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1. Introduction

Let k be an algebraic number field and let CL2(k) denote its 2-class group, that

is the 2-Sylow subgroup of the ideal class group CL(k) of k. Denote by k(1) the first

Hilbert 2-class field of k, that is the maximal abelian unramified extension of k such

that the degree [k(1) : k] is a power of 2, and by k(2) the Hilbert 2-class field of k(1).

Let Gk = Gal(k(2)/k) be the Galois group of k(2)/k and G′

k be its derived subgroup.

Then it is well known, by class field theory, that Gal(k(1)/k) ≃ CL2(k) ≃ Gk/G
′

k.

The determination of the structure of Gk is a classical and difficult open problem

of class field theory that is related to many other problems such as the capitulation

and the length of the Hilbert 2-class field tower. Actually, our goal in the present

paper is to investigate these problems for fields with 2-class groups of type (2, 2).

Note that if CL2(k) is of type (2, 2), the Hilbert 2-class field tower of k terminates

in at most two steps and the structure of Gk is based on the capitulation problem in

unramified quadratic extensions of k. In fact, Gk is isomorphic to one of the groups

A, Qm, Dm or Sm, where A is the Klein four-group, and Qm, Dm, or Sm denote the
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quaternion, dihedral or semidihedral groups, respectively, of order 2m, with m > 3

and m > 4 for Sm (cf. [13]).

In this paper, we give a characterization of the capitulation types (see Table 2)

using some group properties and as an application, we determine the structure of

the second 2-class groups of some special Dirichlet fields k = Q
(
√
d,
√
−1

)

.

If k is a number field, we use the following notations:

h2(k): the 2-class number of k,

h2(d): the 2-class number of the quadratic field Q
(√

d
)

,

εd: the fundamental unit of the quadratic field Q
(
√
d
)

,

Ek: the unit group of k,

FSU: abbreviation of “fundamental system of units”,

k(1): the Hilbert 2-class field of k,

k(2): the Hilbert 2-class field of k(1),

Gk: the Galois group of k
(2)/k,

k+: the maximal real subfield of k,

q(k) =
[

Ek :
∏

i

Eki

]

: the unit index of k, if k is multiquadratic and ki are the

quadratic subfields of k,

Nk′/k: the norm map of an extension k′/k.

2. Preliminaries

Let Qm, Dm, and Sm denote the quaternion, dihedral, and semidihedral groups,

respectively, of order 2m, where m > 3 and m > 4 for Sm; in addition let A be the

Klein four-group. Each of these groups is generated by two elements x and y, and

admits the following presentations:

x2 = y2 = 1, y−1xy = x for A,

x2m−2

= y2 = a, a2 = 1, y−1xy = x−1 for Qm,

x2m−1

= y2 = 1, y−1xy = x−1 for Dm,

x2m−1

= y2 = 1, y−1xy = x2m−2
−1 for Sm.

We recall some well known properties of 2-groups Gk such that Gk/G
′

k is of

type (2, 2), where G′

k denotes the commutator subgroup of Gk. For more de-

tails about these properties, we refer the reader to [13], pages 272–273, [7], pages

1467–1469, and [9], Chapter 5.

Let x and y be as above. Note that the commutator subgroup G′

k of G is always

cyclic and G′

k = 〈x2〉. The group Gk possesses exactly three subgroups of index 2,

which are,

H1 = 〈x〉, H2 = 〈x2, y〉, H3 = 〈x2, xy〉.
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Note also that for the two cases Q3 and A, each Hi is cyclic. For the case Dm

with m > 3, H2 and H3 are also dihedral. For Qm with m > 3, H2 and H3 are

quaternion. Finally for Sm, H2 is dihedral whereas H3 is quaternion. Furthermore,

if Gk is isomorphic to A (or Q3), then the subgroups Hi are cyclic of order 2 (or 4,

respectively). If Gk is isomorphic to Qm withm > 3, Dm withm > 3 or Sm, then H1

is cyclic and Hi/H
′

i is of type (2, 2) for i ∈ {2, 3}, where H ′

i is the commutator

subgroup of Hi.

Let Fi be the subfield of k
(2) fixed by Hi, where i ∈ {1, 2, 3}. If k(2) 6= k(1), 〈x4〉

is the unique subgroup of G′

k of index 2. Let L (L is defined only if k(2) 6= k(1))

be the subfield of k(2) fixed by 〈x4〉. Then F1, F2 and F3 are the three quadratic

subextensions of k(1)/k and L is the unique subfield of k(2) such that L/k is a

nonabelian Galois extension of degree 8.

