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Abstract. We give some equivalent conditions (independent from the Young functions)

for inclusions between some classes of XΦ spaces, where Φ is a Young function and X is a
quasi-Banach function space on a σ-finite measure space (Ω,A, µ).
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1. Introduction

In [4] an improvement of the following interesting result was given for generalized

Orlicz spaces.

Theorem 1.1 ([6]). Let (Ω,A, µ) be a measure space and 1 6 p, q 6 ∞ such that

p < q. Then

(i) Lp(µ) ⊂ Lq(µ) if and only if inf{µ(A) : A ∈ A, µ(A) > 0} > 0;

(ii) Lq(µ) ⊂ Lp(µ) if and only if sup{µ(A) : A ∈ A, µ(A) < ∞} < ∞.

See also [5], [3]. In this paper, by some methods similar to [4] and with different

details, we give a new version of the above theorem for Orlicz spaces XΦ which

are associated to a quasi-Banach function space X . The obtained results are novel

for Lebesgue spaces associated to a Banach function space and for weighted Orlicz

spaces too. These new structures which contain usual (weighted) Orlicz spaces were

recently studied in [1]. In fact, (L1)Φ = LΦ, where Φ is a Young function.

Throughout this paper, (Ω,A, µ) is a σ-finite measure space in which µ is a non-

negative measure, and the set of all A-measurable complex-valued functions on Ω

is denoted byM0(Ω). Two functions inM0(Ω) which are equal almost everywhere

are considered the same.
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Definition 1.2. A continuous convex function Φ: [0,∞) → [0,∞) is called a

Young function if Φ(0) = lim
x→0

Φ(x) = 0 and lim
x→∞

Φ(x) = ∞. We denote the set of

all strictly increasing Young functions by Φ.

Definition 1.3. Let X be a linear subspace of M0(Ω). If X equipped with a

given quasi-norm ‖·‖X is a quasi-Banach space, we say that X is a quasi-Banach

function space on Ω. In this situation, X is called solid if for each f ∈ X and

g ∈ M0(Ω) satisfying |g| 6 |f | a.e. we have g ∈ X and ‖g‖X 6 ‖f‖X.

Definition 1.4. LetX be a quasi-Banach function space on Ω. For each function

f ∈ M0(Ω) we put

(1.1) ‖f‖Φ := inf
{

λ > 0: Φ
( |f |

λ

)

∈ X,
∥

∥

∥
Φ
( |f |

λ

)∥

∥

∥

X
6 1

}

.

Then, the set of all f ∈ M0(Ω) with ‖f‖Φ < ∞ is denoted by XΦ.

As in [1], Theorem 4.11, (XΦ, ‖·‖Φ) is a quasi-Banach function space on Ω. If

p > 0 and the function Φ(p) is defined by Φ(p)(x) := xp for all x > 0, then we denote

Xp := XΦ(p) . In particular, if X := L1(Ω,A, µ), then XΦ = LΦ(Ω) and Xp = Lp(Ω),

the usual Orlicz and Lebesgue spaces.

Notation. For each Young function Φ and a > 0 we denote

Φa(t) := Φ(t1/a), t ∈ [0,∞).

In general, Φa is not a convex function even while Φ ∈ Φ. For each Φ ∈ Φ we set

DΦ := {a ∈ (0, 1): Φ1/a ∈ Φ}.

R em a r k 1.5.

(1) Let Φ ∈ Φ and 0 < a < ∞ with Φa ∈ Φ. Then for each f ∈ M0(Ω) we have

‖f‖Φa = inf
{

λ > 0: Φa

( |f |

λ

)

∈ X and
∥

∥

∥
Φa

( |f |

λ

)∥

∥

∥

X
6 1

}

= inf
{

λ > 0: Φ
( |f |1/a

λ1/a

)

∈ X and
∥

∥

∥
Φ
( |f |1/a

λ1/a

)∥

∥

∥

X
6 1

}

= inf
{

ta : t > 0, Φ
( |f |1/a

t

)

∈ X and
∥

∥

∥
Φ
( |f |1/a

t

)
∥

∥

∥

X
6 1

}

=
(

inf
{

t : t > 0, Φ
( |f |1/a

t

)

∈ X and
∥

∥

∥
Φ
( |f |1/a

t

)∥

∥

∥

X
6 1

})a

= (‖|f |1/a‖Φ)
a.
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(2) For each Φ ∈ Φ and a ∈ (0, 1) we have XΦ ∩ L∞(Ω) ⊆ XΦa . Indeed, if

f ∈ XΦ ∩ L∞(Ω), then for some λ > 1 we have Φ(|f |/λ) ∈ X and |f | 6 λ a.e.

