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Abstract. Let L be a lattice with the greatest element 1. Following the concept of gener-
alized small subfilter, we define g-supplemented filters and investigate the basic properties
and possible structures of these filters.
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1. Introduction

In this paper, we extend several concepts from module theory to lattice theory.

With a careful generalization, we can cover some basic corresponding results in the

former setting. The main difficulty is figuring out what additional hypotheses the

lattice or filter must satisfy to get similar results. Nevertheless, growing interest in

developing the algebraic theory of lattices can be found in several papers and books

(see for example [1], [2], [4], [5], [6]).

Since Kasch and Mares (see [7]) defined the notions of perfect and semiperfect

for modules, the notion of a supplemented module has been used extensively by

many authors. In a series of papers, Zöschinger has obtained detailed information

about supplemented and related modules, see [13]. Supplemented modules are also

discussed in [9]. Recently, the study of the supplemented property in the rings,

modules, and lattices has become quite popular (see for example [3], [4], [8], [10],

and [11]). Wisbauer calls a module M supplemented if, for every submodule N

of M , there is a submodule K of M such that M = N + K and N ∩K is a small

submodule of K. In [11], the basic properties of supplemented modules are given.

A submodule N of an R-module M is called generalized small in M (denoted by

N ≪g M), if N+K = M with K essential inM implies K = M (see [12]). Let N , K
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be submodules of M . Module K is called a generalized supplement of N in M if

M = N +K and N ∩K ≪g K. A module M is called generalized supplemented if

every submodule of M has a generalized supplement in M (see [8], [10]).

Let L be a distributive lattice with 1. In the present paper, we are interested

in investigating (amply) generalized supplemented filters to use other notions of

generalized supplemented, and find out which exist in the literature as laid forth

in [8]. We shortly summarize the content of the paper. If A is a subset of a lattice L,

then the filter generated by A, denoted by T (A), is the intersection of all filters that

contains A. Among many results in this paper, in Section 2, we introduce the class of

all essential subfilters to generalize small subfilters and the class of all small subfilters

to generalize essential subfilters, respectively (see [12]). It is defined (Definition 2.2)

that a subfilter U of a filter F of L is said to be g-small in F , written U ≪g F , if

T (U ∪ V ) = F with V E F implies V = F (U is said to be g-essential in F , written

U Eg F , if U ∩V = {1} with V ≪ F implies V = F ). In Theorem 2.3, we show that

for a subfilter U of a filter F of L the following assertions are equivalent:

(1) U ≪g F ;

(2) If F = T (U ∪ V ), then there is a semisimple subfilter V ′ of F such that

F = V ⊕ V ′.

Some basic properties of g-small subfilters and g-essential subfilters are given in

Lemma 2.5, Theorem 2.7, Theorem 2.8, Lemma 2.10 and Theorem 2.11. Moreover,

the generalized maximal subfilter and the generalized radical of a filter F (denoted

by Radg(F )) are defined, and the relationship between the generalized radical and

the radical of F is investigated. Using these, we observe in Theorem 2.14 that if F is

a filter of L, then Radg(F ) = T (∪V≪gFV ). We also prove in Theorem 2.18, that if F

is a finitely generated filter of L and F has a proper essential subfilter, then every

proper essential subfilter of F is contained in a generalized maximal subfilter. In

Section 3, we use the concepts of g-small subfilters (see [12]) to introduce a generalized

supplemented filter or briefly a g-supplemented filter (Definition 3.1). Some basic

properties of g-supplement subfilters are given in Proposition 3.3, Theorem 3.5 and

Corollary 3.9. We show in Theorem 3.4 that if V is a subfilter of a filter F of L such

that V is a g-supplement of an essential subfilter of F , then Radg(V ) = V ∩Radg(F ).

We also prove in Theorem 3.13 that if F = T (F1 ∪ F2) with F1 and F2 being g-

supplemented filters, then F is also g-supplemented. Moreover, it is shown that

if F is a g-supplemented filter of L, then there exist a semisimple subfilter K and a

subfilter V with Radg(V ) E V such that F = K ⊕ V (Theorem 3.17). Finally, the

definition of amply generalized supplemented filters is given with some properties of

these filters. Quotient lattices are determined by equivalence relations rather than

by ideals as in the ring case. There are many different definitions of a quotient lattice

appearing in the literature. In Section 4, quotient filters are defined and some possible
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properties of these filters are investigated. It is proved that every quotient filter of a g-

supplemented filter is g-supplemented (Theorem 4.7). We also prove in Theorem 4.8

that if F is a g-supplemented filter of L, then F/Radg(F ) is a semisimple filter.

Let us briefly review some definitions and tools that are used later (see [1], [2]).

By a lattice we mean a poset (L,6) in which every couple of elements x, y has

a g.l.b. (called the meet of x and y, and written x ∧ y) and an l.u.b. (called the

join of x and y, and written x ∨ y). A lattice L is complete when every of its

subsets X has an l.u.b. and a g.l.b. in L. Setting X = L, we see that any nonvoid

complete lattice contains the least element 0 and greatest element 1 (in this case,

we say that L is a lattice with 0 and 1). A lattice L is called a distributive lattice

if (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c in L (equivalently, L is distributive if

(a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in L). A nonempty subset F of a lattice L

is called a filter, if for a ∈ F , b ∈ L, a 6 b implies b ∈ F and x ∧ y ∈ F for all

x, y ∈ F (so if L is a lattice with 1, then 1 ∈ F and {1} is a filter of L). A proper

filter P of L is said to be maximal if it holds that if E is a filter in L with P ( E,

then E = L. If F is a filter of a lattice L, then the radical of F , denoted by Rad(F ),

is the intersection of all maximal subfilters of F .

Let L be a lattice. If H is a subset of L, then the filter generated by H , denoted

by T (H), is the intersection of all filters that contains H . A filter F is called finitely

generated if there is a finite subset H of F such that F = T (H). A subfilter G of a

filter F of L is called small in F , written G ≪ F , if, for every subfilter H of F , the

equality T (G ∪H) = F implies H = F . A subfilter G of F is called essential in F

(written G E F ) if G∩H 6= {1} for any subfilter H 6= {1} of F . Let G be a subfilter

of a filter F of L. A subfilter H ⊆ F is called a supplement of G in F if H is a

minimal element in the set of subfilters U ⊆ F with T (G ∪ U) = F . A filter F of L

is called supplemented if every subfilter of F has a supplement in F . A subfilter G

of a filter F of L has ample supplements in F if, for every subfilter H of F with

F = T (H ∪ G), there is a supplement H ′ of G with H ′ ⊆ H . If every subfilter of a

filter F has ample supplements in F , then we call F amply supplemented. A filter F

of a lattice L is called hollow if F 6= {1} and every proper subfilter G of F is small

in F . Filter F is called local if it has exactly one maximal subfilter that contains all

proper subfilters.

Proposition 1.1. Let L be a lattice.

(1) A nonempty subset F of L is a filter of L if and only if x ∨ z ∈ F and x∧ y ∈ F

for all x, y ∈ F , z ∈ L. Moreover, since x = x∨ (x ∧ y), y = y ∨ (x ∧ y) and F is

a filter, x ∧ y ∈ F gives x, y ∈ F for all x, y ∈ L, see [6], [5].

(2) If F is a filter of L, then Rad(F ) = T
(

⋃

G≪F

G
)

, see [4].
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2. Generalized small subfilters

Throughout this paper, we assume, unless otherwise stated, that L is a dis-

tributive lattice with 1. In this section, generalizations of small subfilters and

essential subfilters, g-small subfilters and g-essential subfilters are introduced, and

some their properties are investigated. We need the following lemma proved in [4],

Proposition 2.1.

Lemma 2.1.

