi^{-1}(y)
$$

for any $m \in M, y \in Y$, where we identify $M \otimes_{B} \widetilde{M} \otimes_{A} X \otimes_{A} M$ with $X \otimes_{A} M$ as Hilbert $A-B$-bimodules by the map

$$
m \otimes \widetilde{n} \otimes x \otimes m_{1} \in M \otimes_{B} \widetilde{M} \otimes_{A} X \otimes_{A} M \mapsto_{A}\langle m, n\rangle \cdot x \otimes m_{1} \in X \otimes_{A} M
$$

Lemma 5.10. With the above notation, Θ is the Hilbert $A-B$-bimodule isomorphism of $M \otimes_{B} Y$ onto $X \otimes_{A} M$ such that $\Theta \circ \Psi=\operatorname{id}_{X \otimes_{A} M}$ and $\Psi \circ \Theta=\operatorname{id}_{M \otimes_{B} Y}$.

Proof. Let $m, m_{1} \in M, y, y_{1} \in Y$. Then

$$
\begin{aligned}
{ }_{A}\left\langle\Theta(m \otimes y), \Theta\left(m_{1} \otimes y_{1}\right)\right\rangle & ={ }_{A}\left\langle m \otimes \Phi^{-1}(y), m_{1} \otimes \Phi^{-1}\left(y_{1}\right)\right\rangle \\
& ={ }_{A}\left\langle m \cdot{ }_{B}\left\langle\Phi^{-1}(y), \Phi^{-1}\left(y_{1}\right)\right\rangle, m_{1}\right\rangle \\
& ={ }_{A}\left\langle m \cdot{ }_{B}\left\langle y, y_{1}\right\rangle, m_{1}\right\rangle={ }_{A}\left\langle m \otimes y, m_{1} \otimes y_{1}\right\rangle .
\end{aligned}
$$

Hence, Θ preserves the left A-valued inner products. Similarly, we can see that Θ preserves the right B-valued inner products. Furthermore, for any $x \in X, m \in M$,

$$
\begin{aligned}
(\Theta \circ \Psi)(x \otimes m) & =\sum_{i} \Theta\left(u_{i} \otimes \Phi\left(\widetilde{u}_{i} \otimes x \otimes m\right)\right)=\sum_{i} u_{i} \otimes \widetilde{u}_{i} \otimes x \otimes m \\
& =\sum_{i}{ }_{A}\left\langle u_{i}, u_{i}\right\rangle \cdot x \otimes m=x \otimes m
\end{aligned}
$$

since we identify $M \otimes \widetilde{M}$ with A as $A-A$-equivalence bimodules by the map $m \otimes \widetilde{n} \in$ $M \otimes_{B} \widetilde{M} \mapsto{ }_{A}\langle m, n\rangle \in A$. Hence, $\Theta \circ \Psi=\operatorname{id}_{X \otimes_{A} M}$. Hence, $\Psi \circ \Theta \circ \Psi=\Psi$ on $X \otimes_{A} M$. Since Ψ is surjective, $\Psi \circ \Theta=\operatorname{id}_{M \otimes_{B} Y}$. Therefore, by the remark after [4], Definition 1.1.18, Θ is a Hilbert $A-B$-bimodule isomorphism of $M \otimes_{B} Y$ onto $X \otimes_{A} M$ such that $\Theta \circ \Psi=\operatorname{id}_{X \otimes_{A} M}$ and $\Psi \circ \Theta=\operatorname{id}_{M \otimes_{B} Y}$.

Similarly, we see that the inverse map of $(\widetilde{\Psi})^{-1}$ is defined by

$$
(\widetilde{\Psi})^{-1}(m \otimes \widetilde{y})=m \otimes(\widetilde{\Phi})^{-1}(\widetilde{y})
$$

for any $m \in M, y \in Y$, where we identify $M \otimes_{B} \widetilde{M} \otimes_{A} \widetilde{X} \otimes_{A} M$ with $\widetilde{X} \otimes_{A} M$ as Hilbert $A-B$-bimodules by the map

$$
m \otimes \widetilde{n} \otimes \widetilde{x} \otimes m_{1} \in M \otimes_{B} \widetilde{M} \otimes_{A} \widetilde{X} \otimes_{A} M \mapsto_{A}\langle m, n\rangle \cdot \widetilde{x} \otimes m_{1} \in \widetilde{X} \otimes_{A} M
$$

We prepare some lemmas in order to show Proposition 5.14.

Lemma 5.11. Let A and B be unital C^{*}-algebras. Let X and Y be an involutive Hilbert $A-A$-bimodule and an involutive Hilbert $B-B$-bimodule, respectively. Let $\mathcal{A}_{X}=\left\{A_{t}\right\}_{t \in \mathbf{Z}_{2}}$ and $\mathcal{A}_{Y}=\left\{B_{t}\right\}_{t \in \mathbf{Z}_{2}}$ be C^{*}-algebraic bundles over \mathbf{Z}_{2} induced by X and Y, respectively. We suppose that there is an $\mathcal{A}_{X}-\mathcal{A}_{Y}$-equivalence bundle $\mathcal{M}=\left\{M_{t}\right\}_{t \in \mathbf{Z}_{2}}$ over \mathbf{Z}_{2} such that

$$
{ }_{C}\left\langle M_{t}, M_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle M_{t}, M_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in \mathbf{Z}_{2}$, where $C=A \oplus X$ and $D=B \oplus Y$. Then there is an $A-B$ equivalence bimodule M such that $Y \cong \widetilde{M} \otimes_{A} X \otimes_{A} M$ as involutive Hilbert $B-B$ bimodules.

