NOTE ON THE HILBERT 2-CLASS FIELD TOWER

Abdelmalek Azizi, Oujda, Mohamed Mahmoud Chems-Eddin, Fez, Abdelkader Zekhnini, Oujda
Received April 27, 2021. Published online January 18, 2022.
Communicated by Clemens Fuchs

Abstract

Let k be a number field with a 2-class group isomorphic to the Klein fourgroup. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields $\mathbb{k}=\mathbb{Q}(\sqrt{d}, \sqrt{-1})$, which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).

Keywords: multiquadratic field; fundamental systems of units; 2-class group; 2-class field tower; capitulation

MSC 2020: 11R11, 11R16, 11R20, 11R27, 11R29, 11R37

1. Introduction

Let k be an algebraic number field and let $\mathbb{C}_{2}(k)$ denote its 2-class group, that is the 2 -Sylow subgroup of the ideal class group $\mathbb{C} \mathbb{L}(k)$ of k. Denote by $k^{(1)}$ the first Hilbert 2-class field of k, that is the maximal abelian unramified extension of k such that the degree $\left[k^{(1)}: k\right]$ is a power of 2 , and by $k^{(2)}$ the Hilbert 2-class field of $k^{(1)}$. Let $G_{k}=\operatorname{Gal}\left(k^{(2)} / k\right)$ be the Galois group of $k^{(2)} / k$ and G_{k}^{\prime} be its derived subgroup. Then it is well known, by class field theory, that $\operatorname{Gal}\left(k^{(1)} / k\right) \simeq \mathbb{C}_{2}(k) \simeq G_{k} / G_{k}^{\prime}$.

The determination of the structure of G_{k} is a classical and difficult open problem of class field theory that is related to many other problems such as the capitulation and the length of the Hilbert 2-class field tower. Actually, our goal in the present paper is to investigate these problems for fields with 2-class groups of type (2,2). Note that if $\mathbb{C L}_{2}(k)$ is of type $(2,2)$, the Hilbert 2-class field tower of k terminates in at most two steps and the structure of G_{k} is based on the capitulation problem in unramified quadratic extensions of k. In fact, G_{k} is isomorphic to one of the groups A, Q_{m}, D_{m} or S_{m}, where A is the Klein four-group, and Q_{m}, D_{m}, or S_{m} denote the
quaternion, dihedral or semidihedral groups, respectively, of order 2^{m}, with $m \geqslant 3$ and $m \geqslant 4$ for S_{m} (cf. [13]).

In this paper, we give a characterization of the capitulation types (see Table 2) using some group properties and as an application, we determine the structure of the second 2-class groups of some special Dirichlet fields $\mathbb{k}=\mathbb{Q}(\sqrt{d}, \sqrt{-1})$.

If k is a number field, we use the following notations:

$$
h_{2}(k): \text { the 2-class number of } k,
$$

$h_{2}(d)$: the 2 -class number of the quadratic field $\mathbb{Q}(\sqrt{d})$,
ε_{d} : the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{d})$,
E_{k} : the unit group of k,
FSU: abbreviation of "fundamental system of units",
$k^{(1)}$: the Hilbert 2-class field of k,
$k^{(2)}$: the Hilbert 2-class field of $k^{(1)}$, G_{k} : the Galois group of $k^{(2)} / k$, k^{+}: the maximal real subfield of k,
$q(k)=\left[E_{k}: \prod_{i} E_{k_{i}}\right]:$ the unit index of k, if k is multiquadratic and k_{i} are the quadratic subfields of k,
$N_{k^{\prime} / k}$: the norm map of an extension k^{\prime} / k.

2. Preliminaries

Let Q_{m}, D_{m}, and S_{m} denote the quaternion, dihedral, and semidihedral groups, respectively, of order 2^{m}, where $m \geqslant 3$ and $m \geqslant 4$ for S_{m}; in addition let A be the Klein four-group. Each of these groups is generated by two elements x and y, and admits the following presentations:

$$
\begin{array}{ll}
x^{2}=y^{2}=1, y^{-1} x y=x & \text { for } A \\
x^{2^{m-2}}=y^{2}=a, a^{2}=1, y^{-1} x y=x^{-1} & \text { for } Q_{m} \\
x^{2^{m-1}}=y^{2}=1, y^{-1} x y=x^{-1} & \text { for } D_{m} \\
x^{2^{m-1}}=y^{2}=1, y^{-1} x y=x^{2^{m-2}-1} & \text { for } S_{m}
\end{array}
$$

We recall some well known properties of 2-groups G_{k} such that G_{k} / G_{k}^{\prime} is of type $(2,2)$, where G_{k}^{\prime} denotes the commutator subgroup of G_{k}. For more details about these properties, we refer the reader to [13], pages 272-273, [7], pages 1467-1469, and [9], Chapter 5.

Let x and y be as above. Note that the commutator subgroup G_{k}^{\prime} of G is always cyclic and $G_{k}^{\prime}=\left\langle x^{2}\right\rangle$. The group G_{k} possesses exactly three subgroups of index 2 , which are,

$$
H_{1}=\langle x\rangle, \quad H_{2}=\left\langle x^{2}, y\right\rangle, \quad H_{3}=\left\langle x^{2}, x y\right\rangle .
$$

Note also that for the two cases Q_{3} and A, each H_{i} is cyclic. For the case D_{m} with $m>3, H_{2}$ and H_{3} are also dihedral. For Q_{m} with $m>3, H_{2}$ and H_{3} are quaternion. Finally for S_{m}, H_{2} is dihedral whereas H_{3} is quaternion. Furthermore, if G_{k} is isomorphic to A (or Q_{3}), then the subgroups H_{i} are cyclic of order 2 (or 4, respectively). If G_{k} is isomorphic to Q_{m} with $m>3, D_{m}$ with $m>3$ or S_{m}, then H_{1} is cyclic and H_{i} / H_{i}^{\prime} is of type $(2,2)$ for $i \in\{2,3\}$, where H_{i}^{\prime} is the commutator subgroup of H_{i}.