Let us recall the definition of Taussky’s conditions A and B. Let k′ be a cyclic un-

ramified extension of a number field k and j denotes the basic homomorphism jk′/k :

CL(k) → CL(k′), induced by the extension of ideals from k to k′. Thus, we say:

⊲ k′/k satisfies condition A if and only if |ker(jk′/k) ∩Nk′/k(CL(k
′))| > 1.

⊲ k′/k satisfies condition B if and only if |ker(jk′/k) ∩Nk′/k(CL(k
′))| = 1.

Set jFi/k = ji, i = 1, 2, 3. Then we have:

Theorem 2.1 ([13], Theorem 2).

(1) If k(1) = k(2), then all Fi satisfy condition A, |ker(ji)| = 4 for i = 1, 2, 3 and Gk

is abelian of type (2, 2).

(2) If Gal(L/k) ≃ Q3, then all Fi satisfy condition A and |ker(ji)| = 2 for i = 1, 2, 3

and Gk ≃ Q3.

(3) If Gal(L/k) ≃ D3, then F2, F3 satisfy condition B and |kerj2| = |kerj3| = 2.

Furthermore, if F1 satisfies condition B, then |kerj1| = 2 and Gk ≃ Sm, if F1

satisfies condition A and |kerj1| = 2, then Gk ≃ Qm. If F1 satisfies condition A

and |kerj1| = 4, then Gk ≃ Dm.

We summarize these results in Table 1.

|ker(j1)| (A/B) |ker(j2)| (A/B) |ker(j3)| (A/B) Gk

4 A 4 A 4 A (2, 2)

2 A 2 A 2 A Q3

4 A 2 B 2 B Dm, m > 3

2 A 2 B 2 B Qm, m > 3

2 B 2 B 2 B Sm, m > 3

Table 1. Capitulation types.

Therefore, one can easily deduce the following remark.
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R em a r k 2.2. The 2-class groups of the three unramified quadratic extensions

of k are cyclic if and only if k(1) = k(2) or k(1) 6= k(2) and Gk ≃ Q3. In the other

cases the 2-class group of only one unramified quadratic extension is cyclic and the

others are of type (2, 2).

3. Another vision of the capitulation types

Let k be a number field having a 2-class group of type (2, 2). Taussky’s condi-

tions A and B give a vision of the capitulation types based on the generators of the

2-class group of k. Therefore, in the case where it is impossible for the 2-class group

of k to be given in terms of its generators, the results quoted in the above section do

not give the exact type of capitulation. Let Fi/k be a Galois extension for i = 1, 2, 3.

The next results give another method to deal with this problem without needing the

generators of the 2-class groups of k.

Keep the notations of the previous section. Assume always that Fi/k is a Galois

extension for i = 1, 2, 3. If h2(F1) > 4, then the situation is schematized in Figure 1.

k

F2 F1 F3

k
(1)

F
(1)
2 =F

(1)
3

F
(2)
2 =F

(2)
3 =F

(1)
1 =F

(2)
1 = k

(2)

2

2

h2(F1)/4

Figure 1. The Hilbert 2-class field towers for h2(F1) > 4.

If h2(F1) = 2, then Gk is abelian of type (2, 2) and the 2-class group of Fi is cyclic

for all i = 1, 2, 3. Therefore, the situation is schematized as follows (see Figure 2).
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Figure 2. The Hilbert 2-class field towers for h2(F1) = 2.
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Theorem 3.1. Keep the above notations.

(1) Assume h2(F1) = 4. If the 2-class group of F2 or F3 is cyclic, then the 2-class

group of Fi is cyclic for all i = 1, 2, 3. Furthermore, Gk is quaternion. Otherwise,

Gk is dihedral.

(2) Assume now that h2(F1) > 4. Then

⊲ Gk is a quaternion group if and only if GF2 and GF3 are quaternion groups.

⊲ Gk is a dihedral group if and only if GF2 and GF3 are dihedral groups.

⊲ Gk is a semi-dihedral group if and only if one of the two groups GF2 and GF3

is quaternion and the other is dihedral.

P r o o f. (1) If h2(F1) = 4, then |Gk| = 8. Thus Remark 2.2 gives the first item.