Proof. By the assumptions, M_{0} is an $A-B$-equivalence bimodule. Let $M=M_{0}$. Then by Lemma $5.7, \widetilde{M} \otimes_{A} X \otimes_{A} M$ is an involutive Hilbert $B-B$ bimodule whose involution is defined by $(\widetilde{m} \otimes x \otimes n)^{\natural}=\widetilde{n} \otimes x^{\natural} \otimes m$ for any $m, n \in M$, $x \in X$. We show that $Y \cong \widetilde{M} \otimes_{A} X \otimes_{A} M$ as involutive Hilbert $B-B$-bimodules. Let Φ be the map from $\widetilde{M} \otimes_{A} X \otimes_{A} M$ to Y defined by

$$
\Phi(\widetilde{m} \otimes x \otimes n)=\langle m, x \cdot n\rangle_{D}
$$

for any $m, n \in M, x \in X$. Since $A_{1}=X$ and $M=M_{0}, X \cdot M_{0} \subset M_{1}$. And $\left\langle M_{0}, M_{1}\right\rangle_{D} \in B_{1}=Y$. Hence, Φ is a map from $\widetilde{M} \otimes_{A} X \otimes_{A} M$ to Y. Clearly, Φ is a linear and $B-B$-bimodule map. We show that Φ is surjective. Indeed,

$$
X \cdot M=A_{1} \cdot M_{0}={ }_{C}\left\langle M_{1}, M_{0}\right\rangle \cdot M_{0}=M_{1} \cdot\left\langle M_{0}, M_{0}\right\rangle_{D}=M_{1} \cdot B=M_{1}
$$

by [3], Proposition 1.7. Hence, $\langle M, X \cdot M\rangle_{D}=\left\langle M, M_{1}\right\rangle_{D}=Y$. Thus, Φ is surjective. Let $m, n, m_{1}, n_{1} \in M, x, x_{1} \in X$. Then

$$
\begin{aligned}
{ }_{B}\langle\widetilde{m} \otimes & x \\
& \left.\otimes n, \widetilde{m}_{1} \otimes x_{1} \otimes n_{1}\right\rangle \\
& =\left\langle{ }_{A}\left\langle{ }_{A}\left\langle x \otimes n, x_{1} \otimes n_{1}, x \otimes n\right\rangle \cdot m, m_{1}\right\rangle, \widetilde{m}_{1}\right\rangle={ }_{B}\left\langle\left[{ }_{A}\left\langle x_{1} \otimes{ }_{1} \otimes{ }_{A}\left\langle x_{1} \cdot{ }_{A}\left\langle n_{1}, n\right\rangle, x\right\rangle \cdot m, m_{1}\right\rangle_{B}\right.\right. \\
& =\left\langle\left[\left(x_{1} \bullet{ }_{C}\left\langle n_{1}, n\right\rangle\right) \bullet x^{\natural}\right] \cdot m, m_{1}\right\rangle_{B}=\left\langle\left[{ }_{C}\left\langle x_{1} \cdot n_{1}, n\right\rangle \bullet x^{\natural}\right] \cdot m, m_{1}\right\rangle_{B} \\
& =\left\langle{ }_{C}\left\langle\left[x_{1} \cdot n_{1}\right], n\right\rangle \cdot\left[x^{\natural} \cdot m\right], m_{1}\right\rangle_{B}=\left\langle\left[x_{1} \cdot n_{1}\right] \cdot\left\langle n, x^{\natural} \cdot m\right\rangle_{D}, m_{1}\right\rangle_{B} \\
& =\left\langle x^{\natural} \cdot m, n\right\rangle_{D} \bullet\left\langle x_{1} \cdot n_{1}, m_{1}\right\rangle_{D}=\langle m, x \cdot n\rangle_{D} \bullet\left\langle m_{1}, x_{1} \cdot n_{1}\right\rangle_{D}^{\sharp} \\
& ={ }_{B}\left\langle\langle m, x \cdot n\rangle_{D},\left\langle m_{1}, x_{1} \cdot n_{1}\right\rangle_{D}\right\rangle={ }_{B}\left\langle\Phi(\widetilde{m} \otimes x \otimes n), \Phi\left(\widetilde{m}_{1} \otimes x_{1} \otimes n_{1}\right)\right\rangle .
\end{aligned}
$$

Hence, Φ preserves the left B-valued inner products. Also, similarly we can see that Φ preserves the right B-valued inner products. Furthermore,

$$
\Phi(\widetilde{m} \otimes x \otimes n)^{\natural}=\langle m, x \cdot n\rangle_{Y}^{\natural}=\langle m, x \cdot n\rangle_{D}^{\sharp}=\langle x \cdot n, m\rangle_{D}=\langle x \cdot n, m\rangle_{Y}
$$

On the other hand,

$$
\Phi\left((\widetilde{m} \otimes x \otimes n)^{\natural}\right)=\Phi\left(\widetilde{n} \otimes x^{\natural} \otimes m\right)=\left\langle n, x^{\natural} \cdot m\right\rangle_{Y}=\langle x \cdot n, m\rangle_{Y}=\Phi(\widetilde{m} \otimes x \otimes n)^{\natural} .
$$

Hence, Φ preserves the involutions \natural. Therefore $Y \cong \widetilde{M} \otimes_{A} X \otimes_{A} M$ as involutive Hilbert $B-B$-bimodules.