Let F_{i} be the subfield of $k^{(2)}$ fixed by H_{i}, where $i \in\{1,2,3\}$. If $k^{(2)} \neq k^{(1)},\left\langle x^{4}\right\rangle$ is the unique subgroup of G_{k}^{\prime} of index 2. Let L (L is defined only if $k^{(2)} \neq k^{(1)}$) be the subfield of $k^{(2)}$ fixed by $\left\langle x^{4}\right\rangle$. Then F_{1}, F_{2} and F_{3} are the three quadratic subextensions of $k^{(1)} / k$ and L is the unique subfield of $k^{(2)}$ such that L / k is a nonabelian Galois extension of degree 8.

Let us recall the definition of Taussky's conditions A and B. Let k^{\prime} be a cyclic unramified extension of a number field k and j denotes the basic homomorphism $j_{k^{\prime} / k}$: $\mathbb{C} \mathbb{L}(k) \rightarrow \mathbb{C} \mathbb{L}\left(k^{\prime}\right)$, induced by the extension of ideals from k to k^{\prime}. Thus, we say:
$\triangleright k^{\prime} / k$ satisfies condition A if and only if $\left|\operatorname{ker}\left(j_{k^{\prime} / k}\right) \cap N_{k^{\prime} / k}\left(\mathbb{C} \mathbb{L}\left(k^{\prime}\right)\right)\right|>1$.
$\triangleright k^{\prime} / k$ satisfies condition B if and only if $\left|\operatorname{ker}\left(j_{k^{\prime} / k}\right) \cap N_{k^{\prime} / k}\left(\mathbb{C L}\left(k^{\prime}\right)\right)\right|=1$.
Set $j_{F_{i} / k}=j_{i}, i=1,2,3$. Then we have:
Theorem 2.1 ([13], Theorem 2).
(1) If $k^{(1)}=k^{(2)}$, then all F_{i} satisfy condition $\mathrm{A},\left|\operatorname{ker}\left(j_{i}\right)\right|=4$ for $i=1,2,3$ and G_{k} is abelian of type $(2,2)$.
(2) If $\operatorname{Gal}(L / k) \simeq Q_{3}$, then all F_{i} satisfy condition A and $\left|\operatorname{ker}\left(j_{i}\right)\right|=2$ for $i=1,2,3$ and $G_{k} \simeq Q_{3}$.
(3) If $\operatorname{Gal}(L / k) \simeq D_{3}$, then F_{2}, F_{3} satisfy condition B and $\left|\operatorname{ker} j_{2}\right|=\left|\operatorname{ker} j_{3}\right|=2$. Furthermore, if F_{1} satisfies condition B, then $\left|\operatorname{ker} j_{1}\right|=2$ and $G_{k} \simeq S_{m}$, if F_{1} satisfies condition A and $\left|\operatorname{ker} j_{1}\right|=2$, then $G_{k} \simeq Q_{m}$. If F_{1} satisfies condition A and $\left|\operatorname{ker} j_{1}\right|=4$, then $G_{k} \simeq D_{m}$.
We summarize these results in Table 1.

$\left\|\operatorname{ker}\left(j_{1}\right)\right\|$	$(\mathrm{A} / \mathrm{B})$	$\left\|\operatorname{ker}\left(j_{2}\right)\right\|$	$(\mathrm{A} / \mathrm{B})$	$\left\|\operatorname{ker}\left(j_{3}\right)\right\|$	$(\mathrm{A} / \mathrm{B})$	G_{k}
4	A	4	A	4	A	$(2,2)$
2	A	2	A	2	A	Q_{3}
4	A	2	B	2	B	$D_{m}, m \geqslant 3$
2	A	2	B	2	B	$Q_{m}, m>3$
2	B	2	B	2	B	$S_{m}, m>3$

Table 1. Capitulation types.
Therefore, one can easily deduce the following remark.

Remark 2.2. The 2-class groups of the three unramified quadratic extensions of k are cyclic if and only if $k^{(1)}=k^{(2)}$ or $k^{(1)} \neq k^{(2)}$ and $G_{k} \simeq Q_{3}$. In the other cases the 2 -class group of only one unramified quadratic extension is cyclic and the others are of type $(2,2)$.

3. Another vision of the capitulation types

Let k be a number field having a 2-class group of type (2,2). Taussky's conditions A and B give a vision of the capitulation types based on the generators of the 2 -class group of k. Therefore, in the case where it is impossible for the 2 -class group of k to be given in terms of its generators, the results quoted in the above section do not give the exact type of capitulation. Let F_{i} / k be a Galois extension for $i=1,2,3$. The next results give another method to deal with this problem without needing the generators of the 2 -class groups of k.

Keep the notations of the previous section. Assume always that F_{i} / k is a Galois extension for $i=1,2,3$. If $h_{2}\left(F_{1}\right) \geqslant 4$, then the situation is schematized in Figure 1.

$$
\begin{gathered}
F_{2}^{(2)}=F_{3}^{(2)}=F_{1}^{(1)}=F_{1}^{(2)}=k^{(2)} \\
F_{2}^{(1)}=F_{3}^{(1)} \\
h_{2}\left(F_{1}\right) / 4
\end{gathered}
$$

Figure 1. The Hilbert 2-class field towers for $h_{2}\left(F_{1}\right) \geqslant 4$.
If $h_{2}\left(F_{1}\right)=2$, then G_{k} is abelian of type $(2,2)$ and the 2 -class group of F_{i} is cyclic for all $i=1,2,3$. Therefore, the situation is schematized as follows (see Figure 2).

