ON THE INCLUSIONS OF X^{Φ} SPACES

Seyyed Mohammad Tabatabaie, Alireza Bagheri Salec, Qom
Received May 7, 2021. Published online March 16, 2022.
Communicated by Dagmar Medková

Abstract. We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of X^{Φ} spaces, where Φ is a Young function and X is a quasi-Banach function space on a σ-finite measure space $(\Omega, \mathcal{A}, \mu)$.

Keywords: Young function; Orlicz space; quasi-Banach function space; inclusion
MSC 2020: 46E30

1. Introduction

In [4] an improvement of the following interesting result was given for generalized Orlicz spaces.

Theorem 1.1 ([6]). Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and $1 \leqslant p, q \leqslant \infty$ such that $p<q$. Then
(i) $L^{p}(\mu) \subset L^{q}(\mu)$ if and only if $\inf \{\mu(A): A \in \mathcal{A}, \mu(A)>0\}>0$;
(ii) $L^{q}(\mu) \subset L^{p}(\mu)$ if and only if $\sup \{\mu(A): A \in \mathcal{A}, \mu(A)<\infty\}<\infty$.

See also [5], [3]. In this paper, by some methods similar to [4] and with different details, we give a new version of the above theorem for Orlicz spaces X^{Φ} which are associated to a quasi-Banach function space X. The obtained results are novel for Lebesgue spaces associated to a Banach function space and for weighted Orlicz spaces too. These new structures which contain usual (weighted) Orlicz spaces were recently studied in [1]. In fact, $\left(L^{1}\right)^{\Phi}=L^{\Phi}$, where Φ is a Young function.

Throughout this paper, $(\Omega, \mathcal{A}, \mu)$ is a σ-finite measure space in which μ is a nonnegative measure, and the set of all \mathcal{A}-measurable complex-valued functions on Ω is denoted by $\mathcal{M}_{0}(\Omega)$. Two functions in $\mathcal{M}_{0}(\Omega)$ which are equal almost everywhere are considered the same.

Definition 1.2. A continuous convex function $\Phi:[0, \infty) \rightarrow[0, \infty)$ is called a Young function if $\Phi(0)=\lim _{x \rightarrow 0} \Phi(x)=0$ and $\lim _{x \rightarrow \infty} \Phi(x)=\infty$. We denote the set of all strictly increasing Young functions by Φ.

Definition 1.3. Let X be a linear subspace of $\mathcal{M}_{0}(\Omega)$. If X equipped with a given quasi-norm $\|\cdot\|_{X}$ is a quasi-Banach space, we say that X is a quasi-Banach function space on Ω. In this situation, X is called solid if for each $f \in X$ and $g \in \mathcal{M}_{0}(\Omega)$ satisfying $|g| \leqslant|f|$ a.e. we have $g \in X$ and $\|g\|_{X} \leqslant\|f\|_{X}$.

Definition 1.4. Let X be a quasi-Banach function space on Ω. For each function $f \in \mathcal{M}_{0}(\Omega)$ we put

$$
\begin{equation*}
\|f\|_{\Phi}:=\inf \left\{\lambda>0: \Phi\left(\frac{|f|}{\lambda}\right) \in X,\left\|\Phi\left(\frac{|f|}{\lambda}\right)\right\|_{X} \leqslant 1\right\} . \tag{1.1}
\end{equation*}
$$

Then, the set of all $f \in \mathcal{M}_{0}(\Omega)$ with $\|f\|_{\Phi}<\infty$ is denoted by X^{Φ}.
As in [1], Theorem 4.11, $\left(X^{\Phi},\|\cdot\|_{\Phi}\right)$ is a quasi-Banach function space on Ω. If $p>0$ and the function $\Phi_{(p)}$ is defined by $\Phi_{(p)}(x):=x^{p}$ for all $x \geqslant 0$, then we denote $X^{p}:=X^{\Phi(p)}$. In particular, if $X:=L^{1}(\Omega, \mathcal{A}, \mu)$, then $X^{\Phi}=L^{\Phi}(\Omega)$ and $X^{p}=L^{p}(\Omega)$, the usual Orlicz and Lebesgue spaces.

