NOTE ON THE HILBERT 2-CLASS FIELD TOWER

ABDELMALEK AZIZI, Oujda, MOHAMED MAHMOUD CHEMS-EDDIN, Fez, ABDELKADER ZEKHNINI, Oujda

Received April 27, 2021. Published online January 18, 2022. Communicated by Clemens Fuchs

Abstract. Let k be a number field with a 2-class group isomorphic to the Klein fourgroup. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields $\mathbb{k} = \mathbb{Q}(\sqrt{d}, \sqrt{-1})$, which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).

Keywords: multiquadratic field; fundamental systems of units; 2-class group; 2-class field tower; capitulation

MSC 2020: 11R11, 11R16, 11R20, 11R27, 11R29, 11R37

1. INTRODUCTION

Let k be an algebraic number field and let $\mathbb{CL}_2(k)$ denote its 2-class group, that is the 2-Sylow subgroup of the ideal class group $\mathbb{CL}(k)$ of k. Denote by $k^{(1)}$ the first Hilbert 2-class field of k, that is the maximal abelian unramified extension of k such that the degree $[k^{(1)}:k]$ is a power of 2, and by $k^{(2)}$ the Hilbert 2-class field of $k^{(1)}$. Let $G_k = \operatorname{Gal}(k^{(2)}/k)$ be the Galois group of $k^{(2)}/k$ and G'_k be its derived subgroup. Then it is well known, by class field theory, that $\operatorname{Gal}(k^{(1)}/k) \simeq \mathbb{CL}_2(k) \simeq G_k/G'_k$.

The determination of the structure of G_k is a classical and difficult open problem of class field theory that is related to many other problems such as the capitulation and the length of the Hilbert 2-class field tower. Actually, our goal in the present paper is to investigate these problems for fields with 2-class groups of type (2, 2). Note that if $\mathbb{CL}_2(k)$ is of type (2, 2), the Hilbert 2-class field tower of k terminates in at most two steps and the structure of G_k is based on the capitulation problem in unramified quadratic extensions of k. In fact, G_k is isomorphic to one of the groups A, Q_m, D_m or S_m , where A is the Klein four-group, and Q_m, D_m , or S_m denote the

DOI: 10.21136/MB.2022.0056-21

quaternion, dihedral or semidihedral groups, respectively, of order 2^m , with $m \ge 3$ and $m \ge 4$ for S_m (cf. [13]).

In this paper, we give a characterization of the capitulation types (see Table 2) using some group properties and as an application, we determine the structure of the second 2-class groups of some special Dirichlet fields $\mathbb{k} = \mathbb{Q}(\sqrt{d}, \sqrt{-1})$.

If k is a number field, we use the following notations:

- $h_2(k)$: the 2-class number of k,
- $h_2(d)$: the 2-class number of the quadratic field $\mathbb{Q}(\sqrt{d})$,
 - ε_d : the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{d})$,
 - E_k : the unit group of k,
- FSU: abbreviation of "fundamental system of units",
- $k^{(1)}$: the Hilbert 2-class field of k,
- $k^{(2)}$: the Hilbert 2-class field of $k^{(1)}$,
- G_k : the Galois group of $k^{(2)}/k$,
- k^+ : the maximal real subfield of k,

 $q(k) = \left[E_k : \prod_i E_{k_i}\right]$: the unit index of k, if k is multiquadratic and k_i are the quadratic subfields of k,

 $N_{k'/k}$: the norm map of an extension k'/k.

2. Preliminaries

Let Q_m , D_m , and S_m denote the quaternion, dihedral, and semidihedral groups, respectively, of order 2^m , where $m \ge 3$ and $m \ge 4$ for S_m ; in addition let A be the Klein four-group. Each of these groups is generated by two elements x and y, and admits the following presentations:

$$\begin{aligned} x^2 &= y^2 = 1, \ y^{-1}xy = x & \text{for } A, \\ x^{2^{m-2}} &= y^2 = a, \ a^2 = 1, \ y^{-1}xy = x^{-1} & \text{for } Q_m, \\ x^{2^{m-1}} &= y^2 = 1, \ y^{-1}xy = x^{-1} & \text{for } D_m, \\ x^{2^{m-1}} &= y^2 = 1, \ y^{-1}xy = x^{2^{m-2}-1} & \text{for } S_m. \end{aligned}$$

We recall some well known properties of 2-groups G_k such that G_k/G'_k is of type (2,2), where G'_k denotes the commutator subgroup of G_k . For more details about these properties, we refer the reader to [13], pages 272–273, [7], pages 1467–1469, and [9], Chapter 5.

Let x and y be as above. Note that the commutator subgroup G'_k of G is always cyclic and $G'_k = \langle x^2 \rangle$. The group G_k possesses exactly three subgroups of index 2, which are,

$$H_1 = \langle x \rangle, \quad H_2 = \langle x^2, y \rangle, \quad H_3 = \langle x^2, xy \rangle.$$

Note also that for the two cases Q_3 and A, each H_i is cyclic. For the case D_m with m > 3, H_2 and H_3 are also dihedral. For Q_m with m > 3, H_2 and H_3 are quaternion. Finally for S_m , H_2 is dihedral whereas H_3 is quaternion. Furthermore, if G_k is isomorphic to A (or Q_3), then the subgroups H_i are cyclic of order 2 (or 4, respectively). If G_k is isomorphic to Q_m with m > 3, D_m with m > 3 or S_m , then H_1 is cyclic and H_i/H'_i is of type (2, 2) for $i \in \{2, 3\}$, where H'_i is the commutator subgroup of H_i .