Figure 2. The Hilbert 2-class field towers for $h_{2}\left(F_{1}\right)=2$.

Theorem 3.1. Keep the above notations.
(1) Assume $h_{2}\left(F_{1}\right)=4$. If the 2-class group of F_{2} or F_{3} is cyclic, then the 2-class group of F_{i} is cyclic for all $i=1,2,3$. Furthermore, G_{k} is quaternion. Otherwise, G_{k} is dihedral.
(2) Assume now that $h_{2}\left(F_{1}\right)>4$. Then
$\triangleright G_{k}$ is a quaternion group if and only if $G_{F_{2}}$ and $G_{F_{3}}$ are quaternion groups.
$\triangleright G_{k}$ is a dihedral group if and only if $G_{F_{2}}$ and $G_{F_{3}}$ are dihedral groups.
$\triangleright G_{k}$ is a semi-dihedral group if and only if one of the two groups $G_{F_{2}}$ and $G_{F_{3}}$ is quaternion and the other is dihedral.

Proof. (1) If $h_{2}\left(F_{1}\right)=4$, then $\left|G_{k}\right|=8$. Thus Remark 2.2 gives the first item.
(2) Let $i=2,3$. Since $F_{i}^{(2)}=k^{(2)}$, this implies that each $G_{F_{i}}$ is a subgroup of index 2 in G_{k}. Thus the group theoretic properties given in Section 2 complete the proof.

The results of the second item can be summarized in Table 2.

$\left\|\operatorname{ker}\left(j_{1}\right)\right\|$	$\left\|\operatorname{ker}\left(j_{2}\right)\right\|$	$G_{F_{2}}$	$\left\|\operatorname{ker}\left(j_{3}\right)\right\|$	$G_{F_{3}}$	G_{k}
4	2	$(2,2)$	2	$(2,2)$	D_{3}
4	2	D_{m-1}	2	D_{m-1}	$D_{m}, m>3$
2	2	Q_{m-1}	2	Q_{m-1}	$Q_{m}, m>3$
2	2	D_{m-1}	2	Q_{m-1}	$S_{m}, m>3$

Table 2. Capitulation types for the case $h_{2}\left(F_{1}\right)>4$.

4. Applications

Let $d=2 q_{1} q_{2}$, where $q_{1} \equiv q_{2} \equiv-1(\bmod 4)$ are two distinct positive prime integers such that

$$
\left(\frac{2}{q_{j}}\right)=-\left(\frac{2}{q_{k}}\right)=\left(\frac{q_{j}}{q_{k}}\right)=-\left(\frac{q_{k}}{q_{j}}\right)=1, \quad 1 \leqslant j \neq k \leqslant 2 .
$$

Let $\mathbb{k}=\mathbb{Q}(\sqrt{d}, \sqrt{-1})$ be an imaginary bicyclic biquadratic number field, which is called, by Hilbert (see [11]), a special Dirichlet field, and denote by $\mathbb{k}^{(1)}$ the Hilbert 2 -class field of \mathbb{k} and $\mathbb{k}^{(2)}$ the Hilbert 2 -class field of $\mathbb{k}^{(1)}$. Put $G_{\mathbb{k}}=\operatorname{Gal}\left(\mathbb{k}^{(2)} / \mathbb{k}\right)$. By [1], the 2 -class group of \mathbb{k} is of type $(2,2)$. In this section we will apply the results of the above sections to determine the structure of $G_{\mathfrak{k}}$.
4.1. Preliminary results. Let us first collect some results that will be useful in what follows. Let $k_{j}, 1 \leqslant j \leqslant 3$, be the three real quadratic subfields of a biquadratic real number field K_{0} and $\varepsilon_{j}>1$ be the fundamental unit of k_{j}. Since the square of any unit of K_{0} is in the group generated by the ε_{j} 's, $1 \leqslant j \leqslant 3$, then to
determine a fundamental system of units of K_{0} it suffices to determine which of the units in $B:=\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{1} \varepsilon_{2}, \varepsilon_{1} \varepsilon_{3}, \varepsilon_{2} \varepsilon_{3}, \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}\right\}$ are squares in K_{0} (see [14]). Hence, by Dirichlet's unit theorem, a fundamental system of units of K_{0} consists of three positive units chosen among $B^{\prime}:=B \cup\left\{\sqrt{\eta}: \eta \in B\right.$ and $\left.\sqrt{\eta} \in K_{0}\right\}$. We need the two following lemmas.

Lemma $4.1([5])$. Let $d \equiv 1(\bmod 4)$ be a positive square free integer and $\varepsilon_{d}=$ $x+y \sqrt{d}$ be the fundamental unit of $\mathbb{Q}(\sqrt{d})$. Assume $N\left(\varepsilon_{d}\right)=1$, then
(1) $x+1$ and $x-1$ are not squares in \mathbb{N}, i.e., $2 \varepsilon_{d}$ is not a square in $\mathbb{Q}(\sqrt{d})$.
(2) For every prime p dividing d, $p(x+1)$ and $p(x-1)$ are not squares in \mathbb{N}.

In the following lemma, we state a refinement to Lemma 4.1 above.
Lemma 4.2. Let $d \equiv 1(\bmod 4)$ be a positive square free integer and $\varepsilon_{d}=$ $\frac{1}{2}(x+y \sqrt{d})$ the fundamental unit of $\mathbb{Q}(\sqrt{d})$. Assume $N\left(\varepsilon_{d}\right)=1$.
(1) If $d \equiv 1(\bmod 8)$, then both x and y are even.
(2) If $d \equiv 5(\bmod 8)$, then x and y can be either even or odd. Moreover, if x and y are odd, then $x+2$ and $x-2$ are not squares in \mathbb{N}.