(2) Let i = 2, 3. Since F
(2)
i = k(2), this implies that each GFi

is a subgroup

of index 2 in Gk. Thus the group theoretic properties given in Section 2 complete

the proof. �

The results of the second item can be summarized in Table 2.

|ker(j1)| |ker(j2)| GF2 |ker(j3)| GF3 Gk

4 2 (2, 2) 2 (2, 2) D3

4 2 Dm−1 2 Dm−1 Dm, m > 3

2 2 Qm−1 2 Qm−1 Qm, m > 3

2 2 Dm−1 2 Qm−1 Sm, m > 3

Table 2. Capitulation types for the case h2(F1) > 4.

4. Applications

Let d = 2q1q2, where q1 ≡ q2 ≡ −1 (mod 4) are two distinct positive prime

integers such that

( 2

qj

)

= −
( 2

qk

)

=
( qj
qk

)

= −
(qk
qj

)

= 1, 1 6 j 6= k 6 2.

Let k = Q
(
√
d,
√
−1

)

be an imaginary bicyclic biquadratic number field, which is

called, by Hilbert (see [11]), a special Dirichlet field, and denote by k(1) the Hilbert

2-class field of k and k(2) the Hilbert 2-class field of k(1). Put Gk = Gal(k(2)/k).

By [1], the 2-class group of k is of type (2, 2). In this section we will apply the results

of the above sections to determine the structure of Gk.

4.1. Preliminary results. Let us first collect some results that will be useful

in what follows. Let kj , 1 6 j 6 3, be the three real quadratic subfields of a

biquadratic real number field K0 and εj > 1 be the fundamental unit of kj . Since

the square of any unit of K0 is in the group generated by the εj’s, 1 6 j 6 3, then to
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determine a fundamental system of units of K0 it suffices to determine which of the

units in B := {ε1, ε2, ε3, ε1ε2, ε1ε3, ε2ε3, ε1ε2ε3} are squares in K0 (see [14]). Hence,

by Dirichlet’s unit theorem, a fundamental system of units of K0 consists of three

positive units chosen among B′ := B ∪
{√

η : η ∈ B and
√
η ∈ K0

}

. We need the

two following lemmas.

Lemma 4.1 ([5]). Let d ≡ 1 (mod 4) be a positive square free integer and εd =

x+ y
√
d be the fundamental unit of Q

(
√
d
)

. Assume N(εd) = 1, then

(1) x+ 1 and x− 1 are not squares in N, i.e., 2εd is not a square in Q
(√

d
)

.

(2) For every prime p dividing d, p(x+ 1) and p(x− 1) are not squares in N.

In the following lemma, we state a refinement to Lemma 4.1 above.

Lemma 4.2. Let d ≡ 1 (mod 4) be a positive square free integer and εd =
1
2

(

x+ y
√
d
)

the fundamental unit of Q
(√

d
)

. Assume N(εd) = 1.

(1) If d ≡ 1 (mod 8), then both x and y are even.

(2) If d ≡ 5 (mod 8), then x and y can be either even or odd. Moreover, if x and y

are odd, then x+ 2 and x− 2 are not squares in N.

P r o o f. (1) Assume d ≡ 1 (mod 8). As N(εd) = 1, then x2 − 4 = y2d, hence

x2 − 4 ≡ y2 (mod 8). On the other hand, if we suppose that x and y are odd, then

x2 ≡ y2 ≡ 1 (mod 8), but this implies the contradiction −3 ≡ 1 (mod 8). Thus x

and y are even.

(2) Assume d ≡ 5 (mod 8). To prove the first assertion of (2), it suffices to give

examples justifying the existence of the two cases. By the PARI/GP system we have:

d d (mod 8) N(εd) x y
21 5 1 5 1

69 5 1 25 3

77 5 1 9 1

93 5 1 29 3

133 5 1 173 15

141 5 1 190 16

381 5 1 2030 104

781 5 1 135212398 4838280

For the second assertion, suppose that x± 2 = y21 , x∓ 2 = dy22 , then

εd =
x+ y

√
d

2
=

1

4

(

y2
√
d+ y1

)2
.

This in turn implies that
√
εd ∈ Q

(
√
d
)

, which is absurd. �
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Now we state a lemma which is very useful for getting a FSU of a real biquadratic

subfield or imaginary triquadratic subfield of Q
(√

2,
√
q1,

√
q2,

√
−1

)

.

Lemma 4.3. Let q1 ≡ 7 (mod 8) and q2 ≡ 3 (mod 8) be two primes such that

(q2/q1) = −1.