Let F_i be the subfield of $k^{(2)}$ fixed by H_i , where $i \in \{1, 2, 3\}$. If $k^{(2)} \neq k^{(1)}$, $\langle x^4 \rangle$ is the unique subgroup of G'_k of index 2. Let L (L is defined only if $k^{(2)} \neq k^{(1)}$) be the subfield of $k^{(2)}$ fixed by $\langle x^4 \rangle$. Then F_1 , F_2 and F_3 are the three quadratic subextensions of $k^{(1)}/k$ and L is the unique subfield of $k^{(2)}$ such that L/k is a nonabelian Galois extension of degree 8.

Let us recall the definition of Taussky's conditions A and B. Let k' be a cyclic unramified extension of a number field k and j denotes the basic homomorphism $j_{k'/k}$: $\mathbb{CL}(k) \to \mathbb{CL}(k')$, induced by the extension of ideals from k to k'. Thus, we say:

 $\triangleright k'/k$ satisfies condition A if and only if $|\ker(j_{k'/k}) \cap N_{k'/k}(\mathbb{CL}(k'))| > 1$.

 $\triangleright k'/k$ satisfies condition B if and only if $|\ker(j_{k'/k}) \cap N_{k'/k}(\mathbb{CL}(k'))| = 1.$

Set $j_{F_i/k} = j_i$, i = 1, 2, 3. Then we have:

Theorem 2.1 ([13], Theorem 2).

- (1) If $k^{(1)} = k^{(2)}$, then all F_i satisfy condition A, $|\ker(j_i)| = 4$ for i = 1, 2, 3 and G_k is abelian of type (2, 2).
- (2) If $\operatorname{Gal}(L/k) \simeq Q_3$, then all F_i satisfy condition A and $|\ker(j_i)| = 2$ for i = 1, 2, 3and $G_k \simeq Q_3$.
- (3) If Gal(L/k) ≃ D₃, then F₂, F₃ satisfy condition B and |kerj₂| = |kerj₃| = 2. Furthermore, if F₁ satisfies condition B, then |kerj₁| = 2 and G_k ≃ S_m, if F₁ satisfies condition A and |kerj₁| = 2, then G_k ≃ Q_m. If F₁ satisfies condition A and |kerj₁| = 4, then G_k ≃ D_m.

$ \ker(j_1) $	(A/B)	$ \ker(j_2) $	(A/B)	$ \ker(j_3) $	(A/B)	G_k
4	А	4	А	4	А	(2, 2)
2	А	2	Α	2	А	Q_3
4	А	2	В	2	В	$D_m, m \ge 3$
2	А	2	В	2	В	$Q_m, m > 3$
2	В	2	В	2	В	$S_m, m > 3$

We summarize these results in Table 1.

Table 1. Capitulation types.

Therefore, one can easily deduce the following remark.

Remark 2.2. The 2-class groups of the three unramified quadratic extensions of k are cyclic if and only if $k^{(1)} = k^{(2)}$ or $k^{(1)} \neq k^{(2)}$ and $G_k \simeq Q_3$. In the other cases the 2-class group of only one unramified quadratic extension is cyclic and the others are of type (2, 2).

3. Another vision of the capitulation types

Let k be a number field having a 2-class group of type (2, 2). Taussky's conditions A and B give a vision of the capitulation types based on the generators of the 2-class group of k. Therefore, in the case where it is impossible for the 2-class group of k to be given in terms of its generators, the results quoted in the above section do not give the exact type of capitulation. Let F_i/k be a Galois extension for i = 1, 2, 3. The next results give another method to deal with this problem without needing the generators of the 2-class groups of k.

Keep the notations of the previous section. Assume always that F_i/k is a Galois extension for i = 1, 2, 3. If $h_2(F_1) \ge 4$, then the situation is schematized in Figure 1.

Figure 1. The Hilbert 2-class field towers for $h_2(F_1) \ge 4$.

If $h_2(F_1) = 2$, then G_k is abelian of type (2, 2) and the 2-class group of F_i is cyclic for all i = 1, 2, 3. Therefore, the situation is schematized as follows (see Figure 2).

Figure 2. The Hilbert 2-class field towers for $h_2(F_1) = 2$.

Theorem 3.1. Keep the above notations.

- (1) Assume $h_2(F_1) = 4$. If the 2-class group of F_2 or F_3 is cyclic, then the 2-class group of F_i is cyclic for all i = 1, 2, 3. Furthermore, G_k is quaternion. Otherwise, G_k is dihedral.
- (2) Assume now that $h_2(F_1) > 4$. Then
 - \triangleright G_k is a quaternion group if and only if G_{F_2} and G_{F_3} are quaternion groups.
 - \triangleright G_k is a dihedral group if and only if G_{F_2} and G_{F_3} are dihedral groups.
 - \triangleright G_k is a semi-dihedral group if and only if one of the two groups G_{F_2} and G_{F_3} is quaternion and the other is dihedral.