Proof. (1) Assume $d \equiv 1(\bmod 8)$. As $N\left(\varepsilon_{d}\right)=1$, then $x^{2}-4=y^{2} d$, hence $x^{2}-4 \equiv y^{2}(\bmod 8)$. On the other hand, if we suppose that x and y are odd, then $x^{2} \equiv y^{2} \equiv 1(\bmod 8)$, but this implies the contradiction $-3 \equiv 1(\bmod 8)$. Thus x and y are even.
(2) Assume $d \equiv 5(\bmod 8)$. To prove the first assertion of (2), it suffices to give examples justifying the existence of the two cases. By the PARI/GP system we have:

d	$d(\bmod 8)$	$N\left(\varepsilon_{d}\right)$	x	y
21	5	1	5	1
69	5	1	25	3
77	5	1	9	1
93	5	1	29	3
133	5	1	173	15
141	5	1	190	16
381	5	1	2030	104
781	5	1	135212398	4838280

For the second assertion, suppose that $x \pm 2=y_{1}^{2}, x \mp 2=d y_{2}^{2}$, then

$$
\varepsilon_{d}=\frac{x+y \sqrt{d}}{2}=\frac{1}{4}\left(y_{2} \sqrt{d}+y_{1}\right)^{2}
$$

This in turn implies that $\sqrt{\varepsilon_{d}} \in \mathbb{Q}(\sqrt{d})$, which is absurd.

Now we state a lemma which is very useful for getting a FSU of a real biquadratic subfield or imaginary triquadratic subfield of $\mathbb{Q}\left(\sqrt{2}, \sqrt{q_{1}}, \sqrt{q_{2}}, \sqrt{-1}\right)$.

Lemma 4.3. Let $q_{1} \equiv 7(\bmod 8)$ and $q_{2} \equiv 3(\bmod 8)$ be two primes such that $\left(q_{2} / q_{1}\right)=-1$.
(1) Let x and y be two integers or semi-integers such that $\varepsilon_{q_{1} q_{2}}=x+y \sqrt{q_{1} q_{2}}$, then (1a) $2 q_{1}(x+1)$ is a square in \mathbb{N},
(1b) $\sqrt{\varepsilon_{q_{1} q_{2}}}=y_{1} \sqrt{q_{1}}+y_{2} \sqrt{q_{2}}$ and $1=q_{1} y_{1}^{2}-q_{2} y_{2}^{2}$ for some integers or semiintegers y_{1} and y_{2} such that $y=2 y_{1} y_{2}$.
(2) Let a and b be two integers such that $\varepsilon_{2 q_{1} q_{2}}=a+b \sqrt{2 q_{1} q_{2}}$. Then we have
(2a) $2 q_{1}(a+1)$ is a square in \mathbb{N},
(2b) $\sqrt{2 \varepsilon_{2 q_{1} q_{2}}}=b_{1} \sqrt{2 q_{1}}+b_{2} \sqrt{q_{2}}$ and $2=2 q_{1} b_{1}^{2}-q_{2} b_{2}^{2}$ for some integers b_{1} and b_{2} such that $b=b_{1} b_{2}$.
(3) Let c and d be two integers such that $\varepsilon_{2 q_{1}}=c+d \sqrt{2 q_{1}}$ and let α and β be two integers such that $\varepsilon_{q_{1}}=\alpha+\beta \sqrt{q_{1}}$. Then we have
(3a) $\sqrt{2 \varepsilon_{q_{1}}}=\beta_{1}+\beta_{2} \sqrt{q_{1}}$ and $2=\beta_{1}^{2}-q_{1} \beta_{2}^{2}$ for some integers β_{1} and β_{2} such that $\beta=\beta_{1} \beta_{2}$,
(3b) $\sqrt{2 \varepsilon_{2 q_{1}}}=d_{1}+d_{2} \sqrt{2 q_{1}}$ and $2=d_{1}^{2}-2 q_{1} d_{2}^{2}$ for some integers d_{1} and d_{2} such that $d=d_{1} d_{2}$.
(4) Let c and d be two integers such that $\varepsilon_{2 q_{2}}=c+d \sqrt{2 q_{2}}$ and let α and β be two integers such that $\varepsilon_{q_{2}}=\alpha+\beta \sqrt{q_{2}}$. Then we have
(4a) $\sqrt{2 \varepsilon_{q_{2}}}=\beta_{1}+\beta_{2} \sqrt{q_{2}}$ and $2=-\beta_{1}^{2}+q_{2} \beta_{2}^{2}$ for some integers β_{1} and β_{2} such that $\beta=\beta_{1} \beta_{2}$,
(4b) $\sqrt{2 \varepsilon_{2 q_{2}}}=d_{1}+d_{2} \sqrt{2 q_{2}}$ and $2=-d_{1}^{2}+2 q_{2} d_{2}^{2}$ for some integers d_{1} and d_{2} such that $d=d_{1} d_{2}$.

Proof. Using Lemmas 4.1 and 4.2, we get the statements of this lemma, for more details see [6].
4.2. Capitulation. Let $q_{1} \equiv q_{2} \equiv-1(\bmod 4)$ be primes. Without loss of generality, we can assume that q_{1} and q_{2} satisfy the conditions

$$
\left(\frac{2}{q_{1}}\right)=-\left(\frac{2}{q_{2}}\right)=\left(\frac{q_{1}}{q_{2}}\right)=-\left(\frac{q_{2}}{q_{1}}\right)=1 .
$$

Then, by [1], the 2-class group of \mathbb{k} is of type (2,2), so denote by $\mathbb{K}_{1}=\mathbb{k}\left(\sqrt{q_{1}}\right)=$ $\mathbb{Q}\left(\sqrt{q_{1}}, \sqrt{2 q_{2}}, \mathrm{i}\right), \mathbb{K}_{2}=\mathbb{k}\left(\sqrt{q_{2}}\right)=\mathbb{Q}\left(\sqrt{q_{2}}, \sqrt{2 q_{1}}, \mathrm{i}\right)$ and $\mathbb{K}_{3}=\mathbb{k}(\sqrt{2})=\mathbb{Q}\left(\sqrt{2}, \sqrt{q_{1} q_{2}}, \mathrm{i}\right)$ the three unramified quadratic extensions, within $\mathfrak{k}_{1}^{(1)}$, of \mathfrak{k}.