Let A and B be unital C^{*}-algebras. Let X and Y be an involutive Hilbert $A-A$ bimodule and an involutive Hilbert $B-B$-bimodule and let \mathcal{A}_{X} and \mathcal{A}_{Y} be the C^{*}-algebraic bundles over \mathbf{Z}_{2} induced by X and Y, respectively. We suppose that there is an $A-B$-equivalence bimodule M such that

$$
Y \cong \widetilde{M} \otimes_{A} X \otimes_{A} M
$$

as involutive Hilbert $B-B$-bimodules. We construct an $\mathcal{A}_{X}-\mathcal{A}_{Y}$-equivalence bundle $\mathcal{M}=\left\{M_{t}\right\}_{t \in \mathbf{Z}_{2}}$ over \mathbf{Z}_{2} such that

$$
{ }_{C}\left\langle M_{t}, M_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle M_{t}, M_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in \mathbf{Z}_{2}$, where $C=A \oplus X$ and $D=B \oplus Y$.
Let Φ be an involutive Hilbert $B-B$-bimodule isomorphism of $\widetilde{M} \otimes_{A} X \otimes_{A} M$ onto Y. Then by the above discussions, there are the Hilbert $A-B$-bimodule isomorphisms Ψ of $X \otimes_{A} M$ onto $M \otimes_{B} Y$ and $\widetilde{\Psi}$ of $\widetilde{X} \otimes_{A} M$ onto $M \otimes_{B} \widetilde{Y}$, respectively. We construct a $C_{X}-C_{Y}$-equivalence bimodule C_{M} from M. Let C_{M} be the linear span of the set

$$
{ }^{{ }^{X}} C_{M}=\left\{\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right]: m_{1}, m_{2} \in M, x \in X\right\} .
$$

We define the left C_{X}-action on C_{M} by

$$
\left[\begin{array}{cc}
a & z \\
\widetilde{z}^{\natural} & a
\end{array}\right] \cdot\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right]=\left[\begin{array}{cc}
a \otimes m_{1}+z \otimes \widetilde{x}^{\natural} \otimes m_{2} & a \otimes x \otimes m_{2}+z \otimes m_{1} \\
\widetilde{z}^{\natural} \otimes m_{1}+a \otimes \widetilde{x}^{\natural} \otimes m_{2} & \widetilde{z}^{\natural} \otimes x \otimes m_{2}+a \otimes m_{1}
\end{array}\right]
$$

for any $a \in A, m_{1}, m_{2} \in M, x, z \in X$, where we regard the tensor product as a left C_{X}-action on C_{M} in the formal manner. But we identify $A \otimes_{A} M$ and $X \otimes_{A} \widetilde{X}$, $\widetilde{X} \otimes_{A} X$ with M and closed two-sided ideals of A by the isomorphism and the monomorphisms defined by

$$
\begin{gathered}
a \otimes m \in A \otimes_{A} M \mapsto a \cdot m \in M, \quad x \otimes \widetilde{z} \in X \otimes_{A} \widetilde{X} \mapsto{ }_{A}\langle x, z\rangle \in A, \\
\widetilde{x} \otimes z \in \widetilde{X} \otimes_{A} X \mapsto\langle x, z\rangle_{A} \in A .
\end{gathered}
$$

Hence, we obtain that

$$
\begin{aligned}
& {\left[\begin{array}{cc}
a & z \\
\widetilde{z}^{\natural} & a
\end{array}\right] \cdot\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right]} \\
& \quad=\left[\begin{array}{cc}
a \cdot m_{1}+{ }_{A}\left\langle z, x^{\natural}\right\rangle \cdot m_{2} & a \cdot x \otimes m_{2}+z \otimes m_{1} \\
\widetilde{z}^{\natural} \otimes m_{1}+(a \cdot x) \\
\boxed{(a \cdot x)} & \left\langle m^{\natural}, x\right\rangle_{A} \cdot m_{2}+a \cdot m_{1}
\end{array}\right] \in C_{M} .
\end{aligned}
$$

We define the right C_{Y}-action on C_{M} by

$$
\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right] \cdot\left[\begin{array}{cc}
b & y \\
\widetilde{y}^{\natural} & b
\end{array}\right]=\left[\begin{array}{cc}
m_{1} \otimes b+x \otimes m_{2} \otimes \widetilde{y}^{\natural} & m_{1} \otimes y+x \otimes m_{2} \otimes b \\
\widetilde{x}^{\natural} \otimes m_{2} \otimes b+m_{1} \otimes \widetilde{y}^{\natural} & \widetilde{x}^{\natural} \otimes m_{2} \otimes y+m_{1} \otimes b
\end{array}\right]
$$

for any $b \in B, x \in X, y \in Y, m_{1}, m_{2} \in M$, where we regard the tensor product as a right C_{Y}-action on C_{M} in the formal manner. But we identify $X \otimes_{A} M$ and $\widetilde{X} \otimes_{A} M$ with $M \otimes_{B} Y$ and $M \otimes_{B} \widetilde{Y}$ by Ψ and $\widetilde{\Psi}$, respectively. Hence, we obtain that

$$
\begin{aligned}
& {\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right] \cdot\left[\begin{array}{cc}
b & y \\
\widetilde{y}^{\natural} & b
\end{array}\right]} \\
& \quad=\left[\begin{array}{cc}
m_{1} \otimes b+x \otimes(\widetilde{\Psi})^{-1}\left(m_{2} \otimes \widetilde{y}^{\natural}\right) & \Psi^{-1}\left(m_{1} \otimes y\right)+x \otimes m_{2} \otimes b \\
\widetilde{x}^{\natural} \otimes m_{2} \otimes b+(\widetilde{\Psi})^{-1}\left(m_{1} \otimes \widetilde{y}^{\natural}\right) & \widetilde{x}^{\natural} \otimes \Psi^{-1}\left(m_{2} \otimes y\right)+m_{1} \otimes b
\end{array}\right] .
\end{aligned}
$$