Proof. (1) If $h_2(F_1) = 4$, then $|G_k| = 8$. Thus Remark 2.2 gives the first item. (2) Let i = 2, 3. Since $F_i^{(2)} = k^{(2)}$, this implies that each G_{F_i} is a subgroup of index 2 in G_k . Thus the group theoretic properties given in Section 2 complete the proof.

The results of the second item can be summarized in Table 2.

$ \ker(j_1) $	$ \ker(j_2) $	G_{F_2}	$ \ker(j_3) $	G_{F_3}	G_k
4	2	(2, 2)	2	(2, 2)	D_3
4	2	D_{m-1}	2	D_{m-1}	$D_m, m > 3$
2	2	Q_{m-1}	2	Q_{m-1}	$Q_m, m > 3$
2	2	D_{m-1}	2	Q_{m-1}	$S_m, m > 3$

Table 2. Capitulation types for the case $h_2(F_1) > 4$.

4. Applications

Let $d = 2q_1q_2$, where $q_1 \equiv q_2 \equiv -1 \pmod{4}$ are two distinct positive prime integers such that

$$\left(\frac{2}{q_j}\right) = -\left(\frac{2}{q_k}\right) = \left(\frac{q_j}{q_k}\right) = -\left(\frac{q_k}{q_j}\right) = 1, \quad 1 \le j \ne k \le 2.$$

Let $\Bbbk = \mathbb{Q}(\sqrt{d}, \sqrt{-1})$ be an imaginary bicyclic biquadratic number field, which is called, by Hilbert (see [11]), a special Dirichlet field, and denote by $\Bbbk^{(1)}$ the Hilbert 2-class field of \Bbbk and $\Bbbk^{(2)}$ the Hilbert 2-class field of $\Bbbk^{(1)}$. Put $G_{\Bbbk} = \operatorname{Gal}(\Bbbk^{(2)}/\Bbbk)$. By [1], the 2-class group of \Bbbk is of type (2, 2). In this section we will apply the results of the above sections to determine the structure of G_{\Bbbk} .

4.1. Preliminary results. Let us first collect some results that will be useful in what follows. Let k_j , $1 \leq j \leq 3$, be the three real quadratic subfields of a biquadratic real number field K_0 and $\varepsilon_j > 1$ be the fundamental unit of k_j . Since the square of any unit of K_0 is in the group generated by the ε_j 's, $1 \leq j \leq 3$, then to

determine a fundamental system of units of K_0 it suffices to determine which of the units in $B := \{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_1\varepsilon_2, \varepsilon_1\varepsilon_3, \varepsilon_2\varepsilon_3, \varepsilon_1\varepsilon_2\varepsilon_3\}$ are squares in K_0 (see [14]). Hence, by Dirichlet's unit theorem, a fundamental system of units of K_0 consists of three positive units chosen among $B' := B \cup \{\sqrt{\eta}: \eta \in B \text{ and } \sqrt{\eta} \in K_0\}$. We need the two following lemmas.

Lemma 4.1 ([5]). Let $d \equiv 1 \pmod{4}$ be a positive square free integer and $\varepsilon_d = x + y\sqrt{d}$ be the fundamental unit of $\mathbb{Q}(\sqrt{d})$. Assume $N(\varepsilon_d) = 1$, then (1) x + 1 and x - 1 are not squares in \mathbb{N} , i.e., $2\varepsilon_d$ is not a square in $\mathbb{Q}(\sqrt{d})$.

(2) For every prime p dividing d, p(x+1) and p(x-1) are not squares in \mathbb{N} .

In the following lemma, we state a refinement to Lemma 4.1 above.

Lemma 4.2. Let $d \equiv 1 \pmod{4}$ be a positive square free integer and $\varepsilon_d = \frac{1}{2}(x+y\sqrt{d})$ the fundamental unit of $\mathbb{Q}(\sqrt{d})$. Assume $N(\varepsilon_d) = 1$.

- (1) If $d \equiv 1 \pmod{8}$, then both x and y are even.
- (2) If $d \equiv 5 \pmod{8}$, then x and y can be either even or odd. Moreover, if x and y are odd, then x + 2 and x 2 are not squares in \mathbb{N} .

Proof. (1) Assume $d \equiv 1 \pmod{8}$. As $N(\varepsilon_d) = 1$, then $x^2 - 4 = y^2 d$, hence $x^2 - 4 \equiv y^2 \pmod{8}$. On the other hand, if we suppose that x and y are odd, then $x^2 \equiv y^2 \equiv 1 \pmod{8}$, but this implies the contradiction $-3 \equiv 1 \pmod{8}$. Thus x and y are even.

(2) Assume $d \equiv 5 \pmod{8}$. To prove the first assertion of (2), it suffices to give examples justifying the existence of the two cases. By the PARI/GP system we have:

-				
d	$d \pmod{8}$	$N(\varepsilon_d)$	x	y
21	5	1	5	1
69	5	1	25	3
77	5	1	9	1
93	5	1	29	3
133	5	1	173	15
141	5	1	190	16
381	5	1	2030	104
781	5	1	135212398	4838280

For the second assertion, suppose that $x \pm 2 = y_1^2$, $x \mp 2 = dy_2^2$, then

$$\varepsilon_d = \frac{x + y\sqrt{d}}{2} = \frac{1}{4} (y_2\sqrt{d} + y_1)^2.$$

This in turn implies that $\sqrt{\varepsilon_d} \in \mathbb{Q}(\sqrt{d})$, which is absurd.