Now, we correct the error made in the article [4]. The fundamental systems of units given in [4], Proposition 3.1, for \mathbb{K}_{1}^{+}and \mathbb{K}_{1} are not correct. In fact, the error was committed in the FSU of \mathbb{K}_{1}^{+}, this affected that of \mathbb{K}_{1}, and thus the main theorem.

Proposition 4.4. Let q_{1} and q_{2} be two primes defined as above. Then
(1) A FSU of \mathbb{K}_{1}^{+}is $\left\{\varepsilon_{q_{1}}, \sqrt{\varepsilon_{2 q_{1} q_{2}}}, \sqrt{\varepsilon_{q_{1}} \varepsilon_{2 q_{2}}}\right\}$ and that of \mathbb{K}_{1} is $\left\{\sqrt{\varepsilon_{2 q_{1} q_{2}}}, \sqrt{\varepsilon_{q_{1}} \varepsilon_{2 q_{2}}}\right.$, $\left.\sqrt{i \varepsilon_{2 q_{2}}}\right\}$.
(2) A FSU of \mathbb{K}_{2}^{+}is $\left\{\varepsilon_{2 q_{1} q_{2}}, \sqrt{\varepsilon_{q_{2}} \varepsilon_{2 q_{1} q_{2}}}, \sqrt{\varepsilon_{2 q_{1}} \varepsilon_{2 q_{1} q_{2}}}\right\}$ and that of \mathbb{K}_{2} is $\left\{\sqrt{\varepsilon_{q_{2}} \varepsilon_{2 q_{1} q_{2}}}\right.$, $\left.\sqrt{\varepsilon_{2 q_{1}} \varepsilon_{2 q_{1} q_{2}}}, \sqrt{i \varepsilon_{2 q_{1} q_{2}}}\right\}$.
(3) A FSU of both \mathbb{K}_{3}^{+}and \mathbb{K}_{3} is $\left\{\varepsilon_{2}, \varepsilon_{2 q_{1} q_{2}}, \sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}\right\}$.

Proof. Using Lemma 4.3 and the method described in the beginning of this subsection (page 6), we easily deduce the result for $\mathbb{K}_{i}^{+}, i=1,2,3$ (we proceed as in the proof of [4], Proposition 3.1). Again Lemma 4.3 and [2], Proposition 2, give the result for $\mathbb{K}_{i}, i=1,2,3$.

Denote by $\kappa_{\mathbb{K}_{j}}$ the set of classes of \mathbb{k} capitulating in \mathbb{K}_{j}. Then proceeding as in the proof of [4], Theorem 3.3, we get the following result.

Theorem 4.5. Let $\mathbb{K}_{j}, 1 \leqslant j \leqslant 3$, be the three unramified quadratic extensions of \mathbb{k} defined above. Then $\left|\kappa_{\mathbb{K}_{1}}\right|=\left|\kappa_{\mathbb{K}_{2}}\right|=\left|\kappa_{\mathbb{K}_{3}}\right|=2$.

Lemma 4.6. Keep the above notations and conditions satisfied by q_{1} and q_{2}. Then, the 2 -class group of \mathbb{K}_{2} is cyclic and those of \mathbb{K}_{1} and \mathbb{K}_{3} are of type $(2,2)$.

Proof. Let us compute the class number of \mathbb{K}_{2}. For the values of class numbers of quadratic fields, see [8], [12]. Proposition 4.4 implies that $q\left(\mathbb{K}_{2}\right)=8$, so by the class number formula (cf. [14]) we obtain

$$
\begin{aligned}
h_{2}\left(\mathbb{K}_{2}\right) & =\frac{1}{2^{5}} q\left(\mathbb{K}_{2}\right) h_{2}(-1) h_{2}\left(q_{2}\right) h_{2}\left(-q_{2}\right) h_{2}\left(2 q_{1}\right) h_{2}\left(-2 q_{1}\right) h\left(2 q_{1} q_{2}\right) h_{2}\left(-2 q_{1} q_{2}\right) \\
& =\frac{1}{2^{5}} \cdot 8 \cdot h_{2}\left(-2 q_{1}\right) \cdot 2 \cdot 4 \\
& =2 h_{2}\left(-2 q_{1}\right) .
\end{aligned}
$$

Since, by [8], Corollaries (19.6) and (18.4), $h_{2}\left(-2 q_{1}\right)$ is divisible by 4 , so $h_{2}\left(\mathbb{K}_{2}\right)$ is divisible by 8 . Therefore, the 2 -class group of \mathbb{K}_{2} cannot be of type $(2,2)$. It follows that the 2 -class group of \mathbb{K}_{2} is cyclic and those of \mathbb{K}_{1} and \mathbb{K}_{3} are of type (2,2).