Notation. For each Young function Φ and $a>0$ we denote

$$
\Phi_{a}(t):=\Phi\left(t^{1 / a}\right), \quad t \in[0, \infty)
$$

In general, Φ_{a} is not a convex function even while $\Phi \in \Phi$. For each $\Phi \in \Phi$ we set

$$
D_{\Phi}:=\left\{a \in(0,1): \Phi_{1 / a} \in \Phi\right\} .
$$

Remark 1.5.
(1) Let $\Phi \in \Phi$ and $0<a<\infty$ with $\Phi_{a} \in \Phi$. Then for each $f \in \mathcal{M}_{0}(\Omega)$ we have

$$
\begin{aligned}
\|f\|_{\Phi_{a}} & =\inf \left\{\lambda>0: \Phi_{a}\left(\frac{|f|}{\lambda}\right) \in X \text { and }\left\|\Phi_{a}\left(\frac{|f|}{\lambda}\right)\right\|_{X} \leqslant 1\right\} \\
& =\inf \left\{\lambda>0: \Phi\left(\frac{|f|^{1 / a}}{\lambda^{1 / a}}\right) \in X \text { and }\left\|\Phi\left(\frac{|f|^{1 / a}}{\lambda^{1 / a}}\right)\right\|_{X} \leqslant 1\right\} \\
& =\inf \left\{t^{a}: t>0, \Phi\left(\frac{|f|^{1 / a}}{t}\right) \in X \text { and }\left\|\Phi\left(\frac{|f|^{1 / a}}{t}\right)\right\|_{X} \leqslant 1\right\} \\
& =\left(\inf \left\{t: t>0, \Phi\left(\frac{|f|^{1 / a}}{t}\right) \in X \text { and }\left\|\Phi\left(\frac{|f|^{1 / a}}{t}\right)\right\|_{X} \leqslant 1\right\}\right)^{a} \\
& =\left(\left\||f|^{1 / a}\right\|_{\Phi}\right)^{a} .
\end{aligned}
$$

(2) For each $\Phi \in \Phi$ and $a \in(0,1)$ we have $X^{\Phi} \cap L^{\infty}(\Omega) \subseteq X^{\Phi_{a}}$. Indeed, if $f \in X^{\Phi} \cap L^{\infty}(\Omega)$, then for some $\lambda>1$ we have $\Phi(|f| / \lambda) \in X$ and $|f| \leqslant \lambda$ a.e. This implies that

$$
\Phi_{a}\left(\frac{|f|}{\lambda}\right)=\Phi\left(\frac{|f|^{1 / a}}{\lambda^{1 / a}}\right) \leqslant \Phi\left(\frac{|f|}{\lambda}\right) \in X
$$

and so by solidity of $X, \Phi_{a}(|f| / \lambda) \in X$, i.e., $f \in X^{\Phi_{a}}$.
(3) Let $\Phi \in \Phi$. If X is a solid quasi-Banach function space on Ω, then X^{Φ} is also a solid space. Indeed, if $f, g \in \mathcal{M}_{0}(\Omega),|f| \leqslant|g|$ a.e. and $g \in X^{\Phi}$, then there exists $\lambda>0$ such that $\Phi(|g| / \lambda) \in X$. Now, since Φ is an increasing function, we have

$$
\Phi\left(\frac{|f|}{\lambda}\right) \leqslant \Phi\left(\frac{|g|}{\lambda}\right)
$$

and this implies that $\Phi(|f| / \lambda) \in X$ because X is solid, and the proof is complete.
In this paper, Φ is always a Young function, and X is a solid quasi-Banach function space on Ω such that for each $A \in \mathcal{A}$ with $\mu(A)<\infty, \chi_{A} \in X$.

2. Main Results

Denote

$$
\mathcal{A}_{0}:=\left\{E \in \mathcal{A}: 0<\mu(E) \text { and } \chi_{E} \in X\right\} .
$$

Trivially, for each $E \in \mathcal{A}$ with $\chi_{E} \in X$, we have $\left\|\chi_{E}\right\|_{X}=0$ if and only if $\mu(E)=0$.
The following result would be an improvement of [4], Theorem 2.4 and [6], Theorem 1, and it is novel for Lebesgue spaces associated to the space X.

Theorem 2.1. The following conditions are equivalent.
(i) For $0<p, q<\infty$ with $p<q, X^{p} \subset X^{q}$.
(ii) For each $0<p, q<\infty$ with $p<q, X^{p} \subset X^{q}$.
(iii) For $\Phi \in \Phi, X^{\Phi} \subset L^{\infty}(\mu)$.
(iv) For each $\Phi \in \Phi, X^{\Phi} \subset L^{\infty}(\mu)$.
(v) For $\Phi \in \Phi$ and $a \in(0,1), X^{\Phi} \subset X^{\Phi_{a}}$.
(vi) For each $\Phi \in \Phi$ and $a \in(0,1), X^{\Phi} \subset X^{\Phi_{a}}$.
(vii) $\inf \left\{\left\|\chi_{E}\right\|_{X}: E \in \mathcal{A}_{0}\right\}>0$.