This implies that

Φa

( |f |

λ

)

= Φ
( |f |1/a

λ1/a

)

6 Φ
( |f |

λ

)

∈ X,

and so by solidity of X , Φa(|f |/λ) ∈ X , i.e., f ∈ XΦa .

(3) Let Φ ∈ Φ. If X is a solid quasi-Banach function space on Ω, then XΦ is also

a solid space. Indeed, if f, g ∈ M0(Ω), |f | 6 |g| a.e. and g ∈ XΦ, then there

exists λ > 0 such that Φ(|g|/λ) ∈ X . Now, since Φ is an increasing function,

we have

Φ
( |f |

λ

)

6 Φ
( |g|

λ

)

,

and this implies that Φ(|f |/λ) ∈ X becauseX is solid, and the proof is complete.

In this paper, Φ is always a Young function, andX is a solid quasi-Banach function

space on Ω such that for each A ∈ A with µ(A) < ∞, χA ∈ X .

2. Main results

Denote

A0 := {E ∈ A : 0 < µ(E) and χE ∈ X}.

Trivially, for each E ∈ A with χE ∈ X , we have ‖χE‖X = 0 if and only if µ(E) = 0.

The following result would be an improvement of [4], Theorem 2.4 and [6], Theo-

rem 1, and it is novel for Lebesgue spaces associated to the space X .

Theorem 2.1. The following conditions are equivalent.

(i) For 0 < p, q < ∞ with p < q, Xp ⊂ Xq.

(ii) For each 0 < p, q < ∞ with p < q, Xp ⊂ Xq.

(iii) For Φ ∈ Φ, XΦ ⊂ L∞(µ).

(iv) For each Φ ∈ Φ, XΦ ⊂ L∞(µ).

(v) For Φ ∈ Φ and a ∈ (0, 1), XΦ ⊂ XΦa .

(vi) For each Φ ∈ Φ and a ∈ (0, 1), XΦ ⊂ XΦa .

(vii) inf{‖χE‖X : E ∈ A0} > 0.

P r o o f. It would be enough to prove (iii)⇒ (vii)⇒ (iv) and (v)⇒ (vii)⇒ (vi).

(iii) ⇒ (vii): By [4], Lemma 2.3, there exists K > 0 such that for all f ∈ XΦ,

(2.1) ‖f‖∞ 6 K‖f‖Φ.
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We can assume that K is large enough, and hence without losing the generality we

let Φ(2K) > 0 since lim
x→∞

Φ(x) = ∞. By (2.1), for each E ∈ A0 with µ(E) < ∞ we

have 1/(2K) < ‖χE‖Φ because χE ∈ XΦ. On the other hand, for each λ > 0 we have

Φ
(χE

λ

)

= Φ
( 1

λ

)

χE ,

and so

‖χE‖Φ = inf
{

λ > 0: Φ
( 1

λ

)

‖χE‖X 6 1
}

.

Therefore, Φ(2K)‖χE‖X > 1 and the proof is complete.

(vii) ⇒ (iv): Let Φ ∈ Φ and f ∈ XΦ. For each N ∈ N put

AN := {x ∈ Ω: |f(x)| > N}.

Then NχAN 6 |f | and so by solidity of XΦ (see Remark 1.5) we have N‖χAN‖Φ 6

‖f‖Φ for all N ∈ N. Now, the assumption inf{‖χE‖X : E ∈ A0} > 0 implies that

for some N ∈ N, ‖χAN‖Φ = 0, i.e., µ(AN ) = 0, and this implies that f ∈ L∞(Ω).

(v) ⇒ (vii): By Remark 1.5 and [4], Lemma 2.3, there exists a constant k > 0

such that

(2.2) ‖|f |1/a‖aΦ = ‖f‖Φa 6 k‖f‖Φ

for all f ∈ XΦ. Let E ∈ A0. Then χE 6= 0 in X . By (2.2), 0 < k1/(a−1) 6 ‖χE‖Φ.

Now, setting l−1 := 1
2k

1/(a−1) we have

‖χE‖Φ = inf
{

λ > 0: Φ
(χE

λ

)

∈ X,
∥

∥

∥
Φ
(χE

λ

)∥

∥

∥

X
6 1

}

> k1/(a−1) >
1

l
> 0.

This implies that Φ(l)‖χE‖X > 1 and therefore

inf{‖χE‖X : E ∈ A0} >
1

Φ(l)
> 0.