(1) Let x and y be two integers or semi-integers such that εq1q2 = x+ y
√
q1q2, then

(1a) 2q1(x+ 1) is a square in N,

(1b)
√
εq1q2 = y1

√
q1 + y2

√
q2 and 1 = q1y

2
1 − q2y

2
2 for some integers or semi-

integers y1 and y2 such that y = 2y1y2.

(2) Let a and b be two integers such that ε2q1q2 = a+ b
√
2q1q2. Then we have

(2a) 2q1(a+ 1) is a square in N,

(2b)
√

2ε2q1q2 = b1
√
2q1 + b2

√
q2 and 2 = 2q1b

2
1 − q2b

2
2 for some integers b1

and b2 such that b = b1b2.

(3) Let c and d be two integers such that ε2q1 = c+ d
√
2q1 and let α and β be two

integers such that εq1 = α+ β
√
q1. Then we have

(3a)
√

2εq1 = β1 + β2
√
q1 and 2 = β2

1 − q1β
2
2 for some integers β1 and β2 such

that β = β1β2,

(3b)
√

2ε2q1 = d1+d2
√
2q1 and 2 = d21−2q1d

2
2 for some integers d1 and d2 such

that d = d1d2.

(4) Let c and d be two integers such that ε2q2 = c+ d
√
2q2 and let α and β be two

integers such that εq2 = α+ β
√
q2. Then we have

(4a)
√

2εq2 = β1 +β2
√
q2 and 2 = −β2

1 + q2β
2
2 for some integers β1 and β2 such

that β = β1β2,

(4b)
√

2ε2q2 = d1 + d2
√
2q2 and 2 = −d21 + 2q2d

2
2 for some integers d1 and d2

such that d = d1d2.

P r o o f. Using Lemmas 4.1 and 4.2, we get the statements of this lemma, for

more details see [6]. �

4.2. Capitulation. Let q1 ≡ q2 ≡ −1 (mod 4) be primes. Without loss of gen-

erality, we can assume that q1 and q2 satisfy the conditions

( 2

q1

)

= −
( 2

q2

)

=
(q1
q2

)

= −
(q2
q1

)

= 1.

Then, by [1], the 2-class group of k is of type (2, 2), so denote by K1 = k
(√

q1
)

=

Q
(√

q1,
√
2q2, i

)

, K2 = k
(√

q2
)

=Q
(√

q2,
√
2q1, i

)

and K3 = k
(√

2
)

=Q
(√

2,
√
q1q2, i

)

the three unramified quadratic extensions, within k
(1)
1 , of k.

Now, we correct the error made in the article [4]. The fundamental systems of units

given in [4], Proposition 3.1, for K+
1 and K1 are not correct. In fact, the error was

committed in the FSU of K+
1 , this affected that of K1, and thus the main theorem.
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Proposition 4.4. Let q1 and q2 be two primes defined as above. Then

(1) A FSU of K+
1 is

{

εq1 ,
√
ε2q1q2 ,

√
εq1ε2q2

}

and that of K1 is
{√

ε2q1q2 ,
√
εq1ε2q2 ,

√

iε2q2
}

.

(2) A FSU of K+
2 is

{

ε2q1q2 ,
√
εq2ε2q1q2 ,

√
ε2q1ε2q1q2

}

and that of K2 is
{√

εq2ε2q1q2 ,√
ε2q1ε2q1q2 ,

√

iε2q1q2
}

.

(3) A FSU of both K
+
3 and K3 is

{

ε2, ε2q1q2 ,
√
εq1q2ε2q1q2

}

.

P r o o f. Using Lemma 4.3 and the method described in the beginning of this

subsection (page 6), we easily deduce the result for K+
i , i = 1, 2, 3 (we proceed as in

the proof of [4], Proposition 3.1). Again Lemma 4.3 and [2], Proposition 2, give the

result for Ki, i = 1, 2, 3. �

Denote by κKj
the set of classes of k capitulating in Kj . Then proceeding as in

the proof of [4], Theorem 3.3, we get the following result.

Theorem 4.5. Let Kj , 1 6 j 6 3, be the three unramified quadratic extensions

of k defined above. Then |κK1 | = |κK2 | = |κK3 | = 2.

Lemma 4.6. Keep the above notations and conditions satisfied by q1 and q2.

Then, the 2-class group of K2 is cyclic and those of K1 and K3 are of type (2, 2).