(1) Let A be an arbitrary nonempty subset of L. Then T (A) = {x ∈ L : a1∧a2∧. . .∧

an 6 x for some ai ∈ A} (1 6 i 6 n). Moreover, if F is a filter and A is a subset

of L with A ⊆ F , then T (A) ⊆ F , T (F ) = F and T (T (A)) = T (A).

(2) Let A, B and C be subfilters of a filter F of L. Then T (T (A∪B)∪C) ⊆ T (A∪

T (B∪C)). In particular, if F = T (T (A∪B)∪C), then F = T (T (C ∪B)∪A) =

T (T (A ∪ C) ∪B).

(3) (Modular law) If F1, F2, F3 are filters of L with F2 ⊆ F1, then F1∩T (F2∪F3) =

T (F2 ∪ (F1 ∩ F3)).

Let U be a subfilter of a filter F of L. If subfilter V of F is maximal with respect

to U ∩ V = {1}, then we say that V is a complement of U . Using the maximal

principle we readily see that if U is a subfilter of F , then the set of those subfilters

of F whose intersection with U is {1} contains the maximal element V . Thus every

subfilter U of F has a complement.

Definition 2.2. Let U be a subfilter of a filter F of L.

(1) U is said to be generalized small in F (or, briefly, g-small in F ), written

U ≪g F , if T (U ∪ V ) = F with V E F implies V = F .

(2) U is said to be generalized essential in F (or, briefly, g-essential in F ), written

U Eg F , if U ∩ V = {1} with V ≪ F implies V = F .

It is clear that if F is a filter of L, then {1} ≪g F .

A lattice L is called semisimple, if for every proper filter F of L, there exists a

filter G of L such that L = T (F ∪G) and F ∩G = {1}. In this case, we say that F is

a direct summand of L and we write L = F⊕G. A filter F of L is called a semisimple

filter, if every subfilter of F is a direct summand. A simple filter is a filter that has

no filters besides the {1} and itself (see [4]).

We are now in a position to prove necessary and sufficient conditions on a sub-

filter U of a filter F of L such that U ≪g F . Compare the next theorem with

Proposition 2.3 in [12].
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Theorem 2.3. Let U be a subfilter of a filter F of L. Then the following state-

ments are equivalent:

(1) U ≪g F ;

(2) If F = T (U ∪ V ), then there is a semisimple subfilter V ′ of F such that F =

V ⊕ V ′.

P r o o f. (1) ⇒ (2): Let V ′ be a complement of V in F . We first show that

T (V ∪ V ′) E F . If {1} 6= K ⊆ F and T (V ∪ V ′) ∩ K = {1}, then we prove that

V ∩ T (V ′ ∪K) = {1}. Let x ∈ V ∩ T (V ′ ∪K). Then x ∈ V and x = (a ∧ b) ∨ x =

(x ∨ a) ∧ (x ∨ b) for some a ∈ V ′ and b ∈ K. As a ∨ x ∈ V ∩ V ′ = {1}, we get

x = b ∨ x ∈ K. Thus x ∈ K ∩ T (V ∪ V ′) = {1}, contrary to the maximality of V ′.

Thus T (V ∪V ′) E F . Since F = T (F ∪V ′) = T (T (U ∪V )∪V ′) = T (U ∪T (V ∪V ′))

and U ≪g F , it follows that T (V ∪ V ′) = F . To see that V ′ is semisimple, let H

be a subfilter of V ′. Then F = T (T (U ∪ V ) ∪ H) = T (T (V ∪ H) ∪ U). Arguing

as above with T (V ∪ H) replacing V , there exists a subfilter K of F such that

F = T (T (V ∪H)∪K) = T (H∪T (V ∪K)) and T (V ∪H)∩K = {1}. By the modular

law, V ′ = V ′ ∩ T (H ∪ T (V ∪K)) = T (H ∪ (V ′ ∩ T (V ∪K))). Now it is enough to

show that H ∩ (V ′∩T (V ∪K)) = H ∩T (V ∪K) = {1}. Let x ∈ H∩T (V ∪K). Then

there are elements k ∈ K and v ∈ V such that x = (k ∧ v) ∨ x = (x ∨ k) ∧ (x ∨ v).

Since H and V are filters, x ∨ v ∈ H ∩ V ⊆ V ∩ V ′ = {1} which implies that

x = x ∨ k ∈ K ∩H ⊆ K ∩ T (V ∪H) = {1}.

(2) ⇒ (1): Let K E F and F = T (U ∪ K). Then there is a subfilter K ′ of F

such that F = T (K ∪ K ′) and K ∩ K ′ = {1}. Then K E F gives K = F ; hence

U ≪g F . �

A filter F is called indecomposable if it holds that if F 6= {1} and F = T (G ∪H)

with H ∩H = {1}, then either G = {1} or H = {1}, see [4].

Corollary 2.4. Let F be an indecomposable filter of L. A proper subfilter U

of F is small if and only if it is g-small.

P r o o f. Clearly, every small subfilter of F is g-small. Conversely, assume that

U ≪g F and F = T (U ∪ V ) for some subfilter V of F . By Theorem 2.3, there exists

a subfilter V ′ of F such that F = V ⊕ V ′. But F is indecomposable and V 6= {1},

so V = F . Thus U ≪ F . �

Compare the next lemma with Lemma 1 in [8].

Lemma 2.5. Let F be a filter of L. Then the following assertions are true:

(1) If U ≪g F and U ′ ⊆ U , then U ′ ≪g F .

(2) If U and U ′ are subfilters of F with U ≪g U ′, then U is a generalized small sub-

filter in subfilters of F that contains the subfilter of U ′. In particular, U ≪g F .
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(3) U1, U2 are generalized small subfilters of F if and only if T (U1∪U2) is generalized

small in F .

(4) If U1, U2, V1 and V2 are subfilters of F with U1 ≪g U2 and V1 ≪g V2, then

T (U1 ∪ V1) ≪g T (U2 ∪ V2).

P r o o f. (1) Let T (U ′ ∪ V ) = F for an essential subfilter V of F . Then F =

T (U ′ ∪ V ) ⊆ T (U ∪ V ) ⊆ F gives T (U ∪ V ) = F ; so V = F . Thus U ′ ≪g F .

(2) Assume that V is a subfilter of F with U ′ ⊆ V and let T (U ∪K) = V for an

essential subfilter K of V . Since U ⊆ U ′,

U ′ = U ′ ∩ V = U ′ ∩ (T (U ∪K)) = T (U ∪ (U ′ ∩K))

by the modular law. Now U ≪g U ′ and K ∩ U ′ E U ′ gives U ′ = U ′ ∩ K; so

U ⊆ U ′ ⊆ K. Hence V = T (U ∪K) = T (K) = K. Thus U ≪g V . The particular

statement is clear.

(3) Let U1 ≪g F and U2 ≪g F . Let G be an essential subfilter of F such that

T (T (U1∪U2)∪G) = F . By Lemma 2.1, F = T (T (U1∪U2)∪G) = T (U1∪T (U2∪G)).

As G ⊆ T (U2 ∪ G) and G E F , we have T (G ∪ U2) E F . Now U1 ≪g F gives

F = T (U2 ∪G); hence G = F since U2 ≪g F . Thus T (U1 ∪ U2) ≪g F . Conversely,

since for each i (i = 1, 2), Ui ⊆ T (U1 ∪ U2), Ui ≪g F by (1).

(4) By (2), U1 ⊆ U2 ⊆ T (U2 ∪ V2) gives U1 ≪g T (U2 ∪ V2). Similarly, V1 ≪g

T (U2 ∪ V2). Thus T (U1 ∪ V1) ≪g T (U2 ∪ V2) by (3). �

At this stage it is useful to give an elementary remark about essential subfilters of

a filter which we will use without further comment.

R em a r k 2.6 ([4]). Let G be a subfilter of a filter F of L. Then G E F if and

only if for every 1 6= x ∈ F there exists an element a ∈ L such that 1 6= a ∨ x ∈ G.