Now we state a lemma which is very useful for getting a FSU of a real biquadratic subfield or imaginary triquadratic subfield of $\mathbb{Q}(\sqrt{2}, \sqrt{q_1}, \sqrt{q_2}, \sqrt{-1})$.

Lemma 4.3. Let $q_1 \equiv 7 \pmod{8}$ and $q_2 \equiv 3 \pmod{8}$ be two primes such that $(q_2/q_1) = -1$.

- (1) Let x and y be two integers or semi-integers such that $\varepsilon_{q_1q_2} = x + y\sqrt{q_1q_2}$, then (1a) $2q_1(x+1)$ is a square in \mathbb{N} ,
 - (1b) $\sqrt{\varepsilon_{q_1q_2}} = y_1\sqrt{q_1} + y_2\sqrt{q_2}$ and $1 = q_1y_1^2 q_2y_2^2$ for some integers or semiintegers y_1 and y_2 such that $y = 2y_1y_2$.
- (2) Let a and b be two integers such that $\varepsilon_{2q_1q_2} = a + b\sqrt{2q_1q_2}$. Then we have (2a) $2q_1(a+1)$ is a square in \mathbb{N} ,
 - (2b) $\sqrt{2\varepsilon_{2q_1q_2}} = b_1\sqrt{2q_1} + b_2\sqrt{q_2}$ and $2 = 2q_1b_1^2 q_2b_2^2$ for some integers b_1 and b_2 such that $b = b_1b_2$.
- (3) Let c and d be two integers such that $\varepsilon_{2q_1} = c + d\sqrt{2q_1}$ and let α and β be two integers such that $\varepsilon_{q_1} = \alpha + \beta \sqrt{q_1}$. Then we have
 - (3a) $\sqrt{2\varepsilon_{q_1}} = \beta_1 + \beta_2 \sqrt{q_1}$ and $2 = \beta_1^2 q_1 \beta_2^2$ for some integers β_1 and β_2 such that $\beta = \beta_1 \beta_2$,
 - (3b) $\sqrt{2\varepsilon_{2q_1}} = d_1 + d_2\sqrt{2q_1}$ and $2 = d_1^2 2q_1d_2^2$ for some integers d_1 and d_2 such that $d = d_1d_2$.
- (4) Let c and d be two integers such that $\varepsilon_{2q_2} = c + d\sqrt{2q_2}$ and let α and β be two integers such that $\varepsilon_{q_2} = \alpha + \beta \sqrt{q_2}$. Then we have
 - (4a) $\sqrt{2\varepsilon_{q_2}} = \beta_1 + \beta_2 \sqrt{q_2}$ and $2 = -\beta_1^2 + q_2 \beta_2^2$ for some integers β_1 and β_2 such that $\beta = \beta_1 \beta_2$,
 - (4b) $\sqrt{2\varepsilon_{2q_2}} = d_1 + d_2\sqrt{2q_2}$ and $2 = -d_1^2 + 2q_2d_2^2$ for some integers d_1 and d_2 such that $d = d_1d_2$.

Proof. Using Lemmas 4.1 and 4.2, we get the statements of this lemma, for more details see [6]. $\hfill \Box$

4.2. Capitulation. Let $q_1 \equiv q_2 \equiv -1 \pmod{4}$ be primes. Without loss of generality, we can assume that q_1 and q_2 satisfy the conditions

$$\left(\frac{2}{q_1}\right) = -\left(\frac{2}{q_2}\right) = \left(\frac{q_1}{q_2}\right) = -\left(\frac{q_2}{q_1}\right) = 1.$$

Then, by [1], the 2-class group of k is of type (2, 2), so denote by $\mathbb{K}_1 = \mathbb{k}(\sqrt{q_1}) = \mathbb{Q}(\sqrt{q_1}, \sqrt{2q_2}, \mathbf{i}), \mathbb{K}_2 = \mathbb{k}(\sqrt{q_2}) = \mathbb{Q}(\sqrt{q_2}, \sqrt{2q_1}, \mathbf{i}) \text{ and } \mathbb{K}_3 = \mathbb{k}(\sqrt{2}) = \mathbb{Q}(\sqrt{2}, \sqrt{q_1q_2}, \mathbf{i})$ the three unramified quadratic extensions, within $\mathbb{k}_1^{(1)}$, of k.

Now, we correct the error made in the article [4]. The fundamental systems of units given in [4], Proposition 3.1, for \mathbb{K}_1^+ and \mathbb{K}_1 are not correct. In fact, the error was committed in the FSU of \mathbb{K}_1^+ , this affected that of \mathbb{K}_1 , and thus the main theorem.