P r o o f. Let us compute the class number of K2. For the values of class numbers

of quadratic fields, see [8], [12]. Proposition 4.4 implies that q(K2) = 8, so by the

class number formula (cf. [14]) we obtain

h2(K2) =
1

25
q(K2)h2(−1)h2(q2)h2(−q2)h2(2q1)h2(−2q1)h(2q1q2)h2(−2q1q2)

=
1

25
· 8 · h2(−2q1) · 2 · 4

= 2h2(−2q1).

Since, by [8], Corollaries (19.6) and (18.4), h2(−2q1) is divisible by 4, so h2(K2) is

divisible by 8. Therefore, the 2-class group of K2 cannot be of type (2, 2). It follows

that the 2-class group of K2 is cyclic and those of K1 and K3 are of type (2, 2). �

Lemma 4.7 ([6]). Keep the above hypothesis. The Hilbert 2-class field of k is

k(1) = Q
(√

2,
√
q1,

√
q2,

√
−1

)

and we have

Ek(1) =
〈

ζ8, ε2,
√
ε2q2 ,

√
εq1q2 ,

√
ε2q1q2 , 4

√
εq1εq2ε2q2εq1q2ε2q1q2 ,

4

√

ε22ε2q1εq1q2ε2q1q2 ,
4

√

ζ28ε
2
2εq1εq1q2ε2q1q2

〉

.
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Lemma 4.8. Keep the above hypothesis. We have:

Nk(1)/K1
(ε2) = −1,

Nk(1)/K1

(√
ε2q2

)

= −ε2q2 ,

Nk(1)/K1

(√
εq1q2

)

= 1,

Nk(1)/K1

(√
ε2q1q2

)

= ε2q1q2 ,

Nk(1)/K1
(ζ8) = −i,

Nk(1)/K1

(

4
√
εq1εq2ε2q2εq1q2ε2q1q2

)

= ±√
εq1ε2q2

√
ε2q1q2 ,

Nk(1)/K1

(

4

√

ε22ε2q1εq1q2ε2q1q2

)

= ±√
ε2q1q2 ,

Nk(1)/K1

(

4

√

ζ28ε
2
2εq1εq1q2ε2q1q2

)

= ±i
√

iεq1
√
ε2q1q2 .

If q2 = 3, we have Nk(1)/K1
(ζ6) = 1.

P r o o f. Assume that q1 ≡ 7 (mod 8), q2 ≡ 3 (mod 8) and (q2/q1) = −1. By

the relations given in Lemma 4.3, we have

Nk(1)/K1
(ε2) =

(

1 +
√
2
)(

1−
√
2
)

= −1,

Nk(1)/K1

(√
ε2q2

)

=
1√
2

(

d1 + d2
√

2q2
) 1

−
√
2

(

d1 + d2
√

2q2
)

= −ε2q2 ,

Nk(1)/K1

(√
εq1q2

)

=
(

y1
√
q1 + y2

√
q2
)(

y1
√
q1 − y2

√
q2
)

= y21q1 − y22q2 = 1,

Nk(1)/K1

(√
ε2q1q2

)

=
1√
2

(

b1
√

2q1 + b2
√
q2
) 1

−
√
2

(

− b1
√

2q1 − b2
√
q2
)

= ε2q1q2 ,

Nk(1)/K1

(√
εq1

)

=
1√
2

(

β1 + β2
√
q1
) 1

−
√
2

(

β1 + β2
√
q1
)

= −εq1 ,

Nk(1)/K1

(√
ε2q1

)

=
1√
2

(

d1 + d2
√

2q1
) 1

−
√
2

(

d1 − d2
√

2q2
)

= −1,

Nk(1)/K1

(√
εq2

)

=
1√
2

(

β1 + β2
√
q2
) 1

−
√
2

(

β1 − β2
√
q2
)

= 1,

Nk(1)/K1
(ζ8) = Nk(1)/K1

( 1 + i

−
√
2

)

= −ζ28 = −i.

So we have

Nk(1)/K1

(√
εq1εq2ε2q2εq1q2ε2q1q2

)

= (−εq1) · 1 · (−ε2q2) · 1 · ε2q1q2 = εq1ε2q2ε2q1q2 .