To see that, assume G E F and 1 6= x ∈ F . Then T ({x}) ∩ G 6= {1}; so there is

an element 1 6= y ∈ G with y = y ∨ x ∈ G. Conversely, if the condition holds and

1 6= x ∈ H ⊆ F , there is an element a ∈ L such that 1 6= a ∨ x ∈ G ∩H .

Theorem 2.7. Let U , V be subfilters of a filter F of L such that V is a direct

summand of F with U ⊆ V . Then U ≪g F if and only if U ≪g V .

P r o o f. If U ≪g V , then U ≪g F by Lemma 2.5 (2). Conversely, assume that

U ≪g F . By assumption, there is a subfilter V ′ of F such that F = T (V ∪ V ′)

and V ∩ V ′ = {1}. To see that U ≪g V , assume V = T (U ∪K) for some K E V .

Then F = T (V ′ ∪ T (U ∪K)) = T (U ∪ T (V ′ ∪K)) by Lemma 2.1. We claim that

T (V ′∪K) E F . Let 1 6= x ∈ F . Then x = (a∧b)∨x = (a∨x)∧(b∨x) for some a ∈ V

and b ∈ V ′. If a∨ x = 1, then b 6= 1 and 1 6= b∨ x = x ∈ V ′ ⊆ T (V ′ ∪K). So we can
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assume that a∨x 6= 1. Then a∨x ∈ V gives that there is an element 1 6= c ∈ L such

that 1 6= a ∨ x ∨ c ∈ K which implies that c ∨ x = (c ∨ x ∨ a) ∧ (c ∨ x ∨ b) 6= 1. Now

c∨ x = c∨ x((c ∨ a∨ x)∧ (c∨ b∨ x)) gives c∨ x ∈ T (V ′ ∪K); hence T (V ′ ∪K) E F

by Remark 2.6. Since U ≪g F , we get T (V ′ ∪ K) = F . Let z ∈ V ⊆ F . There

are elements v′ ∈ V and k ∈ K such that z = (v′ ∧ k) ∨ z = (z ∨ v′) ∧ (z ∨ k). As

z ∨ v′ ∈ V ∩ V ′ = {1}, we have z = z ∨ k ∈ K. Thus K = V and so U ≪g V . �

Compare the next theorem with Proposition 2.5 (3) in [12].

Theorem 2.8. Assume that U1, V1, U2 and V2 are subfilters of a filter F of L

and let U1 ⊆ U2, V1 ⊆ V2 and F = U2 ⊕ V2. Then U1 ⊕ V1 ≪g U2 ⊕ V2 if and only if

U1 ≪g U2 and V1 ≪g V2.

P r o o f. If U1 ≪g U2 and V1 ≪g V2, then T (U1 ∪ V1) ≪g T (U2 ∪ V2) by

Lemma 2.5 (4). To see the other implication, U1 ⊆ T (U1 ∪ V1) ≪g F = T (U2 ∪ V2)

gives U1 ≪g F by Lemma 2.5 (1). Since U2 is a direct summand of F and U1 ⊆ U2,

we get U1 ≪g U2 by Theorem 2.7. Similarly, V1 ≪g V2. �

Corollary 2.9. Assume that U1, V1, U2 and V2 are subfilters of a filter F of L

and let U1 ⊆ U2, V1 ⊆ V2 and F = U2 ⊕ V2. Then U1 ⊕ V1 ≪ U2 ⊕ V2 if and only if

U1 ≪ U2 and V1 ≪ V2.

P r o o f. If U1 ≪ U2 and V1 ≪ V2, then T (U1 ∪ V1) ≪ T (U2 ∪ V2) by [4],

Lemma 2.5 (4). To see the other implication, U1 ⊆ T (U1 ∪ V1) ≪ F = T (U2 ∪ V2)

gives U1 ≪ F by [4], Lemma 2.5 (1). Since U2 is a direct summand of F (so it is a

supplement in F ) and U1 ⊆ U2, we get U1 ≪ U2 by [4], Proposition 3.6. Similarly,

V1 ≪ V2. �

Lemma 2.10.

(1) If U 6= {1} is a subfilter of a filter F of L, then U Eg F if and only if for every

1 6= x ∈ F ; if T ({x}) ≪ F , then there exists a ∈ L such that 1 6= a ∨ x ∈ U .

(2) Let U , V , K be subfilters of a filter F of L with K ⊆ U .

(a) If K Eg F , then K Eg U and U Eg F .

(b) U ∩ V Eg F if and only if U Eg F and V Eg F .

P r o o f. (1) Let U Eg F . For every 1 6= x ∈ F , if T ({x}) ≪ F , then

T ({x}) 6= {1} and T ({x})∩U 6= {1}. Therefore, there is an element a ∈ L such that

1 6= a ∨ x ∈ U . Conversely, assume that H is a small subfilter of F and 1 6= x ∈ H .

By Lemma 2.5 (1), T ({x}) ≪ F ; so there exists c ∈ L such that 1 6= c ∨ x ∈ U ∩H .

Thus U Eg F .
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(2a) If K ∩K ′ = {1} with K ′ ≪ U , then [4], Lemma 2.5 (1) gives K ′ ≪ F ; hence

K ′ = U . Thus K Eg U . Moreover, if U ∩G = {1} with G ≪ F , then K ∩G = {1}

gives G = F , and so U Eg F .

(2b) Assume that U ∩ V Eg F and let U ∩ V ′ = {1} for some small subfilter V ′

of F . Then U ∩ V ∩ V ′ = {1} gives V ′ = F . So U Eg F . Similarly, V Eg F .

Conversely, assume that U ∩ V ∩K = {1} for some K ≪ F . Then V ∩K = F since

U Eg F ; hence K = F . Thus U ∩ V Eg F . �

Compare the next theorem with Proposition 2.7 in [12].

Theorem 2.11. Assume that U1, V1, U2 and V2 are subfilters of F and let

U1 ⊆ V1, U2 ⊆ V2 and F = V1 ⊕ V2. Then U1 ⊕ U2 Eg V1 ⊕ V2 if and only if

U1 Eg V1 and U2 Eg V2.

P r o o f. Suppose, say, that U1 is not g-essential in V1; so U1 ∩ K = {1} for

some small subfilter K 6= {1} of V1. Let x ∈ T (U1 ∪ U2) ∩ K. Then x ∈ K and

x = (u1∧u2)∨x = (x∨u1)∧ (x∨u2) for some u1 ∈ U1 and u2 ∈ U2. Since K and U1

are filters, x∨ u1 ∈ K ∩U1 = {1}; hence x ∈ U2. Therefore x ∈ V1 ∩ V2 = {1}. Thus

T (U1 ∪ U2) ∩K = {1} which is impossible. Thus U1 Eg V1 and U2 Eg V2.

Conversely, assume that 1 6= x = (v1∧v2)∨x = (v1∨x)∧ (v2 ∨x) ∈ T (V1∪V2) for

some vi ∈ Vi such that T ({x}) ≪ T (V1 ∪V2). We can easily show that T ({v1 ∨x})∩

T ({v2 ∨ x}) = {1} and T (T ({v1 ∨ x}) ∪ T ({v2 ∨ x})) ⊆ T ({x}) ≪ T (V1 ∪ V2), which

implies that T (T ({v1 ∨ x}) ∪ T ({v2 ∨ x})) ≪ T (V1 ∪ V2); hence T ({v1 ∨ x}) ≪ V1

and T ({v2 ∨ x}) ≪ V2 by Corollary 2.9. Then by Lemma 2.10 (1), there is some

a1 ∈ L such that 1 6= a1 ∨ (v1 ∨ x) ∈ U1. If a1 ∨ (v2 ∨ x) ∈ U2, then 1 6= a1 ∨ x =

a1∨ ((v1∨x)∧ (v2∨x)) = (a1∨v1∨x)∧ (a1v2∨x) ∈ T (U1∪U2). If a1∨ (v2∪x) /∈ U2,

then again by Lemma 2.10 (1), there is a2 ∈ L with 1 6= a2 ∨ a1 ∨ (v2 ∨ x) ∈ U2 and

we have 1 6= a1 ∨ a2 ∨ x ∈ T (U1 ∪ U2). Thus T (U1 ∪ U2) E T (V1 ∪ V2). �

Corollary 2.12 ([4], Lemma 2.15 (2)). Assume that U1, V1, U2 and V2 are sub-

filters of F and let U1 ⊆ V1, U2 ⊆ V2 and F = V1 ⊕ V2. Then U1 ⊕ U2 E V1 ⊕ V2 if

and only if U1 E V1 and U2 E V2.