Lemma 4.7 ([6]). Keep the above hypothesis. The Hilbert 2-class field of \mathfrak{k} is $\mathbb{k}^{(1)}=\mathbb{Q}\left(\sqrt{2}, \sqrt{q_{1}}, \sqrt{q_{2}}, \sqrt{-1}\right)$ and we have

$$
\begin{aligned}
& E_{\mathrm{k}(1)}=\left\langle\zeta_{8}, \varepsilon_{2}, \sqrt{\varepsilon_{2 q_{2}}}, \sqrt{\varepsilon_{q_{1} q_{2}}}, \sqrt{\varepsilon_{2 q_{1} q_{2}}}, \sqrt[4]{\varepsilon_{q_{1}} \varepsilon_{q_{2}} \varepsilon_{2 q_{2}} \varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}},\right. \\
&\left.\sqrt[4]{\varepsilon_{2}^{2} \varepsilon_{2 q_{1}} \varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}, \sqrt[4]{\zeta_{8}^{2} \varepsilon_{2}^{2} \varepsilon_{q_{1}} \varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}\right\rangle
\end{aligned}
$$

Lemma 4.8. Keep the above hypothesis. We have:

$$
\begin{aligned}
N_{\mathfrak{k}^{(1)} / \mathbb{K}_{1}}\left(\varepsilon_{2}\right) & =-1, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt{\varepsilon_{2 q_{2}}}\right) & =-\varepsilon_{2 q_{2}}, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt{\varepsilon_{q_{1} q_{2}}}\right) & =1, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt{\varepsilon_{2 q_{1} q_{2}}}\right) & =\varepsilon_{2 q_{1} q_{2}}, \\
N_{\mathrm{kk}^{(1)} / \mathbb{K}_{1}}\left(\zeta_{8}\right) & =-\mathrm{i}, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt[4]{\varepsilon_{q_{1}} \varepsilon_{q_{2}} \varepsilon_{2 q_{2}} \varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}\right) & = \pm \sqrt{\varepsilon_{q_{1}} \varepsilon_{2 q_{2}}} \sqrt{\varepsilon_{2 q_{1} q_{2}}}, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt[4]{\varepsilon_{2}^{2} \varepsilon_{2 q_{1}} \varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}\right) & = \pm \sqrt{\varepsilon_{2 q_{1} q_{2}}}, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt[4]{\zeta_{8}^{2} \varepsilon_{2}^{2} \varepsilon_{q_{1}} \varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}\right) & = \pm \mathrm{i} \sqrt{\mathrm{i} \varepsilon_{q_{1}}} \sqrt{\varepsilon_{2 q_{1} q_{2}}} .
\end{aligned}
$$

If $q_{2}=3$, we have $N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\zeta_{6}\right)=1$.
Proof. Assume that $q_{1} \equiv 7(\bmod 8), q_{2} \equiv 3(\bmod 8)$ and $\left(q_{2} / q_{1}\right)=-1$. By the relations given in Lemma 4.3, we have

$$
\begin{aligned}
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\varepsilon_{2}\right) & =(1+\sqrt{2})(1-\sqrt{2})=-1, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt{\varepsilon_{2 q_{2}}}\right) & =\frac{1}{\sqrt{2}}\left(d_{1}+d_{2} \sqrt{2 q_{2}}\right) \frac{1}{-\sqrt{2}}\left(d_{1}+d_{2} \sqrt{2 q_{2}}\right)=-\varepsilon_{2 q_{2}}, \\
N_{\mathfrak{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt{\varepsilon_{q_{1} q_{2}}}\right) & =\left(y_{1} \sqrt{q_{1}}+y_{2} \sqrt{q_{2}}\right)\left(y_{1} \sqrt{q_{1}}-y_{2} \sqrt{q_{2}}\right)=y_{1}^{2} q_{1}-y_{2}^{2} q_{2}=1, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt{\varepsilon_{2 q_{1} q_{2}}}\right) & =\frac{1}{\sqrt{2}}\left(b_{1} \sqrt{2 q_{1}}+b_{2} \sqrt{q_{2}}\right) \frac{1}{-\sqrt{2}}\left(-b_{1} \sqrt{2 q_{1}}-b_{2} \sqrt{q_{2}}\right)=\varepsilon_{2 q_{1} q_{2}}, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt{\varepsilon_{q_{1}}}\right) & =\frac{1}{\sqrt{2}}\left(\beta_{1}+\beta_{2} \sqrt{q_{1}}\right) \frac{1}{-\sqrt{2}}\left(\beta_{1}+\beta_{2} \sqrt{q_{1}}\right)=-\varepsilon_{q_{1}}, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt{\varepsilon_{2 q_{1}}}\right) & =\frac{1}{\sqrt{2}}\left(d_{1}+d_{2} \sqrt{2 q_{1}}\right) \frac{1}{-\sqrt{2}}\left(d_{1}-d_{2} \sqrt{2 q_{2}}\right)=-1, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt{\varepsilon_{q_{2}}}\right) & =\frac{1}{\sqrt{2}}\left(\beta_{1}+\beta_{2} \sqrt{q_{2}}\right) \frac{1}{-\sqrt{2}}\left(\beta_{1}-\beta_{2} \sqrt{q_{2}}\right)=1, \\
N_{\mathfrak{k}^{(1)} / \mathbb{K}_{1}}\left(\zeta_{8}\right) & =N_{\mathfrak{k}^{(1)} / \mathbb{K}_{1}}\left(\frac{1+\mathrm{i}}{-\sqrt{2}}\right)=-\zeta_{8}^{2}=-\mathrm{i} .
\end{aligned}
$$

So we have

$$
N_{\mathrm{k}^{(1)} / \mathbb{K}_{1}}\left(\sqrt{\varepsilon_{q_{1}} \varepsilon_{q_{2}} \varepsilon_{2 q_{2}} \varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}\right)=\left(-\varepsilon_{q_{1}}\right) \cdot 1 \cdot\left(-\varepsilon_{2 q_{2}}\right) \cdot 1 \cdot \varepsilon_{2 q_{1} q_{2}}=\varepsilon_{q_{1}} \varepsilon_{2 q_{2}} \varepsilon_{2 q_{1} q_{2}}
$$

Then $N_{\mathfrak{k}(1)} / \mathbb{K}_{1}\left(\sqrt[4]{\varepsilon_{q_{1}} \varepsilon_{q_{2}} \varepsilon_{2 q_{2}} \varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}\right)= \pm \sqrt{\varepsilon_{q_{1}} \varepsilon_{2 q_{2}}} \sqrt{\varepsilon_{2 q_{1} q_{2}}}$. We similarly get the rest.