Proof. It would be enough to prove (iii) $\Rightarrow(\mathrm{vii}) \Rightarrow$ (iv) and (v) \Rightarrow (vii) \Rightarrow (vi). (iii) \Rightarrow (vii): By [4], Lemma 2.3, there exists $K>0$ such that for all $f \in X^{\Phi}$,

$$
\begin{equation*}
\|f\|_{\infty} \leqslant K\|f\|_{\Phi} \tag{2.1}
\end{equation*}
$$

We can assume that K is large enough, and hence without losing the generality we let $\Phi(2 K)>0$ since $\lim _{x \rightarrow \infty} \Phi(x)=\infty$. By (2.1), for each $E \in \mathcal{A}_{0}$ with $\mu(E)<\infty$ we have $1 /(2 K)<\left\|\chi_{E}\right\|_{\Phi}$ because $\chi_{E} \in X^{\Phi}$. On the other hand, for each $\lambda>0$ we have

$$
\Phi\left(\frac{\chi_{E}}{\lambda}\right)=\Phi\left(\frac{1}{\lambda}\right) \chi_{E}
$$

and so

$$
\left\|\chi_{E}\right\|_{\Phi}=\inf \left\{\lambda>0: \Phi\left(\frac{1}{\lambda}\right)\left\|\chi_{E}\right\|_{X} \leqslant 1\right\} .
$$

Therefore, $\Phi(2 K)\left\|\chi_{E}\right\|_{X}>1$ and the proof is complete.
(vii) \Rightarrow (iv): Let $\Phi \in \Phi$ and $f \in X^{\Phi}$. For each $N \in \mathbb{N}$ put

$$
A_{N}:=\{x \in \Omega:|f(x)|>N\} .
$$

Then $N \chi_{A_{N}} \leqslant|f|$ and so by solidity of X^{Φ} (see Remark 1.5) we have $N\left\|\chi_{A_{N}}\right\|_{\Phi} \leqslant$ $\|f\|_{\Phi}$ for all $N \in \mathbb{N}$. Now, the assumption $\inf \left\{\left\|\chi_{E}\right\|_{X}: E \in \mathcal{A}_{0}\right\}>0$ implies that for some $N \in \mathbb{N},\left\|\chi_{A_{N}}\right\|_{\Phi}=0$, i.e., $\mu\left(A_{N}\right)=0$, and this implies that $f \in L^{\infty}(\Omega)$.
$(\mathrm{v}) \Rightarrow$ (vii): By Remark 1.5 and [4], Lemma 2.3, there exists a constant $k>0$ such that

$$
\begin{equation*}
\left\||f|^{1 / a}\right\|_{\Phi}^{a}=\|f\|_{\Phi_{a}} \leqslant k\|f\|_{\Phi} \tag{2.2}
\end{equation*}
$$

for all $f \in X^{\Phi}$. Let $E \in \mathcal{A}_{0}$. Then $\chi_{E} \neq 0$ in X. By (2.2), $0<k^{1 /(a-1)} \leqslant\left\|\chi_{E}\right\|_{\Phi}$. Now, setting $l^{-1}:=\frac{1}{2} k^{1 /(a-1)}$ we have

$$
\left\|\chi_{E}\right\|_{\Phi}=\inf \left\{\lambda>0: \Phi\left(\frac{\chi_{E}}{\lambda}\right) \in X,\left\|\Phi\left(\frac{\chi_{E}}{\lambda}\right)\right\|_{X} \leqslant 1\right\} \geqslant k^{1 /(a-1)}>\frac{1}{l}>0 .
$$

This implies that $\Phi(l)\left\|\chi_{E}\right\|_{X}>1$ and therefore

$$
\inf \left\{\left\|\chi_{E}\right\|_{X}: E \in \mathcal{A}_{0}\right\}>\frac{1}{\Phi(l)}>0
$$

(vii) $\Rightarrow\left(\right.$ vi): Let $\inf \left\{\left\|\chi_{E}\right\|_{X}: E \in \mathcal{A}_{0}\right\}>0$. Let $\Phi \in \Phi$ and $a \in(0,1)$. Then by the implication (vii) \Rightarrow (iv) above we have $X^{\Phi} \subseteq L^{\infty}(\Omega)$. Now, by Remark 1.5,

$$
X^{\Phi}=X^{\Phi} \cap L^{\infty}(\Omega) \subseteq X^{\Phi_{a}}
$$

Remark 2.2. The condition $\Phi \in \Phi$ implies that " $\Phi(x)>0$ for all $x>0$ " and this fact is used just in the proof of (v) \Rightarrow (vii) in the above theorem.