Furthermore, we identify $M \otimes_{B} B$ and $Y \otimes_{B} \tilde{Y}, \tilde{Y} \otimes_{B} Y$ with M and closed two-sided ideals of B by the isomorphism and the monomorphisms defined by

$$
\begin{aligned}
& m \otimes b \in M \otimes_{B} B \mapsto m \cdot b \in M, \\
& y \otimes \widetilde{z} \in Y \otimes_{B} \widetilde{Y} \mapsto{ }_{B}\langle y, z\rangle \in B \\
& \widetilde{y} \otimes z \in \widetilde{Y} \otimes_{B} Y \mapsto\langle y, z\rangle_{B} \in B,
\end{aligned}
$$

respectively. Then $x \otimes(\widetilde{\Psi})^{-1}\left(m_{2} \otimes y^{\natural}\right)=\widetilde{x}^{\natural} \otimes \Psi^{-1}\left(m_{2} \otimes y\right)$ and we see that

$$
\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right] \cdot\left[\begin{array}{cc}
b & y \\
\widetilde{y}^{\natural} & b
\end{array}\right] \in C_{M} .
$$

Indeed, for any $\varepsilon>0$, there are finite sets $\left\{n_{k}\right\},\left\{l_{k}\right\} \subset M$ and $\left\{z_{k}\right\} \subset X$ such that

$$
\left\|\Phi^{-1}(y)-\sum_{k} \widetilde{n}_{k} \otimes z_{k} \otimes l_{k}\right\|<\varepsilon
$$

Also,

$$
\begin{aligned}
\left\|(\widetilde{\Phi})^{-1}\left(\widetilde{y}^{\natural}\right)-\left[\left(\sum_{k} \widetilde{n}_{k} \otimes z_{k} \otimes l_{k}\right)^{\natural}\right]^{\sim}\right\| & =\left\|\left[\Phi^{-1}(y)^{\natural}\right]^{\sim}-\left[\left(\sum_{k} \widetilde{n}_{k} \otimes z_{k} \otimes l_{k}\right)^{\natural}\right]^{\sim}\right\| \\
& =\left\|\Phi^{-1}(y)-\sum_{k} \widetilde{n}_{k} \otimes z_{k} \otimes l_{k}\right\|<\varepsilon .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left\|x \otimes(\widetilde{\Psi})^{-1}\left(m_{2} \otimes \widetilde{y}^{\natural}\right)-x \otimes m_{2} \otimes\left[\left(\sum_{k} \widetilde{n}_{k} \otimes z_{k} \otimes l_{k}\right)^{\natural}\right]^{\sim}\right\| \\
& \quad=\left\|x \otimes m_{2} \otimes(\widetilde{\Phi})^{-1}\left(\widetilde{y}^{\natural}\right)-x \otimes m_{2} \otimes \sum_{k}\left[\left(\widetilde{n}_{k} \otimes z_{k} \otimes l_{k}\right)^{\natural}\right] \sim\right\| \leqslant\|x\|\left\|m_{2}\right\| \varepsilon
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|\widetilde{x}^{\natural} \otimes \Psi^{-1}\left(m_{2} \otimes y\right)-\widetilde{x}^{\natural} \otimes m_{2} \otimes \sum_{k} \widetilde{n}_{k} \otimes z_{k} \otimes l_{k}\right\| \\
& \quad=\left\|\widetilde{x}^{\natural} \otimes m_{2} \otimes \Phi^{-1}(y)-\widetilde{x}^{\natural} \otimes m_{2} \otimes \sum_{k} \widetilde{n}_{k} \otimes z_{k} \otimes l_{k}\right\| \leqslant\|x\|\left\|m_{2}\right\| \varepsilon .
\end{aligned}
$$

Furthermore, we can see that

$$
\begin{aligned}
x \otimes & m_{2} \otimes\left[\left(\sum_{k} \widetilde{n}_{k} \otimes \widetilde{z_{k}} \otimes l_{k}\right)^{\natural}\right]^{\sim} \\
& =\sum_{k} x \otimes m_{2} \otimes \widetilde{n}_{k} \otimes \widetilde{z_{k}} \otimes \otimes l_{k}=\sum_{k}{ }_{A}\left\langle x \cdot{ }_{A}\left\langle m_{2}, n_{k}\right\rangle, z_{k}^{\natural}\right\rangle \cdot l_{k} \\
& =\sum_{k} \widetilde{x}^{\natural} \otimes m_{2} \otimes \widetilde{n}_{k} \otimes z_{k} \otimes l_{k}=\widetilde{x}^{\natural} \otimes m_{2} \otimes \sum_{k} \widetilde{n}_{k} \otimes z_{k} \otimes l_{k},
\end{aligned}
$$

where we identify $A \otimes_{A} M$ and $X \otimes_{A} \widetilde{X}, \widetilde{X} \otimes_{A} X$ with M and closed two-sided ideals of A by the isomorphism and the monomorphisms defined by

$$
\begin{aligned}
& a \otimes m \in A \otimes_{A} M \mapsto a \cdot m \in M, \\
& x \otimes \widetilde{z} \in X \otimes_{A} \widetilde{X} \mapsto_{A}\langle x, z\rangle \in A, \\
& \widetilde{x} \otimes z \in \widetilde{X} \otimes_{A} X \mapsto\langle x, z\rangle_{A} \in A .
\end{aligned}
$$

Hence

$$
x \otimes m_{2} \otimes\left[\left(\sum_{k} \tilde{n}_{k} \otimes \widetilde{z_{k}} \otimes l_{k}\right)^{\natural}\right]^{\sim}=\widetilde{x}^{\natural} \otimes m_{2} \otimes \sum_{k} \tilde{n}_{k} \otimes z_{k} \otimes l_{k} .
$$