Definition 2.13. Let K be a subfilter of a filter F of L. If K is both maximal

and essential in F , then K is called a generalized maximal subfilter of F . The

intersection of all generalized maximal subfilters of F is called the generalized radical

of F denoted by Radg(F ). If F does not have generalized maximal subfilters, then

we write Radg(F ) = F .

Compare the next theorem with Theorem 2.10 in [12].
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Theorem 2.14. Let F be a filter of L such that it has at least one generalized

maximal subfilter. Then the following statements hold:

(1) x ∈ Radg(F ) if and only if T ({x}) ≪g F .

(2) Radg(F ) = T
(

⋃

V≪gF

V
)

.

P r o o f. (1) Suppose that T ({x}) is not generalized small in F and set

Ω = {U : x /∈ U, U E F, and T (U ∪ T ({x})) = F}.

As T ({x}) is not generalized small in F , we conclude that Ω 6= ∅. Clearly, every

chain has an upper bound by inclusion in Ω; hence Ω contains a maximal element K

by Zorn’s lemma. Let U be a subfilter of F such that K ( U ⊆ F . Then x ∈ U by

maximality of K and so F = T (G∪ T ({x})) ⊆ U ; hence F = U . Thus K is a gener-

alized maximal subfilter of F with x /∈ K. Since Radg(F ) ⊆ K, we get x /∈ Radg(F ),

which is impossible. Therefore T ({x}) ≪g F . The other implication is clear.

(2) Let V ≪g F . If K is a generalized maximal subfilter of F and V * K, then

T (V ∪ K) = F ; but since V ≪g F , we have K = F , which is a contradiction.

Therefore, V is contained in every generalized maximal subfilter of F and hence

T
(

⋃

V≪F

V
)

⊆ Radg(F ). For the reverse inclusion, assume that x ∈ Radg(F ). Then

x ∈ T ({x}) ⊆ T
(

⋃

V ≪gF

V
)

by (1), and so we have equality. �

Corollary 2.15. Let F be a filter of L. Then the following statements hold:

(1) If F does not have generalized maximal subfilters, then Radg(F ) = T
(

⋃

V ≪gF

V
)

.

(2) Rad(F ) ⊆ Radg(F ).

R em a r k 2.16. Let F be a simple filter of L. Then Radg(F ) = F and

Rad(F ) = {1}; hence Radg(F ) 6= Rad(F ).

Proposition 2.17. Let F be a filter of L. Then the following statements hold:

(1) Radg(F ) = F if and only if all finitely generated subfilters are g-small subfilters

of F .

(2) Let Rad(F ) 6= F . If every proper essential subfilter F is contained in a general-

ized maximal subfilter, then Rad(F ) ≪g F

P r o o f. (1) Assume that Radg(F ) = F and let H = T (A), where A =

{a1, a2, . . . , an} ⊆ H. By assumption, T ({ai}) ≪g F (1 6 i 6 n), and so by

Lemma 2.5 (3), S = T (T ({a1}) ∪ . . . ∪ T ({an})) ≪g F . Now by Lemma 2.5 (1),

H ⊆ S gives H ≪g F . Conversely, assume that x ∈ F . Then by assumption,

T ({x}) ≪g F ; hence x ∈ T ({x}) ⊆ Radg(F ) by Theorem 2.14.
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(2) Let G be an essential subfilter of F such that F = T (Rad(F ) ∪G). If F 6= G,

then there is a generalized maximal subfilter H of F such that G ⊆ H ; hence

F ⊆ T (Rad(F ) ∪ H) = T (H) = H which is impossible. Thus G = F , and so

Rad(F ) ≪g F . �

Compare the next theorem with Theorem 5 in [8].

Theorem 2.18. If F is a finitely generated filter of L and F has a proper essential

subfilter, then every proper essential subfilter of F is contained in a generalized

maximal subfilter.

P r o o f. Assume that H is a proper essential subfilter of F and let F = T (A),

where A = {a1, a2, . . . , an} ⊆ F . Since H 6= F , it cannot contain all of the generators

a1, . . . , an. By reordering the generators, if necessary, it is possible to find a1, . . . , ak
such that F = T (H ∪ T ({a1, . . . , ak})) but F 6= T (H ∪ T ({a2, . . . , ak})). Set K =

T (H∪T ({a2, . . . , ak})); so a1 /∈ K. At first we show that F has a subfilter Gmaximal

with respect to K ⊆ G and a1 /∈ G. Consider the set Ω = {U : U is a subfilter of F ,

K ⊆ U and a1 /∈ U}. This set is not empty since K ∈ Ω. Clearly, Ω is closed under

taking unions of chains and so the result follows by Zorn’s lemma. Let G be the

maximal element of Ω. Let V be a subfilter of F such that G ( V ⊆ F . Then

a1 ∈ V by the maximality of G and so F = T (K ∪ T ({a1})) ⊆ V ; hence F = V .

Thus H ⊆ K is contained in a maximal subfilter G and G E F because H E F . �

Definition 2.19. A filter F of L is called a generalized hollow filter if every

proper subfilter of F is generalized small in F .

It is clear that every hollow filter is a generalized hollow filter. Compare the next

theorem with Theorem 4 in [8].

Theorem 2.20. Let F be a filter of L such that Radg(F ) 6= F . The following

conditions are equivalent:

(1) F is a generalized hollow filter;

(2) F is a local filter;

(3) F is a hollow filter.

P r o o f. (1) ⇒ (2): Let G be a proper subfilter of a generalized hollow filter F .

Then G ≪g F gives G ⊆ Radg(F ) by Theorem 2.14 (2). Since Radg(F ) 6= F , F is

local, as needed.

(2)⇒ (3): Assume that F is a local filter with unique maximal subfilter of K and

let U be a proper subfilter of F with T (U ∪ V ) = F for some subfilter V of F . If

V 6= F , then F ⊆ T (K ∪ U) = T (K) = K, a contradiction. Thus F = V .

(3) ⇒ (1): Clear. �
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3. Generalized supplemented filters

In this section, we define the concept of generalized supplemented filters of a lattice

and we prove some basic properties concerning such filters. We begin with the key

definition of this section.

Definition 3.1. Let U and V be subfilters of a filter F of L. If F = T (U ∪ V )

and F = T (U ∪K) with K E V implies that V = K, then V is called a generalized

supplement (or briefly a g-supplement) of U in F . If every subfilter of F has a

g-supplement in F , then F is called a generalized supplemented (or briefly a g-

supplemented) filter.

The supplemented filters are g-supplemented. Compare the next lemma with

Lemma 2 in [8].

Lemma 3.2. Let U , V be subfilters of a filter F of L. V is a g-supplement of U

in F if and only if T (U ∪ V ) = F and U ∩ V ≪g V .