Proposition 4.4. Let q_1 and q_2 be two primes defined as above. Then

- (1) A FSU of \mathbb{K}_1^+ is $\{\varepsilon_{q_1}, \sqrt{\varepsilon_{2q_1q_2}}, \sqrt{\varepsilon_{q_1}\varepsilon_{2q_2}}\}$ and that of \mathbb{K}_1 is $\{\sqrt{\varepsilon_{2q_1q_2}}, \sqrt{\varepsilon_{q_1}\varepsilon_{2q_2}}, \sqrt{\varepsilon_{q_1}\varepsilon_{2q_2}}, \sqrt{\varepsilon_{q_1}\varepsilon_{2q_2}}\}$.
- (2) $A \ FSU \ of \ \mathbb{K}_2^+ \ is \left\{ \varepsilon_{2q_1q_2}, \sqrt{\varepsilon_{q_2}\varepsilon_{2q_1q_2}}, \sqrt{\varepsilon_{2q_1}\varepsilon_{2q_1q_2}} \right\}$ and that of \mathbb{K}_2 is $\left\{ \sqrt{\varepsilon_{q_2}\varepsilon_{2q_1q_2}}, \sqrt{\varepsilon_{2q_1}\varepsilon_{2q_1q_2}} \right\}$.
- (3) A FSU of both \mathbb{K}_3^+ and \mathbb{K}_3 is $\{\varepsilon_2, \varepsilon_{2q_1q_2}, \sqrt{\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}}\}$.

Proof. Using Lemma 4.3 and the method described in the beginning of this subsection (page 6), we easily deduce the result for \mathbb{K}_i^+ , i = 1, 2, 3 (we proceed as in the proof of [4], Proposition 3.1). Again Lemma 4.3 and [2], Proposition 2, give the result for \mathbb{K}_i , i = 1, 2, 3.

Denote by $\kappa_{\mathbb{K}_j}$ the set of classes of k capitulating in \mathbb{K}_j . Then proceeding as in the proof of [4], Theorem 3.3, we get the following result.

Theorem 4.5. Let \mathbb{K}_j , $1 \leq j \leq 3$, be the three unramified quadratic extensions of \mathbb{K} defined above. Then $|\kappa_{\mathbb{K}_1}| = |\kappa_{\mathbb{K}_2}| = |\kappa_{\mathbb{K}_3}| = 2$.

Lemma 4.6. Keep the above notations and conditions satisfied by q_1 and q_2 . Then, the 2-class group of \mathbb{K}_2 is cyclic and those of \mathbb{K}_1 and \mathbb{K}_3 are of type (2, 2).

Proof. Let us compute the class number of \mathbb{K}_2 . For the values of class numbers of quadratic fields, see [8], [12]. Proposition 4.4 implies that $q(\mathbb{K}_2) = 8$, so by the class number formula (cf. [14]) we obtain

$$h_2(\mathbb{K}_2) = \frac{1}{2^5} q(\mathbb{K}_2) h_2(-1) h_2(q_2) h_2(-q_2) h_2(2q_1) h_2(-2q_1) h(2q_1q_2) h_2(-2q_1q_2)$$

= $\frac{1}{2^5} \cdot 8 \cdot h_2(-2q_1) \cdot 2 \cdot 4$
= $2h_2(-2q_1).$

Since, by [8], Corollaries (19.6) and (18.4), $h_2(-2q_1)$ is divisible by 4, so $h_2(\mathbb{K}_2)$ is divisible by 8. Therefore, the 2-class group of \mathbb{K}_2 cannot be of type (2, 2). It follows that the 2-class group of \mathbb{K}_2 is cyclic and those of \mathbb{K}_1 and \mathbb{K}_3 are of type (2, 2). \Box

Lemma 4.7 ([6]). Keep the above hypothesis. The Hilbert 2-class field of k is $\mathbb{k}^{(1)} = \mathbb{Q}(\sqrt{2}, \sqrt{q_1}, \sqrt{q_2}, \sqrt{-1})$ and we have

$$\begin{split} E_{\Bbbk^{(1)}} = & \left\langle \zeta_8, \varepsilon_2, \sqrt{\varepsilon_{2q_2}}, \sqrt{\varepsilon_{q_1q_2}}, \sqrt{\varepsilon_{2q_1q_2}}, \sqrt{\varepsilon_{2q_1q_2}}, \sqrt{\varepsilon_{2q_1q_2}} \varepsilon_{2q_2}\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}, \right. \\ & \left. \sqrt[4]{\varepsilon_2^2 \varepsilon_{2q_1} \varepsilon_{q_1q_2} \varepsilon_{2q_1q_2}}, \sqrt[4]{\zeta_8^2 \varepsilon_2^2 \varepsilon_{q_1} \varepsilon_{q_1q_2} \varepsilon_{2q_1q_2}} \right\rangle. \end{split}$$

Lemma 4.8. Keep the above hypothesis. We have:

$$\begin{split} N_{\Bbbk^{(1)}/\Bbbk_1}(\varepsilon_2) &= -1, \\ N_{\Bbbk^{(1)}/\Bbbk_1}(\sqrt{\varepsilon_{2q_2}}) &= -\varepsilon_{2q_2}, \\ N_{\Bbbk^{(1)}/\Bbbk_1}(\sqrt{\varepsilon_{q_1q_2}}) &= 1, \\ N_{\Bbbk^{(1)}/\Bbbk_1}(\sqrt{\varepsilon_{2q_1q_2}}) &= \varepsilon_{2q_1q_2}, \\ N_{\Bbbk^{(1)}/\Bbbk_1}(\zeta_8) &= -\mathbf{i}, \\ N_{\Bbbk^{(1)}/\Bbbk_1}\left(\sqrt[4]{\varepsilon_{q_1}\varepsilon_{q_2}\varepsilon_{2q_2}\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}}\right) &= \pm \sqrt{\varepsilon_{q_1}\varepsilon_{2q_2}}\sqrt{\varepsilon_{2q_1q_2}}, \\ N_{\Bbbk^{(1)}/\Bbbk_1}\left(\sqrt[4]{\varepsilon_2^2\varepsilon_{2q_1}\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}}\right) &= \pm \sqrt{\varepsilon_{2q_1q_2}}, \\ N_{\Bbbk^{(1)}/\Bbbk_1}\left(\sqrt[4]{\zeta_8^2\varepsilon_2^2\varepsilon_{q_1}\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}}\right) &= \pm \mathbf{i}\sqrt{\mathbf{i}\varepsilon_{q_1}}\sqrt{\varepsilon_{2q_1q_2}}. \end{split}$$