It follows that

$$
\left\|x \otimes(\widetilde{\Psi})^{-1}\left(m_{2} \otimes y^{\natural}\right)-\widetilde{x}^{\natural} \otimes \Psi^{-1}\left(m_{2} \otimes y\right)\right\| \leqslant 2\|x\|\left\|m_{2}\right\| \varepsilon .
$$

Since ε is arbitrary, we can see that $x \otimes(\widetilde{\Psi})^{-1}\left(m_{2} \otimes y^{\natural}\right)=\widetilde{x}^{\natural} \otimes \Psi^{-1}\left(m_{2} \otimes y\right)$ and that

$$
\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right] \cdot\left[\begin{array}{cc}
b & y \\
\widetilde{y}^{\natural} & b
\end{array}\right] \in C_{M} .
$$

Before we define a left C_{X}-valued inner product and a right C_{Y}-valued inner product on C_{M}, we define a conjugate linear map on C_{M},

$$
\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right] \in C_{M} \mapsto\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right]^{\sim} \in C_{M}
$$

by

$$
\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right]^{\sim}=\left[\begin{array}{cc}
\widetilde{m}_{1} & \left(\widetilde{x}^{\natural} \otimes m_{2}\right)^{\sim} \\
\left(x \otimes m_{2}\right)^{\sim} & \widetilde{m}_{1}
\end{array}\right]
$$

for any $m_{1}, m_{2} \in M, x \in X$. Since we identify $\widetilde{X \otimes_{A} M}$ and $\widetilde{X \otimes_{A} M}$ with $\widetilde{M} \otimes_{A} \widetilde{X}$ and $\widetilde{M} \otimes_{A} X$ by Lemma 5.1, respectively, we obtain that

$$
\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right]^{\sim}=\left[\begin{array}{cc}
\widetilde{m}_{1} & \widetilde{m}_{2} \otimes x^{\natural} \\
\widetilde{m}_{2} \otimes \widetilde{x} & \widetilde{m}_{1}
\end{array}\right] .
$$

We define the left C_{X}-valued inner product on C_{M} by

$$
\begin{aligned}
& C_{X}\left\langle\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} & \otimes m_{2} \\
m_{1}
\end{array}\right],\left[\begin{array}{cc}
n_{1} & z \otimes n_{2} \\
\widetilde{z}^{\natural} \otimes n_{2} & n_{1}
\end{array}\right]\right\rangle \\
&=\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right] \cdot\left[\begin{array}{cc}
n_{1} & z \otimes n_{2} \\
\widetilde{z}^{\natural} \otimes n_{2} & n_{1}
\end{array}\right] \\
&=\left[\begin{array}{cc}
{ }_{A}\left\langle m_{1}, n_{1}\right\rangle+{ }_{A}\left\langle x \cdot{ }_{A}\left\langle m_{2}, n_{2}\right\rangle, z\right\rangle & { }_{A}\left\langle m_{1}, n_{2}\right\rangle, \cdot z^{\natural}+x \cdot{ }_{A}\left\langle m_{2}, n_{1}\right\rangle \\
\widetilde{x}^{\natural} \cdot{ }_{A}\left\langle m_{2}, n_{1}\right\rangle+{ }_{A}\left\langle m_{1}, n_{2}\right\rangle \cdot \widetilde{z} & A\left\langle x \cdot{ }_{A}\left\langle m_{2}, n_{2}\right\rangle, z\right\rangle+{ }_{A}\left\langle m_{1}, n_{1}\right\rangle
\end{array}\right]
\end{aligned}
$$

for any $m_{1}, m_{2}, n_{1}, n_{2} \in M, x, z \in X$, where we regard the tensor product as a product in C_{M} in the formal manner and identify in the same way as above. Similarly, we define the right C_{Y}-valued inner product on C_{M} by

$$
\begin{aligned}
& \left\langle\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} & \otimes m_{2} \\
m_{1}
\end{array}\right],\left[\begin{array}{cc}
n_{1} & z \otimes n_{2} \\
\widetilde{z}^{\natural} \otimes n_{2} & n_{1}
\end{array}\right]\right\rangle_{C_{Y}} \\
& \quad=\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right]^{\sim} \cdot\left[\begin{array}{cc}
n_{1} & z \otimes n_{2} \\
\widetilde{z}^{\natural} \otimes n_{2} & n_{1}
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
\left\langle m_{1}, n_{1}\right\rangle_{B}+\left\langle m_{2},\langle x, z\rangle_{A} \cdot n_{2}\right\rangle_{B} & \widetilde{m}_{1} \otimes \Psi\left(z \otimes n_{2}\right)+\widetilde{m}_{2} \otimes \Psi\left(x^{\natural} \otimes n_{1}\right) \\
\widetilde{m}_{2} \otimes \widetilde{\Psi}\left(\widetilde{x} \otimes n_{1}\right)+\widetilde{m}_{1} \otimes \widetilde{\Psi}\left(\widetilde{z}^{\natural} \otimes n_{2}\right) & \left\langle m_{2},\langle x, z\rangle_{A} \cdot n_{2}\right\rangle_{B}+\left\langle m_{1}, n_{1}\right\rangle_{B}
\end{array}\right]
\end{aligned}
$$

for any $m_{1}, m_{2}, n_{1}, n_{2} \in M, x, z \in X$, where we regard the tensor product as a product in C_{M} in the formal manner, identifying in the same way as above and by the isomorphisms Ψ and $\widetilde{\Psi}$. Here, we have to show that the value of the above inner product on C_{M} exists in C_{M}. Indeed, by routine computations,

$$
\begin{gathered}
\widetilde{m}_{1} \otimes \Psi\left(z \otimes n_{2}\right)=\sum_{i} \widetilde{m}_{1} \otimes u_{i} \otimes \Phi\left(\widetilde{u}_{i} \otimes z \otimes n_{2}\right)=\Phi\left(\widetilde{m}_{1} \otimes z \otimes n_{2}\right) \in Y \\
\widetilde{m}_{2} \otimes \Psi\left(x^{\natural} \otimes n_{1}\right)=\Phi\left(\widetilde{m}_{2} \otimes x^{\natural} \otimes n_{1}\right) \in Y .
\end{gathered}
$$