Then Nk(1)/K1

(

4
√
εq1εq2ε2q2εq1q2ε2q1q2

)

= ±√
εq1ε2q2

√
ε2q1q2 . We similarly get

the rest. �
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Lemma 4.9. Keep the above hypothesis. We have:

Nk(1)/K3
(ε2) = ε22,

Nk(1)/K3

(√
ε2q2

)

= −1,

Nk(1)/K3

(√
εq1q2

)

= −εq1q2 ,

Nk(1)/K3

(√
ε2q1q2

)

= −ε2q1q2 ,

Nk(1)/K3
(ζ8) = i,

Nk(1)/K3

(

4
√
εq1εq2ε2q2εq1q2ε2q1q2

)

= ±√
εq1q2ε2q1q2 ,

Nk(1)/K3

(

4

√

ε22ε2q1εq1q2ε2q1q2

)

= ±ε2
√
εq1q2ε2q1q2 ,

Nk(1)/K3

(

4

√

ζ28ε
2
2εq1εq1q2ε2q1q2

)

= ±ζ8ε2
√
εq1q2ε2q1q2 .

If q2 = 3, we have Nk(1)/K3
(ζ6) = 1.

P r o o f. The proof is similar to that of Lemma 4.8. �

From the two above lemmas, Proposition 4.4 and [10] we have:

Corollary 4.10. Keep the above hypothesis. We have:

(1) The number of classes of K1 which capitulate in k(1) is

[k(1) : K1][EK1 : Nk(1)/K1
(Ek(1) )] = 2 · 1 = 2.

(2) The number of classes of K3 which capitulate in k(1) is

[k(1) : K3][EK3 : Nk(1)/K3
(Ek(1) )] = 2 · 1 = 2.

4.3. Main theorem. We can now state the main result of this section.

Theorem 4.11. Let q1 ≡ q2 ≡ −1 (mod 4) be two distinct prime integers such

that
( 2

qj

)

= −
( 2

qk

)

=
( qj
qk

)

= −
(qk
qj

)

= 1,

1 6 j 6= k 6 2. Put k = Q
(√

2q1q2, i
)

. Note that Kj = k(
√
qj) = Q

(√
qj ,

√
2qk, i

)

,

Kk = k
(√

qk
)

= Q
(√

qk,
√

2qj , i
)

and K3 = k
(√

2
)

= Q
(√

2,
√
q1q2, i

)

are three

unramified quadratic extensions of k. Let m > 2 such that 2m = h2(−2qj). Then

the 2-class field tower of k stops at k(2) with k(1) 6= k(2) and

GKj
≃ GK3 ≃ Qm+1, Gk ≃ Qm+2 and GKk

≃ Z/2m+1
Z.
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P r o o f. Recall that Gk = Gal(k(2)/k), where k(2) is the second Hilbert 2-class

field of k. Without loss of generality, we may suppose that the primes q1 and q2 satisfy

q1 ≡ q2 ≡ −1 (mod 4) and
( 2

q1

)

= −
( 2

q2

)

=
(q1
q2

)

= −
(q2
q1

)

= 1.

As the 2-class group CL2(k) of k is of type (2, 2), then Gk/G
′

k
≃ (2, 2). On the other

hand, by Theorem 4.5, there are exactly two classes of CL2(k) which capitulate in

each extensionKj , 1 6 j 6 3, so Theorem 2.1 implies that Gk is quaternion or semidi-

hedral and the class field tower of k stops at k(2) with k(1) 6= k(2); and thus, again by

Theorem 2.1, one of the three quadratic extensions of k has cyclic 2-class group and

the two others have 2-class groups of type (2, 2) which is already proved in Lemma 4.6.

The 2-class groups of K1 and K3 are of type (2, 2). They are both sub-extensions

of k(1) which has a cyclic 2-class group (since G′

k
≃ Gal(k(2)/k(1)) ≃ CL2(k

(1)) is

a cyclic group), and there are exactly two classes in K1 and K3 capitulating in k(1)

(Corollary 4.10), so neither GK1 nor GK3 is dihedral. Hence the result comes by

Table 2. �

R em a r k 4.12. At the first step in the above proof, we showed that Gk is quater-

nion or semidihedral. Note that it is impossible to decide whether Gk is quaternion or

semidihedral by using the usual method given by Kisilevsky (by determining whether

Ki/k is of type A or B, i = 1, 3). In fact, it is hard to determine the generators of

the 2-class groups. For this reason the authors of [3] couldn’t decide whether Gk is

quaternion or semidihedral with k = Q
(√

−2,
√
pq
)

for two primes p ≡ 5 (mod 8)

and q ≡ 7 (mod 8) (see [3], Corollary 17). Using the same techniques described in

the general context in Section 3, we gave the answer in [7], Remark 5.7.

A c k n ow l e d g em e n t. We are very grateful to the unknown referee for his/her

several helpful suggestions, that enabled us to improve our paper, and for calling our

attention to some missing details.
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