If $q_2 = 3$, we have $N_{\Bbbk^{(1)}/\Bbbk_1}(\zeta_6) = 1$.

Proof. Assume that $q_1 \equiv 7 \pmod{8}$, $q_2 \equiv 3 \pmod{8}$ and $(q_2/q_1) = -1$. By the relations given in Lemma 4.3, we have

$$\begin{split} N_{\Bbbk^{(1)}/\mathbb{K}_{1}}(\varepsilon_{2}) &= \left(1 + \sqrt{2}\right)\left(1 - \sqrt{2}\right) = -1, \\ N_{\Bbbk^{(1)}/\mathbb{K}_{1}}\left(\sqrt{\varepsilon_{2q_{2}}}\right) &= \frac{1}{\sqrt{2}}\left(d_{1} + d_{2}\sqrt{2q_{2}}\right) \frac{1}{-\sqrt{2}}\left(d_{1} + d_{2}\sqrt{2q_{2}}\right) = -\varepsilon_{2q_{2}}, \\ N_{\Bbbk^{(1)}/\mathbb{K}_{1}}\left(\sqrt{\varepsilon_{q_{1}q_{2}}}\right) &= \left(y_{1}\sqrt{q_{1}} + y_{2}\sqrt{q_{2}}\right)\left(y_{1}\sqrt{q_{1}} - y_{2}\sqrt{q_{2}}\right) = y_{1}^{2}q_{1} - y_{2}^{2}q_{2} = 1, \\ N_{\Bbbk^{(1)}/\mathbb{K}_{1}}\left(\sqrt{\varepsilon_{2q_{1}q_{2}}}\right) &= \frac{1}{\sqrt{2}}\left(b_{1}\sqrt{2q_{1}} + b_{2}\sqrt{q_{2}}\right) \frac{1}{-\sqrt{2}}\left(-b_{1}\sqrt{2q_{1}} - b_{2}\sqrt{q_{2}}\right) = \varepsilon_{2q_{1}q_{2}}, \\ N_{\Bbbk^{(1)}/\mathbb{K}_{1}}\left(\sqrt{\varepsilon_{q_{1}}}\right) &= \frac{1}{\sqrt{2}}\left(\beta_{1} + \beta_{2}\sqrt{q_{1}}\right) \frac{1}{-\sqrt{2}}\left(\beta_{1} + \beta_{2}\sqrt{q_{1}}\right) = -\varepsilon_{q_{1}}, \\ N_{\Bbbk^{(1)}/\mathbb{K}_{1}}\left(\sqrt{\varepsilon_{2q_{1}}}\right) &= \frac{1}{\sqrt{2}}\left(\beta_{1} + d_{2}\sqrt{2q_{1}}\right) \frac{1}{-\sqrt{2}}\left(d_{1} - d_{2}\sqrt{2q_{2}}\right) = -1, \\ N_{\Bbbk^{(1)}/\mathbb{K}_{1}}\left(\sqrt{\varepsilon_{q_{2}}}\right) &= \frac{1}{\sqrt{2}}\left(\beta_{1} + \beta_{2}\sqrt{q_{2}}\right) \frac{1}{-\sqrt{2}}\left(\beta_{1} - \beta_{2}\sqrt{q_{2}}\right) = 1, \\ N_{\Bbbk^{(1)}/\mathbb{K}_{1}}\left(\zeta_{8}\right) &= N_{\Bbbk^{(1)}/\mathbb{K}_{1}}\left(\frac{1+i}{-\sqrt{2}}\right) = -\zeta_{8}^{2} = -i. \end{split}$$

So we have

$$N_{\Bbbk^{(1)}/\mathbb{K}_1}\left(\sqrt{\varepsilon_{q_1}\varepsilon_{q_2}\varepsilon_{2q_2}\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}}\right) = (-\varepsilon_{q_1})\cdot 1\cdot (-\varepsilon_{2q_2})\cdot 1\cdot \varepsilon_{2q_1q_2} = \varepsilon_{q_1}\varepsilon_{2q_2}\varepsilon_{2q_1q_2}.$$

Then $N_{\Bbbk^{(1)}/\mathbb{K}_1}\left(\sqrt[4]{\varepsilon_{q_1}\varepsilon_{q_2}\varepsilon_{2q_2}\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}}\right) = \pm \sqrt{\varepsilon_{q_1}\varepsilon_{2q_2}}\sqrt{\varepsilon_{2q_1q_2}}$. We similarly get the rest.