(vii) ⇒(vi): Let inf{‖χE‖X : E ∈ A0} > 0. Let Φ ∈ Φ and a ∈ (0, 1). Then by

the implication (vii) ⇒ (iv) above we have XΦ ⊆ L∞(Ω). Now, by Remark 1.5,

XΦ = XΦ ∩ L∞(Ω) ⊆ XΦa .

�

R em a r k 2.2. The condition Φ ∈ Φ implies that “Φ(x) > 0 for all x > 0” and

this fact is used just in the proof of (v) ⇒ (vii) in the above theorem.

Denote A∞ := {E ∈ A : χE ∈ X}. We say that X satisfies the MC (Mono-

tone Convergence) property if for each increasing sequence {En}
∞
n=1 ⊆ A with χEn ,

χE ∈ X , n = 1, 2, . . ., we have ‖χEn‖X → ‖χE‖X , where E :=
∞
⋃

n=1
En.
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The next lemma, which is similar to [1], Lemma 4.8 (i) with some minor changes,

will be useful in the proof of part (vii) ⇒ (v) of Theorem 2.4.

Lemma 2.3. If Φ ∈ Φ, A ∈ A and 0 6= χA ∈ XΦ, then we have

(2.3) ‖χA‖Φ =
1

Φ−1(‖χA‖
−1
X )

.

P r o o f. Let A ∈ A and χA ∈ XΦ. Then by Definition 1.4 there exists some

λ0 > 0 such that

Φ
( 1

λ0

)

χA = Φ
(χA

λ0

)

∈ X,

and so χA ∈ X (note that Φ(1/λ0) > 0 since Φ is strictly increasing). Now,

‖χA‖Φ = inf
{

λ > 0:
∥

∥

∥
Φ
(χA

λ

)∥

∥

∥

X
6 1

}

= inf
{

λ > 0: Φ
( 1

λ

)

‖χA‖X 6 1
}

= inf
{

λ > 0: Φ
( 1

λ

)

6
1

‖χA‖X

}

= inf
{

λ > 0:
1

λ
6 Φ−1

( 1

‖χA‖X

)}

= inf
{

λ > 0: λ >
1

Φ−1(‖χA‖
−1
X )

}

,

and this completes the proof. �

The following result is an improvement of [4], Theorem 2.7; [4], Theorem 2.8

and [6], Theorem 2.

For each f ∈ XΦ we denote Ef := {x ∈ Ω: 0 < |f(x)|}.

Theorem 2.4. Let X be a solid quasi-Banach function space satisfying the MC

property. Then the following conditions are equivalent.

(i) For 0 < p, q < ∞ with p < q, Xq ⊂ Xp.

(ii) For each 0 < p, q < ∞ with p < q, Xq ⊂ Xp.

(iii) For Φ ∈ Φ, χEf
∈ X for all f ∈ XΦ.

(iv) For each Φ ∈ Φ, χEf
∈ X for all f ∈ XΦ.

(v) For Φ ∈ Φ, χEf
∈ X for all f ∈ XΦ, and sup

f∈XΦ

‖χEf
‖X < ∞.

(vi) For each Φ ∈ Φ, χEf
∈ X for all f ∈ XΦ, and sup

f∈XΦ

‖χEf
‖X < ∞.

(vii) For Φ ∈ Φ and a ∈ DΦ, X
Φ ⊂ XΦ1/a .

(viii) For each Φ ∈ Φ and a ∈ DΦ, X
Φ ⊂ XΦ1/a .

(ix) sup{‖χE‖X : E ∈ A∞} < ∞.
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P r o o f. We prove the nontrivial implications.

(v) ⇒ (ix): Let Φ ∈ Φ and sup
f∈XΦ

‖χEf
‖X < ∞. If E ∈ A and χE ∈ XΦ, then

‖χE‖X 6 sup
f∈XΦ

‖χEf
‖X < ∞,

and so (ix) holds.

(ix) ⇒ (vi): Let sup{‖χE‖X : E ∈ A∞} < ∞, and Φ ∈ Φ. Since XΦ is solid (see

Remark 1.5), for each f ∈ XΦ \ {0} and N ∈ N we have χAN,f
∈ XΦ and

1

N
‖χAN,f

‖Φ 6 ‖f‖Φ,

where AN,f := {x ∈ Ω : 1/N < |f(x)|}. So, for some λ > 0,

Φ
( 1

λ

)

χAN,f
= Φ

(χAN,f

λ

)

∈ X,

which shows that χAN,f
∈ X because Φ(1/λ) 6= 0. Hence, by assumption (ix), for

each N ∈ N we have

‖χAN,f
‖X 6 K,

whereK := sup{‖χE‖X : E ∈ A∞} < ∞. Finally, since X satisfies the MC property,

we have

‖χEf
‖X = lim

N→∞
‖χAN,f

‖X 6 K,

and this completes the proof.