P r o o f. Let V be a g-supplement of U in F (so T (U ∪ V ) = F ). Let Y E V

with T (Y ∪ (U ∩ V )) = V . Then by Lemma 2.1, we have

F = T (U ∪ V ) = T (T ((U ∩ V ) ∪ Y ) ∪ U)

= T (T (U ∪ (U ∩ V )) ∪ Y ) = T (T (U) ∪ Y ) = T (U ∪ Y ),

which implies that V = Y because V is a g-supplement of U in F and Y E V . Thus

U ∩ V ≪g V . Conversely, assume that T (U ∪ V ) = F and U ∩ V ≪g V . For X E V

with T (X∪U) = F , we have V = V ∩F = V ∩T (X∪U) = T (X∪(V ∩U)) by the mod-

ular law. Now U ∩ V ≪g V gives X = V . Hence V is a g-supplement of U in F . �

Proposition 3.3. Let U , V be subfilters of a filter F of L. Assume V to be a

g-supplement of U . Then the following assertions are true:

(1) If T (V ∪ U ′) = F for some U ′ ⊆ U , then V is a g-supplement of U ′.

(2) If K ≪g F and V E F , then V is a g-supplement of T (U ∪K).

(3) If K is a subfilter of V and U E F , then K ≪g V if and only if K ≪g F .

P r o o f. (1) By Lemma 3.2, it is enough to show that U ′ ∩ V ≪g V . Assume

that X is an essential subfilter of V such that T (X ∪ (U ′ ∩ V )) = V . Now V =

T (X ∪ (U ′ ∩ V )) ⊆ T (X ∪ (U ∩ V )) ⊆ V gives V = T (X ∪ (U ∩ V )); hence X = V

since U ∩ V ≪g V . Thus V is a g-supplement of U ′.

(2) By Lemma 2.1, we have that F = T (U ∪ V ) ⊆ T (T (U ∪ K) ∪ V ) ⊆ F ; so

T (T (U ∪ K) ∪ V ) = F . Assume that Y is an essential subfilter of V (so Y E F )
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such that T (T (U ∪ K) ∪ Y ) = F ; we show that Y = V . By Lemma 2.1, F =

T (T (U ∪K) ∪ Y ) = T (T (U ∪ Y ) ∪K). Since Y E F and Y ⊆ T (Y ∪ U), we clearly

see that T (Y ∪U) is essential in F . Now K ≪g F gives T (U ∪Y ) = F ; hence Y = V

since V is a g-supplement of U . Thus V is a g-supplement of T (U ∪K).

(3) If K ≪g V , then K ≪g F by Lemma 2.5 (2). Assume that K ≪g F and let

G E V with V = T (G ∪K). F = T (U ∪ V ) gives

F = T (U ∪ T (G ∪K)) = T (K ∪ T (G ∪ U)).

As U E F and U ⊆ T (G∪U), we get T (U∪G) E F which implies that T (G∪U) = F .

Since V is a g-supplement of U in F , G = V . Thus K ≪g V . �

Compare the next theorem with 41.1 (5) in [11].

Theorem 3.4. Let V be a subfilter of a filter F of L such that V is a g-supplement

of an essential subfilter of F . Then Radg(V ) = V ∩ Radg(F ).

P r o o f. By Proposition 3.3 (3) and Theorem 2.14, it is clear that Radg(V ) ⊆

V ∩ Radg(F ). For the reverse inclusion, assume that x ∈ Radg(F ) ∩ V . Since x ∈

Radg(F ), by Theorem 2.14 (1) then T ({x}) ≪g F , which implies that T ({x}) ≪g V

by Proposition 3.3 (3); hence x ∈ T ({x}) ⊆ Radg(V ), and so we have equality. �

Compare the next theorem with 41.1 (3) in [11].

Theorem 3.5. Let V be a subfilter of a filter F of L such that U is an essential

maximal subfilter of F and V is a g-supplement of U in F . Then Radg(V ) = U ∩ V .

P r o o f. Since T (U ∪ V ) = F and U is a maximal subfilter of F , then V * U ;

so U ∩ V 6= V . Let K be a subfilter of V such that U ∩ V ( K ⊆ V . Then

there is an element x ∈ K ⊆ V with x /∈ U . Now U ( T (T ({x}) ∪ U) ⊆ F gives

F = T (T ({x})∪ U). By the modular law, we conclude that

V = V ∩ T (T ({x}) ∪ U) = T (T ({x}) ∪ (U ∩ V )) ⊆ K;

so V = K. Thus U ∩ V is a maximal subfilter of V . Since U is essential in F ,

we clearly see that U ∩ V is essential in V . So Radg(V ) ⊆ U ∩ V . As V is a g-

supplement of U , U ∩V ≪g V ; hence U ∩V ⊆ Radg(V ) by Theorem 2.14 (2). Hence

Rad(V )g = U ∩ V . �

Proposition 3.6. Let V be a g-supplement of U in a filter F of L. If H is a

subfilter of V and K E V , then H is a g-supplement of K in V if and only if H is a

g-supplement of T (K ∪ U) in F .

536



P r o o f. Let H be a g-supplement of K in V . Then V = T (K ∪ H) gives F =

T (U ∪T (K∪H)) = T (H∪T (U ∪K)). Let F = T (G∪T (U ∪K)) = T (U ∪T (G∪K))

with G E H . Since K E V and K ⊆ T (G ∪K) ⊆ V , then T (G ∪K) E V . Now V

is a g-supplement of U , which gives V = T (G ∪ K). Since G E H and H is a

g-supplement of K in V , G = H .

Conversely, let H be a g-supplement of T (K∪U) in F ; so F = T (H∪T (K∪U)) =

T (U ∪ T (K ∪ H)). Since K E V and K ⊆ T (H ∪ K) ⊆ V , thus T (K ∪ H) E V .

Then by V being a g-supplement of U in F , V = T (H ∪K). Let V = T (K ∪ G′)

with G′ E H . Then F = T (U ∪ V ) gives

F = T (U ∪ T (K ∪G′)) = T (G′ ∪ T (K ∪ U)).

Since G′ E H and H is a g-supplement of T (U ∪ K) in F , G′ = H . Thus H is a

g-supplement of K in V . �

Theorem 3.7. Let U and V be mutual g-supplements in a filter F of L. If G E U ,

G′ E V , H is a g-supplement of G in U and H ′ is a g-supplement of G′ in V , then

T (H ∪H ′) is a g-supplement of T (G ∪G′) in F .

P r o o f. Since U = T (G ∪H) and V = T (G′ ∪H ′), Lemma 2.1 gives

F = T (U ∪ V ) = T (T (G ∪H) ∪ V ) = T (G ∪ T (H ∪ V ))

⊆ T (G ∪ T (G′ ∪ T (H ∪H ′))) = T (T (G ∪G′) ∪ T (H ∪H ′)) ⊆ F ;

hence F = T (T (G∪G′)∪ T (H ∪H ′)). Since V is a g-supplement of U in F , G′ E V

and H ′ is a g-supplement G′ in V , then by Proposition 3.6, H ′ is a g-supplement

of T (U ∪ G′) in F ; so T (U ∪ G′) ∩H ′ ≪g H ′. Similarly, T (V ∪ G) ∩ H ≪g H . To

simplify our notation let

T (G∪G′∪H)∩H ′ = A, T (G∪G′∪H ′)∩H = B and T (G∪G′)∩T (H∪H ′) = C.

We first show that C ⊆ T (A ∪ B). Let x ∈ C. Then there are elements g ∈ G,

g′ ∈ G′, h ∈ H and h′ ∈ H ′ such that x = (g ∧ g′) ∨ x = (h ∧ h′) ∨ x; so x =

(g ∧ g′)∨ (h∧ h′)∨ x = ((g ∨ h)∧ (g ∨ h′)∧ (g′ ∨ h)∧ (g′ ∨ h′))∨ x ∈ T (A∪B). Thus

C ⊆ T (A ∪B). Since G ∪H ⊆ T (G ∪H), we have

A ⊆ T (G′ ∪ T (G ∪H)) ∩H ′ = T (G′ ∪ U) ∩H ′.