Also,

$$
\begin{gathered}
\widetilde{m}_{2} \otimes \widetilde{\Psi}\left(\widetilde{x} \otimes n_{1}\right)=\sum_{i} \widetilde{m}_{2} \otimes u_{i} \otimes \widetilde{\Phi}\left(\widetilde{u}_{i} \otimes \widetilde{x} \otimes n_{1}\right)=\Phi\left(\widetilde{n}_{1} \otimes x \otimes m_{2}\right)^{\sim} \in \widetilde{Y}, \\
\widetilde{n}_{1} \otimes \widetilde{\Psi}\left(\widetilde{z}^{\natural} \otimes n_{2}\right)=\sum_{i} \widetilde{m}_{1} \otimes u_{i} \otimes \widetilde{\Phi}\left(\widetilde{u}_{i} \otimes \widetilde{z}^{\natural} \otimes n_{2}\right)=\sum_{i} \Phi\left(\widetilde{n}_{2} \otimes z^{\natural} \otimes m_{1}\right)^{\sim} \in \widetilde{Y} .
\end{gathered}
$$

Thus

$$
\begin{aligned}
{\left[\widetilde{m}_{2} \otimes \widetilde{\Psi}\left(\widetilde{x} \otimes n_{1}\right)+\widetilde{n}_{1} \otimes \widetilde{\Psi}\left(\widetilde{z}^{\natural} \otimes n_{2}\right)\right]^{\natural} } & =\Phi\left(\widetilde{n}_{1} \otimes x \otimes m_{2}\right)^{\natural}+\Phi\left(\widetilde{n}_{2} \otimes z^{\natural} \otimes m_{1}\right)^{\natural} \\
& =\Phi\left(\widetilde{m}_{2} \otimes x^{\natural} \otimes n_{1}\right)+\Phi\left(\widetilde{m}_{1} \otimes z \otimes n_{2}\right) \\
& =\widetilde{m}_{1} \otimes \Psi(z \otimes x)+\widetilde{m}_{2} \otimes \Psi\left(x^{\natural} \otimes n_{1}\right) .
\end{aligned}
$$

Hence

$$
\left\langle\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right],\left[\begin{array}{cc}
n_{1} & z \otimes n_{2} \\
\widetilde{z}^{\natural} \otimes n_{2} & n_{1}
\end{array}\right]\right\rangle_{C_{Y}} \in C_{Y} .
$$

By the above definitions, C_{M} has the left C_{X} - and the right C_{Y}-actions and the left C_{X}-valued and the right C_{Y}-valued inner products.

Let C_{M}^{1} be the linear span of the set

$$
C_{M}^{Y}=\left\{\left[\begin{array}{cc}
m_{1} & m_{2} \otimes y \\
m_{2} \otimes \widetilde{y}^{\natural} & m_{1}
\end{array}\right]: m_{1}, m_{2} \in M, y \in Y\right\} .
$$

In the similar way to the above, we define a left C_{X} - and a right C_{Y}-actions on C_{M}^{1} and a left C_{X}-valued and a right C_{Y}-valued inner products. But identifying $X \otimes_{A} M$ and $\widetilde{X} \otimes_{A} M$ with $M \otimes_{B} Y$ and $M \otimes_{B} \widetilde{Y}$ by Ψ and $\widetilde{\Psi}$, respectively, we can see that each of them coincides with the other by routine computations. Hence, we obtain the following lemma:

Lemma 5.12. With the above notation, C_{M} is a $C_{X}-C_{Y}$-equivalence bimodule.
Proof. By the definitions of the left C_{X}-action and the left C_{X}-valued inner product on C_{M}, we can see that Conditions (a)-(d) in [6], Proposition 1.12 hold. By the definitions of the right C_{Y}-action and the right C_{Y}-valued inner product on C_{M}, we can also see that the similar conditions to Conditions (a)-(d) in [6], Proposition 1.12 hold. Furthermore, we can easily see that the associativity of the left C_{X}-valued inner product and the right C_{Y}-valued inner product hold. Since M is an $A-B$-equivalence bimodule, there are finite subsets $\left\{u_{i}\right\}_{i=1}^{n}$ and $\left\{v_{j}\right\}_{j=1}^{m}$ of M such that

$$
\sum_{i=1}^{n}{ }_{A}\left\langle u_{i}, u_{i}\right\rangle=1, \quad \sum_{j=1}^{m}\left\langle v_{j}, v_{j}\right\rangle_{B}=1 .
$$

Let $U_{i}=\left[\begin{array}{cc}u_{i} & 0 \\ 0 & u_{i}\end{array}\right]$ for any i and let $V_{j}=\left[\begin{array}{cc}v_{j} & 0 \\ 0 & v_{j}\end{array}\right]$ for any j. Then $\left\{U_{i}\right\}$ and $\left\{V_{j}\right\}$ are finite subsets of C_{M} and

$$
\sum_{i=1}^{n}{ }_{C X}\left\langle U_{i}, U_{i}\right\rangle=\sum_{i=1}^{n}\left[\begin{array}{cc}
u_{i} & 0 \\
0 & u_{i}
\end{array}\right]\left[\begin{array}{cc}
\widetilde{u}_{i} & 0 \\
0 & \widetilde{u}_{i}
\end{array}\right]=\sum_{i=1}^{n}\left[\begin{array}{cc}
A & \left\langle u_{i}, u_{i}\right\rangle \\
0 & 0 \\
A\left\langle u_{i}, u_{i}\right\rangle
\end{array}\right]=1_{C_{X}} .
$$

Similarly, $\sum_{j=1}^{m}\left\langle V_{j}, V_{j}\right\rangle_{C_{Y}}=1_{C_{Y}}$. Thus, since the associativity of the left C_{X}-valued inner product and the right C_{Y}-valued inner product on C_{M} holds, we can see that $\left\{U_{i}\right\}$ and $\left\{V_{j}\right\}$ are a right C_{Y}-basis and a left C_{X}-basis of C_{M}, respectively. Hence by [6], Proposition 1.12, C_{M} is a $C_{X}-C_{Y}$-equivalence bimodule.