Lemma 4.9. Keep the above hypothesis. We have:

$$
\begin{aligned}
N_{\mathrm{k}^{(1)} / \mathbb{K}_{3}}\left(\varepsilon_{2}\right) & =\varepsilon_{2}^{2}, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{3}}\left(\sqrt{\varepsilon_{2 q_{2}}}\right) & =-1, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{3}}\left(\sqrt{\varepsilon_{q_{1} q_{2}}}\right) & =-\varepsilon_{q_{1} q_{2}}, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{3}}\left(\sqrt{\varepsilon_{2 q_{1} q_{2}}}\right) & =-\varepsilon_{2 q_{1} q_{2}}, \\
N_{\mathrm{kk}^{(1)} / \mathbb{K}_{3}}\left(\zeta_{8}\right) & =\mathrm{i}, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{3}}\left(\sqrt[4]{\varepsilon_{q_{1}} \varepsilon_{q_{2}} \varepsilon_{2 q_{2}} \varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}\right) & = \pm \sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{3}}\left(\sqrt[4]{\varepsilon_{2}^{2} \varepsilon_{2 q_{1}} \varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}\right) & = \pm \varepsilon_{2} \sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}, \\
N_{\mathrm{k}^{(1)} / \mathbb{K}_{3}}\left(\sqrt[4]{\zeta_{8}^{2} \varepsilon_{2}^{2} \varepsilon_{q_{1}} \varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}}\right) & = \pm \zeta_{8} \varepsilon_{2} \sqrt{\varepsilon_{q_{1} q_{2}} \varepsilon_{2 q_{1} q_{2}}} .
\end{aligned}
$$

If $q_{2}=3$, we have $N_{\mathrm{k}^{(1)} / \mathbb{K}_{3}}\left(\zeta_{6}\right)=1$.
Proof. The proof is similar to that of Lemma 4.8.
From the two above lemmas, Proposition 4.4 and [10] we have:
Corollary 4.10. Keep the above hypothesis. We have:
(1) The number of classes of \mathbb{K}_{1} which capitulate in $\mathbb{K}^{(1)}$ is

$$
\left[\mathbb{k}^{(1)}: \mathbb{K}_{1}\right]\left[E_{\mathbb{K}_{1}}: N_{\mathfrak{k}^{(1)} / \mathbb{K}_{1}}\left(E_{\mathfrak{k}^{(1)}}\right)\right]=2 \cdot 1=2 .
$$

(2) The number of classes of \mathbb{K}_{3} which capitulate in $\mathbb{K}^{(1)}$ is

$$
\left[\mathbb{k}^{(1)}: \mathbb{K}_{3}\right]\left[E_{\mathbb{K}_{3}}: N_{\mathfrak{k}^{(1)} / \mathbb{K}_{3}}\left(E_{\mathbb{k}^{(1)}}\right)\right]=2 \cdot 1=2 .
$$

4.3. Main theorem. We can now state the main result of this section.

Theorem 4.11. Let $q_{1} \equiv q_{2} \equiv-1(\bmod 4)$ be two distinct prime integers such that

$$
\left(\frac{2}{q_{j}}\right)=-\left(\frac{2}{q_{k}}\right)=\left(\frac{q_{j}}{q_{k}}\right)=-\left(\frac{q_{k}}{q_{j}}\right)=1
$$

$1 \leqslant j \neq k \leqslant 2$. Put $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 q_{1} q_{2}}, \mathrm{i}\right)$. Note that $\mathbb{K}_{j}=\mathbb{k}\left(\sqrt{q_{j}}\right)=\mathbb{Q}\left(\sqrt{q_{j}}, \sqrt{2 q_{k}}, \mathrm{i}\right)$, $\mathbb{K}_{k}=\mathbb{k}\left(\sqrt{q_{k}}\right)=\mathbb{Q}\left(\sqrt{q_{k}}, \sqrt{2 q_{j}}, \mathrm{i}\right)$ and $\mathbb{K}_{3}=\mathbb{k}(\sqrt{2})=\mathbb{Q}\left(\sqrt{2}, \sqrt{q_{1} q_{2}}, \mathrm{i}\right)$ are three unramified quadratic extensions of \mathfrak{k}. Let $m \geqslant 2$ such that $2^{m}=h_{2}\left(-2 q_{j}\right)$. Then the 2-class field tower of \mathfrak{k} stops at $\mathbb{k}^{(2)}$ with $\mathbb{k}^{(1)} \neq \mathbb{k}^{(2)}$ and

$$
G_{\mathbb{K}_{j}} \simeq G_{\mathbb{K}_{3}} \simeq Q_{m+1}, \quad G_{\mathfrak{k}} \simeq Q_{m+2} \quad \text { and } \quad G_{\mathbb{K}_{k}} \simeq \mathbb{Z} / 2^{m+1} \mathbb{Z}
$$

Proof. Recall that $G_{k}=\operatorname{Gal}\left(\mathbb{K}^{(2)} / \mathbb{k}\right)$, where $\mathbb{k}^{(2)}$ is the second Hilbert 2-class field of \mathfrak{k}. Without loss of generality, we may suppose that the primes q_{1} and q_{2} satisfy

$$
q_{1} \equiv q_{2} \equiv-1(\bmod 4) \quad \text { and } \quad\left(\frac{2}{q_{1}}\right)=-\left(\frac{2}{q_{2}}\right)=\left(\frac{q_{1}}{q_{2}}\right)=-\left(\frac{q_{2}}{q_{1}}\right)=1 .
$$