Similarly, B ⊆ T (G ∪ V ) ∩H . So

C ⊆ T (A ∪B) ⊆ T ((T (G′ ∪ U) ∩H ′) ∪ (T (G ∪ V ) ∩H)) = D.

As D ≪g T (H ∪ H ′) by Lemma 2.5 (4), C ⊆ D gives C ≪g T (H ∪ H ′) by

Lemma 2.5 (1). �
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Corollary 3.8. Let V be a supplement of U in a filter F of L. If H is a subfilter

of V and K E V , then H is a g-supplement of K in V if and only if H is a g-

supplement of T (K ∪ U) in F .

P r o o f. Since V is a supplement of U in F , V is a g-supplement of U in F . Now

the assertion follows from Proposition 3.6. �

Corollary 3.9. Let F = U ⊕ V . If H is a subfilter of V and K E V , then H is a

g-supplement of K in V if and only if H is a g-supplement of T (K ∪ U) in F .

P r o o f. Since F = T (U ∪ V ) and U ∩ V = {1} ≪ V , we get that V is a

supplement U in F . Now the assertion follows from Corollary 3.8. �

Corollary 3.10. Let U and V be mutual supplements in a filter F of L. If G E U ,

G′ E V , H is a g-supplement of G in U and H ′ is a g-supplement of G′ in V , then

T (H ∪H ′) is a g-supplement of T (G ∪G′) in F .

P r o o f. Since U and V are mutual supplements in F , we get that they are

mutual g-supplements in F . Then the assertion follows from Theorem 3.7. �

Corollary 3.11. Let F = U ⊕ V . If G E U , G′ E V , H is a g-supplement of G

in U and H ′ is a g-supplement of G′ in V , then T (H ∪ H ′) is a g-supplement of

T (G ∪G′) in F .

P r o o f. Since F = T (U∪V ), U∩V = {1} ≪ U and U∩V = {1} ≪ V , we get U

and V are mutual supplements in F . Now the assertion follows from Corollary 3.10.

�

Proposition 3.12. Assume that F1 and U are subfilters of a filter F of L and

let F1 be a g-supplemented filter. If T (F1 ∪ U) has a g-supplement in F , then the

same is true for U .

P r o o f. Let X be a g-supplement of T (F1 ∪U) in F ; so T (X ∪ T (F1 ∪U)) = F

andX∩T (F1∪U) ≪g X . Since F1 is g-supplemented, B = T (X∪U)∩F1 ⊆ T (X∪U)

has a g-supplement in F1, say Y (so T (Y ∪B) = F1). We now show that T (X ∪ Y )

is a g-supplement of U in F . By Lemma 2.1, we have

F = T (X ∪ T (F1 ∪ U)) ⊆ T (F1 ∪ T (X ∪ U)) = T (T (B ∪ Y ) ∪ T (X ∪ U))

⊆ T (Y ∪ T (B ∪ T (X ∪ U))) = T (Y ∪ T (X ∪ U))

⊆ T (U ∪ T (X ∪ Y )) ⊆ F ;
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hence F = T (U ∪T (X ∪Y )). It is enough to show that T (X ∪Y )∩U ≪g T (X ∪Y ).

As Y is a g-supplement of T (X ∪ U) ∩ F1 in F1,

A = Y ∩ T (X ∪ U) = Y ∩ (T (X ∪ U) ∩ F1) ≪g Y.

Since T (U ∪ Y ) ⊆ T (F1 ∪ U) and F = T (U ∪ T (X ∪ Y )) = T (X ∪ T (U ∪ Y )),

Lemma 2.5 (1) gives that X is also a g-supplement of T (U ∪ Y ) in F which implies

that B = T (U ∪ Y ) ∩ X ≪g X . We first show that T (X ∪ Y ) ∩ U ⊆ T (A ∪ B).

Let x ∈ T (X ∪ Y ) ∩ U . Then there are elements x′ ∈ X and y′ ∈ Y such that

x = x∨((x∨x′)∧(x∨y′)), where x∨x′ ∈ B and x∨y′ ∈ A; hence x ∈ T (A∪B). Now

by Lemma 2.5 (4), T (X ∪Y )∩U ⊆ T (A∪B) ≪g T (X ∪Y ); hence T (X ∪Y )∩U ≪g

T (X ∪ Y ) by Lemma 2.5 (1). �

Compare the next theorem with Theorem 1 in [8].

Theorem 3.13. Let F = T (F1 ∪ F2). If F1 and F2 are g-supplemented filters,

then F is a g-supplemented filter.

P r o o f. If U is any subfilter of F , then T (F2 ∪ U ∪ F1) = F . Let V be a

g-supplement of D = T (F2 ∪ U) ∩ F1 ⊆ T (F2 ∪ U) in F1; so T (V ∪ D) = F1 and

D ∩ V ≪g V . Moreover, D,F2 ∪ U ⊆ T (F2 ∪ U) gives T (D ∪ F2 ∪ U) ⊆ T (F2 ∪ U).

Now by Lemma 2.1, we have

F = T (F2 ∪ U ∪ F1) = T (F2 ∪ U ∪ T (V ∪D))

⊆ T (V ∪ T (F2 ∪ U ∪D)) ⊆ T (V ∪ T (F2 ∪ U)) ⊆ F ;

hence F = T (V ∪ T (F2 ∪ U)) which implies that V is a g-supplement of T (F2 ∪ U)

in F since V ∩ T (F2 ∪ U) = V ∩ T (F2 ∪ U) ∩ F1 ≪g V . Now the assertion follows

from Proposition 3.12. �

Corollary 3.14. If F1, . . . , Fn are g-supplemented filters of L, then T
( n
⋃

i=1

Fi

)

is

a g-supplemented filter.

Proposition 3.15. Let F be a g-supplemented filter of L. If V is a subfilter of F

with V ∩ Radg(F ) = {1}, then V is semisimple. In particular, if Radg(F ) = {1},

then F is semisimple.

P r o o f. Let V ′ be any subfilter of V . By assumption, there is a subfilter K of F

with F = T (V ′∪K) and V ′∩K ≪g K (so V ′∩K ⊆ Radg(K)). By the modular law,

V = V ∩T (V ′∪K) = T (V ′∪ (V ∩K)). As (V ∩K)∩V ′ = K ∩V ′ ⊆ V ∩Radg(K) ⊆

V ∩Radg(F ) = {1}, we get (V ∩K) ∩ V ′ = {1} and V = T (V ′ ∪ (V ∩K)). Thus V

is semisimple. Moreover, if Radg(F ) = {1}, then F ∩ Radg(F ) = {1}; hence F is

semisimple. �
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Proposition 3.16. Let F be a filter of L. Then the following statements hold:

(1) If U , V are subfilters of F such that F = U ⊕ V , then Radg(F ) = Radg(U) ⊕

Radg(V ).

(2) If F is semisimple, then Radg(F ) = {1}.