Lemma 4.9. Keep the above hypothesis. We have:

$$\begin{split} N_{\Bbbk^{(1)}/\Bbbk_3}(\varepsilon_2) &= \varepsilon_2^2, \\ N_{\Bbbk^{(1)}/\Bbbk_3}(\sqrt{\varepsilon_{2q_2}}) &= -1, \\ N_{\Bbbk^{(1)}/\Bbbk_3}(\sqrt{\varepsilon_{2q_1q_2}}) &= -\varepsilon_{q_1q_2}, \\ N_{\Bbbk^{(1)}/\Bbbk_3}(\sqrt{\varepsilon_{2q_1q_2}}) &= -\varepsilon_{2q_1q_2}, \\ N_{\Bbbk^{(1)}/\Bbbk_3}(\sqrt{\varepsilon_{2q_2}\varepsilon_{2q_2}\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}}) &= \pm \sqrt{\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}}, \\ N_{\Bbbk^{(1)}/\Bbbk_3}\left(\sqrt[4]{\varepsilon_2^2\varepsilon_{2q_1}\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}}\right) &= \pm \varepsilon_2\sqrt{\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}}, \\ N_{\Bbbk^{(1)}/\Bbbk_3}\left(\sqrt[4]{\varepsilon_2^2\varepsilon_2^2\varepsilon_{q_1}\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}}\right) &= \pm \xi_8\varepsilon_2\sqrt{\varepsilon_{q_1q_2}\varepsilon_{2q_1q_2}} \end{split}$$

If $q_2 = 3$, we have $N_{\mathbb{k}^{(1)}/\mathbb{K}_3}(\zeta_6) = 1$.

Proof. The proof is similar to that of Lemma 4.8.

From the two above lemmas, Proposition 4.4 and [10] we have:

Corollary 4.10. Keep the above hypothesis. We have:

(1) The number of classes of \mathbb{K}_1 which capitulate in $\mathbb{k}^{(1)}$ is

$$[\Bbbk^{(1)} : \mathbb{K}_1][E_{\mathbb{K}_1} : N_{\Bbbk^{(1)}/\mathbb{K}_1}(E_{\Bbbk^{(1)}})] = 2 \cdot 1 = 2.$$

(2) The number of classes of \mathbb{K}_3 which capitulate in $\Bbbk^{(1)}$ is

$$[\Bbbk^{(1)} : \mathbb{K}_3][E_{\mathbb{K}_3} : N_{\Bbbk^{(1)}/\mathbb{K}_3}(E_{\Bbbk^{(1)}})] = 2 \cdot 1 = 2.$$

4.3. Main theorem. We can now state the main result of this section.

Theorem 4.11. Let $q_1 \equiv q_2 \equiv -1 \pmod{4}$ be two distinct prime integers such that

$$\left(\frac{2}{q_j}\right) = -\left(\frac{2}{q_k}\right) = \left(\frac{q_j}{q_k}\right) = -\left(\frac{q_k}{q_j}\right) = 1$$

 $1 \leq j \neq k \leq 2$. Put $\Bbbk = \mathbb{Q}(\sqrt{2q_1q_2}, i)$. Note that $\mathbb{K}_j = \Bbbk(\sqrt{q_j}) = \mathbb{Q}(\sqrt{q_j}, \sqrt{2q_k}, i)$, $\mathbb{K}_k = \Bbbk(\sqrt{q_k}) = \mathbb{Q}(\sqrt{q_k}, \sqrt{2q_j}, i)$ and $\mathbb{K}_3 = \Bbbk(\sqrt{2}) = \mathbb{Q}(\sqrt{2}, \sqrt{q_1q_2}, i)$ are three unramified quadratic extensions of \Bbbk . Let $m \geq 2$ such that $2^m = h_2(-2q_j)$. Then the 2-class field tower of \Bbbk stops at $\Bbbk^{(2)}$ with $\Bbbk^{(1)} \neq \Bbbk^{(2)}$ and

$$G_{\mathbb{K}_j} \simeq G_{\mathbb{K}_3} \simeq Q_{m+1}, \quad G_{\mathbb{k}} \simeq Q_{m+2} \quad \text{and} \quad G_{\mathbb{K}_k} \simeq \mathbb{Z}/2^{m+1}\mathbb{Z}$$

Proof. Recall that $G_{\Bbbk} = \operatorname{Gal}(\Bbbk^{(2)}/\Bbbk)$, where $\Bbbk^{(2)}$ is the second Hilbert 2-class field of \Bbbk . Without loss of generality, we may suppose that the primes q_1 and q_2 satisfy

$$q_1 \equiv q_2 \equiv -1 \pmod{4}$$
 and $\left(\frac{2}{q_1}\right) = -\left(\frac{2}{q_2}\right) = \left(\frac{q_1}{q_2}\right) = -\left(\frac{q_2}{q_1}\right) = 1.$