As the 2 -class group $\mathbb{C}_{2}(\mathbb{k})$ of \mathbb{k} is of type $(2,2)$, then $G_{\mathfrak{k}} / G_{k}^{\prime} \simeq(2,2)$. On the other hand, by Theorem 4.5 , there are exactly two classes of $\mathbb{C}_{2}(\mathbb{k})$ which capitulate in each extension $\mathbb{K}_{j}, 1 \leqslant j \leqslant 3$, so Theorem 2.1 implies that $G_{\mathfrak{k}}$ is quaternion or semidihedral and the class field tower of \mathfrak{k} stops at $\mathbb{k}^{(2)}$ with $\mathbb{k}^{(1)} \neq \mathbb{k}^{(2)}$; and thus, again by Theorem 2.1, one of the three quadratic extensions of \mathfrak{k} has cyclic 2-class group and the two others have 2 -class groups of type $(2,2)$ which is already proved in Lemma 4.6. The 2 -class groups of \mathbb{K}_{1} and \mathbb{K}_{3} are of type (2,2). They are both sub-extensions of $\mathbb{k}^{(1)}$ which has a cyclic 2-class group (since $G_{\mathfrak{k}}^{\prime} \simeq \operatorname{Gal}\left(\mathbb{k}^{(2)} / \mathbb{k}^{(1)}\right) \simeq \mathbb{C}_{2}\left(\mathbb{K}^{(1)}\right)$ is a cyclic group), and there are exactly two classes in \mathbb{K}_{1} and \mathbb{K}_{3} capitulating in $\mathbb{K}^{(1)}$ (Corollary 4.10), so neither $G_{\nwarrow_{1}}$ nor $G_{\nwarrow_{3}}$ is dihedral. Hence the result comes by Table 2.

Remark 4.12. At the first step in the above proof, we showed that G_{k} is quaternion or semidihedral. Note that it is impossible to decide whether G_{k} is quaternion or semidihedral by using the usual method given by Kisilevsky (by determining whether $\mathbb{K}_{i} / \mathbb{k}$ is of type A or $\left.\mathrm{B}, i=1,3\right)$. In fact, it is hard to determine the generators of the 2-class groups. For this reason the authors of [3] couldn't decide whether G_{k} is quaternion or semidihedral with $k=\mathbb{Q}(\sqrt{-2}, \sqrt{p q})$ for two primes $p \equiv 5(\bmod 8)$ and $q \equiv 7(\bmod 8)($ see $[3]$, Corollary 17$)$. Using the same techniques described in the general context in Section 3, we gave the answer in [7], Remark 5.7.

Acknowledgement. We are very grateful to the unknown referee for his/her several helpful suggestions, that enabled us to improve our paper, and for calling our attention to some missing details.

References

[1] A. Azizi: Sur le 2-groupe de classes d'idéaux de $\mathbb{Q}(\sqrt{d}, i)$. Rend. Circ. Mat. Palermo, II. Ser. 48 (1999), 71-92. (In French.)
zbl MR doi
[2] A. Azizi: Unités de certains corps de nombres imaginaires et abéliens sur \mathbb{Q}. Ann. Sci. Math. Qué. 23 (1999), 15-21. (In French.)
zbl MR
[3] A. Azizi, I. Benhamza: Sur la capitulation des 2-classes d’idéaux de $\mathbb{Q}(\sqrt{d}, \sqrt{-2})$. Ann. Sci. Math. Qué. 29 (2005), 1-20. (In French.)
[4] A. Azizi, A. Zekhnini: The structure of the second 2-class group of some special Dirichlet fields. Asian-Eur. J. Math. 13 (2020), Article ID 2050053, 6 pages.
[5] A. Azizi, A. Zekhnini, M. Taous: The generators of the 2-class group of some field $\mathbb{Q}\left(\sqrt{p q_{1} q_{2}, i}\right)$: Correction to Theorem 3 of [5]. Int. J. Pure Appl. Math. 103 (2015), 99-107.
[6] M. M. Chems-Eddin, A. Azizi, A. Zekhnini: Unit groups and Iwasawa lambda invariants of some multiquadratic number fields. Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 24, 16 pages.
zbl MR doi
[7] M. M. Chems-Eddin, A. Zekhnini, A. Azizi: Units and 2-class field towers of some multiquadratic number fields. Turk. J. Math. 44 (2020), 1466-1483.
zbl MR doi
[8] P. E. Conner, J. Hurrelbrink: Class Number Parity. Series in Pure Mathematics 8. World Scientific, Singapore, 1988.
[9] D. Gorenstein: Finite Groups. Harper's Series in Modern Mathematics. Harper and Row, New York, 1968.
[10] F.-P. Heider, B. Schmithals: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 366 (1982), 1-25. (In German.) Zbl MR doi
[11] D. Hilbert: U̇ber den Dirichlet'schen biquadratischen Zahlkörper. Math. Ann. 45 (1894), 309-340. (In German.)
zbl MR doi
[12] P. Kaplan: Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. Reine Angew. Math. 283/284 (1976), 313-363. (In French.)
zbl MR doi
[13] H. Kisilevsky: Number fields with class number congruent to $4 \bmod 8$ and Hilbert's Theorem 94. J. Number Theory 8 (1976), 271-279.
zbl MR doi
[14] H. Wada: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209.

zbl MR

Authors' addresses: Abdelmalek Azizi, Department of Mathematics, Faculty of Sciences, Mohammed First University, Oujda, Morocco, e-mail: abdelmalekazizi@yahoo.fr; Mohamed Mahmoud Chems-Eddin, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco, e-mail: 2m. chemseddin @gmail.com; Abdelkader Zekhnini, Department of Mathematics, Faculty of Sciences, Mohammed First University, Oujda, Morocco, e-mail: zekha1@yahoo.fr.