P r o o f. (1) By assumption, Radg(U) ∩ Radg(V ) ⊆ U ∩ V = {1} gives

Radg(U) ∩ Radg(V ) = {1}. By Lemma 2.5 (2), Radg(U),Radg(V ) ⊆ Radg(F ),

which implies that T (Radg(U) ∪ Radg(V )) ⊆ Radg(F ). For the reverse inclusion,

assume that x ∈ Radg(F ). By Theorem 2.14, x = (x1 ∧ x2 ∧ . . . ∧ xk) ∨ x, where

x1 ∈ F1 ≪g F, . . . , xk ∈ Fk ≪g F . By Lemma 2.5 (1), T ({x1}) ⊆ F1 ≪g F gives

T ({x1}) ≪g F . Since x1 ∈ F = T (U∪V ), then x1 = (u∧v)∨x1 = (x1∨u)∧(x1∨v) for

some u ∈ U and v ∈ V . We can easily show that T ({x1∨u})∩T ({x1∨v}) = {1} and

T (T ({x1 ∨ u}) ∪ T ({x1 ∨ v})) ⊆ T ({x1}) ≪g T (V1 ∪ V2),

which implies that T (T ({x1 ∨ u}) ∪ T ({x1 ∨ v})) ≪g T (U ∪ V ) by Lemma 2.5 (1);

hence T ({x1 ∨ u}) ≪g U and T ({x1 ∨ v}) ≪g V by Theorem 2.8. Therefore

x1 ∨ u ∈ Radg(U) and x1 ∨ v ∈ Radg(V ). Hence x1 = x1 ∨ (u ∧ v) ∨ x1 =

((x1 ∨ u) ∧ (x1 ∨ v)) ∨ x1 ∈ T (Radg(U) ∪ Radg(V )) = A. Similarly, x2, . . . , xk ∈ A.

Thus x ∈ A and so we have equality.

(2) Since every proper subfilter of F is a direct summand, the only proper g-small

subfilter of F can be {1}. Thus Radg(F ) = {1}. �

Theorem 3.17. Let F be a g-supplemented filter of L. Then there exist a

semisimple subfilter K and a subfilter V with Radg(V ) E V such that F = K ⊕ V .

P r o o f. Let K be a subfilter of F which is a complement of Radg(F ). Then

K ∩ Radg(F ) = {1} and T (K ∪ Radg(F )) E F . Since F is g-supplemented, there

is a subfilter V of F such that F = T (V ∪ K) and V ∩ K ≪g V (so V ∩ K ⊆

Radg(V )). Since V ∩ K = K ∩ (V ∩ K) ⊆ K∩ Radg(V ) ⊆ K∩ Radg(F ) = {1};

hence F = T (K ∪ V ) with V ∩ K = {1}. By Proposition 3.15, K is semisimple.

By Proposition 3.16, Radg(F ) = T (Radg(V ) ∪ Radg(K)) = T (Radg(V ) ∪ {1}) =

Radg(V ). Since T (K ∪Radg(V )) E F = T (K ∪V ), Radg(V ) E V by Corollary 2.12,

as requried. �

Definition 3.18. Let U be a subfilter of a filter F of L. If for every subfilter V

of F with F = T (U ∪ V ) has a g-supplement H in F such that H ⊆ V , then we

say that U has an ample generalized supplement (or briefly an ample g-supplement)

in F . If every subfilter of F has ample g-supplement in F , then F is called an amply

generalized supplemented (or briefly an amply g-supplemented) filter.
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Compare the next theorem with Theorem 7 in [8].

Theorem 3.19. Assume that U1 and U2 are subfilters of a filter F of L and let

F = T (U1 ∪ U2). If U1 and U2 have ample g-supplements in F , then U1 ∩ U2 has

also ample g-supplements in F .

P r o o f. Let H be a subfilter of F such that F = T (H ∪ (U1 ∩ U2)). Suppose

now that U1 ∩ U2 = A and U1 ∩H = B. Then by Lemma 2.1, U1 ∩ U2 ⊆ U1 gives

U1 = U1 ∩ T (H ∪ (U1 ∩ U2)) = T ((U1 ∩ U2) ∪ (U1 ∩H)) = T (A ∪B),

which implies that F = T (U1 ∪ U2) = T (T (A ∪ B) ∪ U2) = T (B ∪ T (A ∪ U2)) =

T (B ∪ U2) = T (U2 ∪ (U1 ∩H)). Similarly, F = T (U1 ∪ (U2 ∩ H)). Therefore there

is a supplement H ′
2
of U1 in F with H ′

2
⊆ U2 ∩H and a supplement H ′

1
of U2 in F

with H ′
1
⊆ U1 ∩ H which implies that T (H ′

1
∪ H ′

2
) ⊆ T (H ∩ (U1 ∪ U2)) ⊆ H . So

T (H ′
2
∪U1) = F , H ′

2
∩U1 ≪ H ′

2
, T (H ′

1
∪U2) = F and H ′

1
∩U2 ≪ H ′

1
. By Lemma 2.1,

U1 = U1 ∩ T (H ′
1
∪ U2) = T (H ′

1
∪ (U1 ∩ U2)); hence

F = T (U1 ∪H ′

2
) = T (H ′

2
∪ T (H ′

1
∪ (U1 ∩ U2))) = T (T (H ′

1
∪H ′

2
) ∪ (U1 ∩ U2)).

By the modular law, T (H ′
1
∪H ′

2
)∩(U1∩U2) = T (H ′

1
∪(H ′

2
∩U1))∩U2 = T ((H ′

2
∩U1)∪

(U2 ∩H ′
1
)). Now by Lemma 2.5 (4), T (H ′

1
∪H ′

2
) ∩ (U1 ∩ U2) ≪g T (H ′

1
∪H ′

2
). �

Theorem 3.20. Let F be a filter of L. If every subfilter of F is a g-supplemented

filter, then F is an amply g-supplemented filter.

P r o o f. Let U and V be subfilters of F such that F = T (U∪V ). By assumption,

there exists a subfilter V ′ of V such that V = T (V ′ ∪ (V ∩ U)) and (U ∩ V ) ∩ V ′ =

V ′ ∩ U ≪g V ′. Then V = T (V ′ ∪ (V ∩ U)) ⊆ T (V ′ ∪ U) gives F = T (U ∪ V ) ⊆

T (U ∪ T (V ′ ∪ U)) = T (V ′ ∪ U) ⊆ F ; hence F = T (V ′ ∪ U). �

Corollary 3.21. The following statements are equivalent for a lattice L.

(1) Every filter is amply g-supplemented.

(2) Every filter is g-supplemented.

P r o o f. (1) ⇒ (2): Clearly, if a filter F is amply g-supplemented, then F is

g-supplemented.

(2) ⇒ (1): Follows from Theorem 3.20. �
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4. Generalized supplemented quotient filters

Quotient lattices are determined by equivalence relations rather than by ideals as

in the ring case. If F is a filter of a lattice (L,6), we define a relation on L given

by x ∼ y if and only if there exist a, b ∈ F satisfying x ∧ a = y ∧ b. Then ∼ is an

equivalence relation on L, and we denote the equivalence class of a by a∧F and the

collection of all equivalence classes by L/F . We set up a partial order 6Q on L/F

as follows: for every a ∧ F, b ∧ F ∈ L/F , we write a ∧ F 6Q b ∧ F if and only if

a 6 b. It is straightforward to check that (L/F,6Q) is a poset. The notation below

(Lemma 4.1) will be kept in this section.

Lemma 4.1. (L/F ,6Q) is a lattice.

P r o o f. Let a∧F, b∧F ∈ L/F and set X = {a∧F, b∧F}. By definition of 6Q,

(a∨ b)∧ F is an upper bound for the set X . If c∧ F is any upper bound of X , then

we can easily show that (a∨ b)∧F 6Q c∧F . Thus (a∧F )∨Q (b∧F ) = (a∨ b)∧F .

Similarly, (a ∧ F ) ∧Q (b ∧ F ) = (a ∧ b) ∧ F . �

R em a r k 4.2. Let F be a filter of L.

(1) If a ∈ F , then a∧F = F . By the definition of 6Q, it is easy to see that 1∧F = F

is the greatest element of L/F .

(2) If a ∈ F , then a∧F = b∧F (for every b ∈ L) if and only if b ∈ F . In particular,

c ∧ F = F if and only if c ∈ F . Moreover, if a ∈ F , then a ∧ F = F = 1 ∧ F .

(3) By the definition of 6Q, we can easily show that if L is distributive, then L/F

is distributive.

Lemma 4.3. Let G be a filter of L. Then the following statements hold:

(1) If G ⊆ F is a filter of L, then F/G = {a ∧G : a ∈ F} is a filter of L/G.