As the 2-class group $\mathbb{CL}_2(\Bbbk)$ of \Bbbk is of type (2, 2), then $G_{\Bbbk}/G'_{\Bbbk} \simeq (2, 2)$. On the other hand, by Theorem 4.5, there are exactly two classes of $\mathbb{CL}_2(\Bbbk)$ which capitulate in each extension \mathbb{K}_j , $1 \leq j \leq 3$, so Theorem 2.1 implies that G_{\Bbbk} is quaternion or semidihedral and the class field tower of \Bbbk stops at $\Bbbk^{(2)}$ with $\Bbbk^{(1)} \neq \Bbbk^{(2)}$; and thus, again by Theorem 2.1, one of the three quadratic extensions of \Bbbk has cyclic 2-class group and the two others have 2-class groups of type (2, 2) which is already proved in Lemma 4.6. The 2-class groups of \mathbb{K}_1 and \mathbb{K}_3 are of type (2, 2). They are both sub-extensions of $\Bbbk^{(1)}$ which has a cyclic 2-class group (since $G'_{\Bbbk} \simeq \operatorname{Gal}(\Bbbk^{(2)}/\Bbbk^{(1)}) \simeq \mathbb{CL}_2(\Bbbk^{(1)})$ is a cyclic group), and there are exactly two classes in \mathbb{K}_1 and \mathbb{K}_3 capitulating in $\Bbbk^{(1)}$ (Corollary 4.10), so neither $G_{\mathbb{K}_1}$ nor $G_{\mathbb{K}_3}$ is dihedral. Hence the result comes by Table 2.

R e m a r k 4.12. At the first step in the above proof, we showed that G_k is quaternion or semidihedral. Note that it is impossible to decide whether G_k is quaternion or semidihedral by using the usual method given by Kisilevsky (by determining whether \mathbb{K}_i/\mathbb{k} is of type A or B, i = 1, 3). In fact, it is hard to determine the generators of the 2-class groups. For this reason the authors of [3] couldn't decide whether G_k is quaternion or semidihedral with $k = \mathbb{Q}(\sqrt{-2}, \sqrt{pq})$ for two primes $p \equiv 5 \pmod{8}$ and $q \equiv 7 \pmod{8}$ (see [3], Corollary 17). Using the same techniques described in the general context in Section 3, we gave the answer in [7], Remark 5.7.

A c k n o w l e d g e m e n t. We are very grateful to the unknown referee for his/her several helpful suggestions, that enabled us to improve our paper, and for calling our attention to some missing details.

References

- [1] A. Azizi: Sur le 2-groupe de classes d'idéaux de $\mathbb{Q}(\sqrt{d}, i)$. Rend. Circ. Mat. Palermo, II. Ser. 48 (1999), 71–92. (In French.) zbl MR doi
- [2] A. Azizi: Unités de certains corps de nombres imaginaires et abéliens sur Q. Ann. Sci. Math. Qué. 23 (1999), 15–21. (In French.)
- [3] A. Azizi, I. Benhamza: Sur la capitulation des 2-classes d'idéaux de Q(√d, √-2). Ann. Sci. Math. Qué. 29 (2005), 1–20. (In French.)
- [4] A. Azizi, A. Zekhnini: The structure of the second 2-class group of some special Dirichlet fields. Asian-Eur. J. Math. 13 (2020), Article ID 2050053, 6 pages.
- [5] A. Azizi, A. Zekhnini, M. Taous: The generators of the 2-class group of some field $\mathbb{Q}(\sqrt{pq_1q_2, i})$: Correction to Theorem 3 of [5]. Int. J. Pure Appl. Math. 103 (2015), 99–107.

zbl MR

zbl MR

zbl MR doi

- [6] M. M. Chems-Eddin, A. Azizi, A. Zekhnini: Unit groups and Iwasawa lambda invariants of some multiquadratic number fields. Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 24, 16 pages.
 [7] M. M. Chems Eddin, A. Zehhnini, A. Azizi, Units and 2 alogs field towards of some multiplication of some multiplication.
- [7] M. M. Chems-Eddin, A. Zekhnini, A. Azizi: Units and 2-class field towers of some multiquadratic number fields. Turk. J. Math. 44 (2020), 1466–1483.
 Zbl MR doi:
- [8] P. E. Conner, J. Hurrelbrink: Class Number Parity. Series in Pure Mathematics 8. World Scientific, Singapore, 1988.
 Zbl MR doi
- [9] D. Gorenstein: Finite Groups. Harper's Series in Modern Mathematics. Harper and Row, New York, 1968.
 Zbl MR
- [10] F.-P. Heider, B. Schmithals: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 366 (1982), 1–25. (In German.) zbl MR doi

zbl MR doi

- [11] D. Hilbert: Über den Dirichlet'schen biquadratischen Zahlkörper. Math. Ann. 45 (1894), 309–340. (In German.)
- [12] P. Kaplan: Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. Reine Angew. Math. 283/284 (1976), 313–363. (In French.)
 Zbl MR doi
- [13] H. Kisilevsky: Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94. J. Number Theory 8 (1976), 271–279.
 Zbl MR doi
- [14] H. Wada: On the class number and the unit group of certain algebraic number fields. J.
 Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201–209.

Authors' addresses: Abdelmalek Azizi, Department of Mathematics, Faculty of Sciences, Mohammed First University, Oujda, Morocco, e-mail: abdelmalekazizi@yahoo.fr; Mohamed Mahmoud Chems-Eddin, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco, e-mail: 2m.chemseddin @gmail.com; Abdelkader Zekhnini, Department of Mathematics, Faculty of Sciences, Mohammed First University, Oujda, Morocco, e-mail: zekha1@yahoo.fr.