Lemma 5.13. Let A and B be unital C^{*}-algebras. Let X and Y be an involutive Hilbert $A-A$-bimodule and an involutive Hilbert $B-B$-bimodule, respectively. Let $\mathcal{A}_{X}=\left\{A_{t}\right\}_{t \in \mathbf{Z}_{2}}$ and $\mathcal{A}_{Y}=\left\{B_{t}\right\}_{t \in \mathbf{Z}_{2}}$ be C^{*}-algebraic bundles over \mathbf{Z}_{2} induced by X and Y, respectively. We suppose that there is an $A-B$-equivalence bimodule M such that

$$
Y \cong \widetilde{M} \otimes_{A} X \otimes_{A} M
$$

as involutive Hilbert $B-B$-bimodules. Then there is an $\mathcal{A}_{X}-\mathcal{A}_{Y}$-equivalence bundle $\mathcal{M}=\left\{M_{t}\right\}_{t \in \mathbf{Z}_{2}}$ over \mathbf{Z}_{2} such that

$$
{ }_{C}\left\langle M_{t}, M_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle M_{t}, M_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in \mathbf{Z}_{2}$, where $C=A \oplus X$ and $D=B \oplus Y$.
Proof. Let C_{M} be the $C_{X}-C_{Y}$-equivalence bimodule induced by M, which is defined in the above. We identify $M \oplus\left(X \otimes_{A} M\right)$ with C_{M} as vector spaces over \mathbf{C} by the isomorphism defined by

$$
m_{1} \oplus\left(x \otimes m_{2}\right) \in M \oplus\left(X \otimes_{A} M\right) \mapsto\left[\begin{array}{cc}
m_{1} & x \otimes m_{2} \\
\widetilde{x}^{\natural} \otimes m_{2} & m_{1}
\end{array}\right] \in C_{M} .
$$

Since we identify $C=A \oplus X$ and $D=B \oplus Y$ with C_{X} and C_{Y}, respectively, $M \oplus$ $\left(X \otimes_{A} M\right)$ is a $C-D$-equivalence bimodule by above identifications and Lemma 5.12. Let $M_{0}=M$ and $M_{1}=X \otimes_{A} M$. We note that $X \otimes_{A} M$ is identified with $M \otimes_{B} Y$ by the Hilbert $A-B$-bimodule isomorphism Ψ. Let $\mathcal{M}=\left\{M_{t}\right\}_{t \in \mathbf{Z}_{2}}$. Then by routine computations, \mathcal{M} is an $\mathcal{A}_{X}-\mathcal{A}_{Y}$-equivalence bundle over \mathbf{Z}_{2} such that

$$
{ }_{C}\left\langle M_{t}, M_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle M_{t}, M_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in \mathbf{Z}_{2}$.

Proposition 5.14. Let A and B be unital C^{*}-algebras. Let X and Y be an involutive Hilbert $A-A$-bimodule and an involutive Hilbert $B-B$-bimodule, respectively. Let $\mathcal{A}_{X}=\left\{A_{t}\right\}_{t \in \mathbf{Z}_{2}}$ and $\mathcal{A}_{Y}=\left\{B_{t}\right\}_{t \in \mathbf{Z}_{2}}$ be the C^{*}-algebraic bundles over \mathbf{Z}_{2} induced by X and Y, respectively. Then the following conditions are equivalent:
(1) There is an $\mathcal{A}_{X}-\mathcal{A}_{Y}$-equivalence bundle $\mathcal{M}=\left\{M_{t}\right\}_{t \in \mathbf{Z}_{2}}$ over \mathbf{Z}_{2} such that

$$
{ }_{C}\left\langle M_{t}, M_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle M_{t}, M_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in \mathbf{Z}_{2}$, where $C=A \oplus X$ and $D=B \oplus Y$.
(2) There is an $A-B$-equivalence bimodule M such that

$$
Y \cong \widetilde{M} \otimes_{A} X \otimes_{A} M
$$

as involutive Hilbert $B-B$-bimodules.
Proof. This is immediate by Lemmas 5.11 and 5.13.

Theorem 5.15. Let A and B be unital C^{*}-algebras. Let X and Y be an involutive Hilbert $A-A$-bimodule and an involutive Hilbert $B-B$-bimodule, respectively. Let $A \subset C_{X}$ and $B \subset C_{Y}$ be the unital inclusions of unital C^{*}-algebras induced by X and Y, respectively. Then the following hold:
(1) If there is an $A-B$-equivalence bimodule M such that

$$
\widetilde{M} \otimes_{A} X \otimes_{A} M \cong Y
$$

as involutie Hilbert $B-B$-bimodules, then the unital inclusions $A \subset C_{X}$ and $B \subset C_{Y}$ are strongly Morita equivalent.
(2) We suppose that X and Y are full with the both inner products and that $A^{\prime} \cap C_{X}=\mathbf{C} 1$. If the unital inclusions $A \subset C_{X}$ and $B \subset C_{Y}$ are strongly Morita equivalent, then there is an $A-B$-equivalence bimodule M such that