(2) If K is a filter of L/G, then K = F/G for some filter F of L.

(3) If F and H are filters of L such that G ⊆ F , G ⊆ H and F/G = H/G, then

F = G.

(4) If F , H and V are filters of L containing G, then F/G ∩ H/G = V/G if and

only if V = H ∩ F .

(5) If U , V are filters of L containing K, then T (U ∪ V )/K = T (U/K ∪ V/K).

(6) Let H be a subfilter of F with G ⊆ H . If H is a maximal subfilter of F , then

H/G is a maximal subfilter of F/G.

P r o o f. (1) Since 1 ∧ G ∈ F/G, then F/G 6= ∅. Let a ∧ G, b ∧ G ∈ F/G (so

a, b ∈ F ) and c ∧ G ∈ L/G. Then (a ∧ G) ∧Q (b ∧ G) = (a ∧ b) ∧ G ∈ F/G and

(a ∧ G) ∨Q (c ∧ G) = (a ∨ c) ∧ G ∈ F/G by Proposition 1.1. Thus F/G is a filter

of L/G.

542



(2) Assume that F = {x ∈ L : x ∧ G ∈ K} and let g ∈ G. Then by Remark 4.2,

g ∧ G = 1 ∧ G = G ∈ K; so G ⊆ F . It is easy to see that F is a filter of L with

K = F/G.

(3) If x ∈ F , then x ∧G = y ∧G for some y ∈ H which implies that x ∼ y. Then

x ∧ c = y ∧ d for some c, d ∈ G. Since H is a filter and x ∧ c ∈ H , we get x ∈ H by

Proposition 1.1. So F ⊆ H . Similarly, H ⊆ F , and so we have equality.

(4) Let x ∈ H ∩ F . Then x ∧ G ∈ (F/G) ∩ (H/G) = V/G; so x ∧ G = z ∧ G for

some z ∈ V which implies that x∧ a = z ∧ b for some a, b ∈ G. Now x ∧ a ∈ V gives

x ∈ V . Thus H ∩ F ⊆ V . Similarly, V ⊆ F ∩H . The other implication is similar.

(5) Let x ∧ K ∈ T (U/K ∪ V/K). Then there are elements u ∈ U and v ∈ V

such that (u ∧ K) ∧Q (v ∧ K) 6Q x ∧ K; so u ∧ v 6 x, which implies that x =

x∨x∨ (u∧v) = x∨ ((x∨u)∧ (x∨v)). Then (u∨x)∧ (v ∨x) 6 x gives x ∈ T (U ∪V )

and so x ∧K ∈ T (U ∪ V )/K. Thus T (U/K ∪ V/K) ⊆ T (U ∪ V )/K. The proof of

the reverse inclusion is similar.

(6) If H/G ( K/G ⊆ F/G, then H ( K ⊆ F gives K = F , as needed. �

Lemma 4.4. Let F be a filter of L. The following statements hold:

(1) Let K, H be subfilters of F with K ⊆ H . If H/K E F/K, then H E F .

(2) Let K, H be subfilters of F with K ⊆ H . If H ≪ F , then H/K ≪ F/K.

(3) Let K, H be subfilters of F with K ⊆ H . If H ≪g F , then H/K ≪g F/K.

(4) If K, H are subfilters of F with H ≪ F , then T (H ∪K)/K ≪ F/K.

P r o o f. (1) is clear. To see (2), let F/K = T (H/K ∪G/K) for some filter G/K

of F/K; so T (H ∪G)/K = F/K gives T (H ∪G) = F by Lemma 4.3. Hence G = F

since H ≪ F , as needed.

(3) Follows from (1) and (2).

(4) Assume that A = T (H∪K) and let F/K = T (A/K∪G/K) = T (A ∪G)/K for

some subfilter G/K of F/K; so F = T (T (H∪K)∪G) = T (H∪T (K∪G)) = T (H∪G)

by Lemma 4.3. Then H ≪ F gives G = F . �

Compare the next proposition with 41.1 (7) in [11].

Proposition 4.5. Let X , U be subfilters of a filter F of L with X ⊆ U . If V is

a g-supplement of U in F , then T (X ∪ V )/X is a g-supplement of U/X in F/X.

P r o o f. If A = T (V ∪X), then

T (A ∪ U) = T (U ∪ T (V ∪X)) = T (V ∪ T (U ∪X)) = T (U ∪ V ) = F

by Lemma 2.1. Now Lemma 4.3 gives T (U/X ∪ A/X) = T (U ∪A)/X = F/X.

For X ⊆ U , we have U ∩ T (X ∪ V ) = T (X ∪ (U ∩ V )) by the modular law, and
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so (U/X) ∩ T (V ∪X)/X = T ((U ∩ V ) ∪X)/X by Lemma 4.3. Since V is a g-

supplement of U in F , we have D = U ∩ V ≪g V . By the above consideration, it

is enough to show that B = T (D ∪X)/X ≪g A/X. Let T (B ∪K/X) = A/X for

some K/X E A/X (so K E T (V ∪X) = A). Then

A = T (V ∪X) = T (K∪T (X∪(U ∩V ))) = T ((U∩V )∪T (K∪X)) = T (K∪(U ∩V )).

Since U ∩ V ≪g V ⊆ T (V ∪X), we get U ∩ V ≪g T (V ∪X) by Lemma 2.5; hence

K = T (V ∪X), as required. �

Theorem 4.6. If F is a g-supplemented filter of L, then every quotient filter of F

is g-supplemented.

P r o o f. Clear from Proposition 4.5. �

Theorem 4.7. If F is an amply g-supplemented filter of L, then every quotient

filter of F is amply g-supplemented.

P r o o f. Let V/X be a subfilter of F/X such that F/X = T (V/X ∪ U/X) for

some subfilter U/X of F/X. Then Lemma 4.3 gives F = T (V ∪U). Since F is amply

g-supplemented, there is a subfilter H ⊆ U such that H is a g-supplement of V in F .

Then by Proposition 4.5, T (H ∪X)/X ⊆ U/X is a g-supplement of V/X in F/X.

Thus F/X is amply g-supplemented. �

Compare the next theorem with 41.2 (3) (ii) in [11].

Theorem 4.8. If F is a g-supplemented filter of L, then F/Radg(F ) is a semi-

simple filter.

P r o o f. Let G be any subfilter of F containing Radg(F ). Then there is a

supplement H of G in F ; so T (G ∪ H) = F and H ∩ G ≪g H ; so G ∩ H ≪g F

by Lemma 2.5. If K is a generalized maximal subfilter of F and H ∩ G * K, then

T ((H∩G)∪K) = F ; but sinceH∩G ≪g F , we haveK = F , which is a contradiction.

Therefore, H ∩G is contained in every generalized maximal subfilter of F and hence

H ∩G ⊆ Radg(F ). Then F = T (Radg(F ) ∪H ∪G) ⊆ T (G ∪ T (Radg(F ) ∪H)) ⊆ F

which implies that F = T (G ∪ T (Radg(F ) ∪H)). Set T (Radg(F ) ∪H) = A. Thus

by Lemma 4.3,

F

Radg(F )
=

T (G ∪ A)

Radg(F )
= T

( G

Radg(F )
∪

A

Radg(F )

)

.
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It suffices to show that G/Radg(F ) ∩ A/Radg(F ) = {1̄}, where 1̄ = 1 ∧ Radg(F ) =

Radg(F ) is the greatest element of L/Radg(F ). By the modular law and Lemma 4.3,

we have

G

Radg(F )
∩

A

Radg(F )
=

G ∩ A

Radg(F )
=

T (Radg(F ) ∪ (G ∩H))

Radg(F )

=
T (Radg(F ))

Radg(F )
=

Radg(F )

Radg(F )
= {1̄}.

�
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