(vii) ⇒ (v): Let Φ ∈ Φ and a ∈ DΦ such that X
Φ ⊂ XΦ1/a . By [4], Lemma 2.3

and Remark 1.5 there exists K > 0 such that for each f ∈ XΦ,

(2.4) ‖|f |a‖
1/a
Φ = ‖f‖Φ1/a

6 K‖f‖Φ.

For each 0 6= f ∈ XΦ we have χ{x : N−1<|f(x)|<N} 6 |Nf |, and so

χ{x : N−1<|f(x)|<N} ∈ XΦ

for all N ∈ N.

Therefore, by the assumption we have χ{x : N−1<|f(x)|<N} ∈ XΦ1/a for all N ∈ N.

By relation (2.4) and Lemma 2.3,

1

Φ−1(‖χEf
‖−1
X )

= lim
N→∞

1

Φ−1(‖χ{N−1<|f |<N}‖
−1
X )

= lim
N→∞

‖χ{N−1<|f |<N}‖Φ 6 Ka/(1−a).

Hence,

‖χEf
‖X 6

1

Φ(Ka/(a−1))
,

and this completes the proof.
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(iv) ⇒ (viii): Let Φ ∈ Φ and a ∈ DΦ. By assumption (iv), for each f ∈ XΦ we

have χEf
∈ X . Let f ∈ XΦ. Then there is λ > 0 such that Φ(|f |/λ) ∈ X . Note that

Φ1/a

( |f |

λ1/a

)

= Φ
( |f |a

λ

)

= Φ
( |f |a

λ

)

χ{|f |61} +Φ
( |f |a

λ

)

χ{|f |>1}.

We have

Φ
( |f |a

λ

)

χ{|f |>1} 6 Φ
( |f |

λ

)

∈ X and Φ
( |f |a

λ

)

χ{|f |61} 6 Φ
( 1

λ

)

χEf
∈ X.

Thus, f ∈ XΦ1/a . �

In the sequel, we intend to give a new version of [2], Theorem 3, page 155 for XΦ

spaces, where X is a Banach function space on a measure space (Ω,A, µ) and Φ ∈ Φ.

For this, we give the next definition from [2], page 15.

Definition 2.5. Let Φ1 and Φ2 be two Young functions. We say that Φ2 is

stronger than Φ1, and write Φ1 ≺ Φ2 if there exist a > 0 and x0 > 0 such that

Φ1(x) 6 Φ2(ax) for all x > x0. While x0 = 0, we say that Φ2 is stronger (globally)

than Φ1.

Theorem 2.6. Suppose that Φ1 and Φ1 are two Young functions, and for each

A ∈ A with µ(A) < ∞, χA ∈ X . If Φ1 ≺ Φ2 (globally if µ(Ω) = ∞), then

XΦ2 ⊆ XΦ1 .

P r o o f. Let Φ1 ≺ Φ2 and f ∈ XΦ2 . Then there exists λ > 0 such that

Φ2(|f |/λ) ∈ X . In the case µ(Ω) = ∞ and Φ1 ≺ Φ2 (globally), for some b > 0 we

have Φ1(|f |/(bλ)) 6 Φ2(|f |/λ) ∈ X . Hence, Φ1(f/(bλ)) ∈ X by solidity of X , and so

f ∈ XΦ1 . In the case Φ1 ≺ Φ2 (not necessarily globally) and µ(Ω) < ∞, there exist

real numbers b > 0 and x0 > 0 such that Φ1(x) 6 Φ2(bx) for all x > x0. Setting

B := {x ∈ Ω: f(x) < x0} we have

Φ1

(f

λ

)

= Φ1

(fχB

bλ

)

+Φ1

(fχΩ−B

bλ

)

6 Φ1

(x0

bλ

)

χB +Φ2

(fχΩ−B

λ

)

6 Φ1

(x0

bλ

)

χΩ +Φ2

(f

λ

)

∈ X,

and this completes the proof. �

A c k n ow l e d gm e n t. We would like to thank the referee for her/his so valuable

comments and suggestions which have improved this work.
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