$$
\widetilde{M} \otimes_{A} X \otimes_{A} M \cong Y
$$

as involutive Hilbert $B-B$-bimodules.
Proof. Let $\mathcal{A}_{X}=\left\{A_{t}\right\}_{t \in \mathbf{Z}_{2}}$ and $\mathcal{A}_{Y}=\left\{B_{t}\right\}_{t \in \mathbf{Z}_{2}}$ be the C^{*}-algebraic bundles over \mathbf{Z}_{2} induced by X and Y, respectively. We prove (1). We suppose that there is an $A-B$-equivalence bimodule M such that

$$
\widetilde{M} \otimes_{A} X \otimes_{A} M \cong Y
$$

as involutive Hilbert $B-B$-bimodules. Then by Proposition 5.14, there is an $\mathcal{A}_{X}-\mathcal{A}_{Y}$-equivalence bundle $\mathcal{M}=\left\{M_{t}\right\}_{t \in \mathbf{Z}_{2}}$ over \mathbf{Z}_{2} such that

$$
{ }_{C}\left\langle M_{t}, M_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle M_{t}, M_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in \mathbf{Z}_{2}$, where $C=A \oplus X$ and $D=B \oplus Y$. Hence, by Proposition 2.1, the unital inclusions of unital C^{*}-algebras $A \subset C$ and $B \subset D$ are strongly Morita equivalent. Since we identify $A \subset C$ and $B \subset D$ with $A \subset C_{X}$ and $B \subset C_{Y}$, respectively, $A \subset C_{X}$ and $B \subset C_{Y}$ are strongly Morita equivalent. Next, we prove (2). We suppose that X and Y are full with the both inner products and that $A^{\prime} \cap C_{X}=\mathbf{C} 1$. Also, we suppose that $A \subset C_{X}$ and $B \subset C_{Y}$ are strongly Morita equivalent. Then \mathcal{A}_{X} and \mathcal{A}_{Y} are saturated by Lemma 5.5. Since the identity map $\mathrm{id}_{\mathbf{Z}_{2}}$ is the only automorphism of \mathbf{Z}_{2}, by Theorem 4.6 there is an $\mathcal{A}_{X}-\mathcal{A}_{Y}$-equivalence bundle $\mathcal{M}=\left\{M_{t}\right\}_{t \in \mathbf{Z}_{2}}$ such that

$$
{ }_{C}\left\langle M_{t}, M_{s}\right\rangle=A_{t s^{-1}}, \quad\left\langle M_{t}, M_{s}\right\rangle_{D}=B_{t^{-1} s}
$$

for any $t, s \in \mathbf{Z}$. Hence, from Proposition 5.14, there is an $A-B$-equivalence bimodule M such that

$$
Y \cong \widetilde{M} \otimes_{A} X \otimes_{A} M
$$

as involutive Hilbert $B-B$-bimodules.

References

[1] F. Abadie, D. Ferraro: Equivalence of Fell bundles over groups. J. Oper. Theory 81 (2019), 273-319.
[2] L. G. Brown, P. Green, M. A. Rieffel: Stable isomorphism and strong Morita equivalence of C^{*}-algebras. Pac. J. Math. 71 (1977), 349-363.
zbl MR doi
[3] L. G. Brown, J. A. Mingo, N-T. Shen: Quasi-multipliers and embeddings of Hilbert C^{*}-bimodules. Can. J. Math. 46 (1994), 1150-1174.
zbl MR doi
[4] K. K. Jensen, K. Thomsen: Elements of KK-Theory. Mathematics: Theory \& Applications. Birkhäuser, Basel, 1991.
zbl MR doi
[5] T. Kajiwara, Y. Watatani: Crossed products of Hilbert C^{*}-bimodules by countable discrete groups. Proc. Am. Math. Soc. 126 (1998), 841-851.
zbl MR doi
zbl MR doi
[6] T. Kajiwara, Y. Watatani: Jones index theory by Hilbert C^{*}-bimodules and K-Theory. Trans. Am. Math. Soc. 352 (2000), 3429-3472.
zbl MR doi
[7] K. Kodaka: The Picard groups for unital inclusions of unital C^{*}-algebras. Acta Sci. Math. 86 (2020), 183-207.
zbl MR doi
[8] K. Kodaka, T. Teruya: Involutive equivalence bimodules and inclusions of C^{*}-algebras with Watatani index 2. J. Oper. Theory 57 (2007), 3-18.
zbl MR
[9] K. Kodaka, T. Teruya: A characterization of saturated C^{*}-algebraic bundles over finite groups. J. Aust. Math. Soc. 88 (2010), 363-383.
zbl MR doi
[10] K. Kodaka, T. Teruya: The strong Morita equivalence for inclusions of C^{*}-algebras and conditional expectations for equivalence bimodules. J. Aust. Math. Soc. 105 (2018), 103-144.
[11] K. Kodaka, T. Teruya: Coactions of a finite dimensional C^{*}-Hopf algebra on unital C^{*}-algebras, unital inclusions of unital C^{*}-algebras and the strong Morita equivalence. Stud. Math. 256 (2021), 169-185.
zbl MR doi
[12] M. A. Rieffel: C^{*}-algebras associated with irrational rotations. Pac. J. Math. 93 (1981), 415-429.
[13] Y. Watatani: Index for C^{*}-subalgebras. Mem. Am. Math. Soc. 424 (1990), 117 pages. zbl MR doi
Author's address: Kazunori Kodaka, Department of Mathematical Sciences, Faculty of Science, Ryukyu University, Nishihara-cho, Okinawa, 903-0213, Japan, e-mail: kodaka@ math.u-ryukyu.ac.jp.