Denote $\mathcal{A}_{\infty}:=\left\{E \in \mathcal{A}: \chi_{E} \in X\right\}$. We say that X satisfies the MC (Monotone Convergence) property if for each increasing sequence $\left\{E_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{A}$ with $\chi_{E_{n}}$, $\chi_{E} \in X, n=1,2, \ldots$, we have $\left\|\chi_{E_{n}}\right\|_{X} \rightarrow\left\|\chi_{E}\right\|_{X}$, where $E:=\bigcup_{n=1}^{\infty} E_{n}$.

The next lemma, which is similar to [1], Lemma 4.8 (i) with some minor changes, will be useful in the proof of part (vii) $\Rightarrow(\mathrm{v})$ of Theorem 2.4.

Lemma 2.3. If $\Phi \in \Phi, A \in \mathcal{A}$ and $0 \neq \chi_{A} \in X^{\Phi}$, then we have

$$
\begin{equation*}
\left\|\chi_{A}\right\|_{\Phi}=\frac{1}{\Phi^{-1}\left(\left\|\chi_{A}\right\|_{X}^{-1}\right)} \tag{2.3}
\end{equation*}
$$

Proof. Let $A \in \mathcal{A}$ and $\chi_{A} \in X^{\Phi}$. Then by Definition 1.4 there exists some $\lambda_{0}>0$ such that

$$
\Phi\left(\frac{1}{\lambda_{0}}\right) \chi_{A}=\Phi\left(\frac{\chi_{A}}{\lambda_{0}}\right) \in X
$$

and so $\chi_{A} \in X$ (note that $\Phi\left(1 / \lambda_{0}\right)>0$ since Φ is strictly increasing). Now,

$$
\begin{aligned}
\left\|\chi_{A}\right\|_{\Phi} & =\inf \left\{\lambda>0:\left\|\Phi\left(\frac{\chi_{A}}{\lambda}\right)\right\|_{X} \leqslant 1\right\}=\inf \left\{\lambda>0: \Phi\left(\frac{1}{\lambda}\right)\left\|\chi_{A}\right\|_{X} \leqslant 1\right\} \\
& =\inf \left\{\lambda>0: \Phi\left(\frac{1}{\lambda}\right) \leqslant \frac{1}{\left\|\chi_{A}\right\|_{X}}\right\}=\inf \left\{\lambda>0: \frac{1}{\lambda} \leqslant \Phi^{-1}\left(\frac{1}{\left\|\chi_{A}\right\|_{X}}\right)\right\} \\
& =\inf \left\{\lambda>0: \lambda \geqslant \frac{1}{\Phi^{-1}\left(\left\|\chi_{A}\right\|_{X}^{-1}\right)}\right\}
\end{aligned}
$$

and this completes the proof.
The following result is an improvement of [4], Theorem 2.7; [4], Theorem 2.8 and [6], Theorem 2.

For each $f \in X^{\Phi}$ we denote $E_{f}:=\{x \in \Omega: 0<|f(x)|\}$.

Theorem 2.4. Let X be a solid quasi-Banach function space satisfying the MC property. Then the following conditions are equivalent.
(i) For $0<p, q<\infty$ with $p<q, X^{q} \subset X^{p}$.
(ii) For each $0<p, q<\infty$ with $p<q, X^{q} \subset X^{p}$.
(iii) For $\Phi \in \Phi, \chi_{E_{f}} \in X$ for all $f \in X^{\Phi}$.
(iv) For each $\Phi \in \Phi, \chi_{E_{f}} \in X$ for all $f \in X^{\Phi}$.
(v) For $\Phi \in \Phi, \chi_{E_{f}} \in X$ for all $f \in X^{\Phi}$, and $\sup _{f \in X^{\Phi}}\left\|\chi_{E_{f}}\right\|_{X}<\infty$.
(vi) For each $\Phi \in \Phi, \chi_{E_{f}} \in X$ for all $f \in X^{\Phi}$, and $\sup _{f \in X^{\Phi}}\left\|\chi_{E_{f}}\right\|_{X}<\infty$.
(vii) For $\Phi \in \Phi$ and $a \in D_{\Phi}, X^{\Phi} \subset X^{\Phi_{1 / a}}$.
(viii) For each $\Phi \in \Phi$ and $a \in D_{\Phi}, X^{\Phi} \subset X^{\Phi_{1 / a}}$.
(ix) $\sup \left\{\left\|\chi_{E}\right\|_{X}: E \in \mathcal{A}_{\infty}\right\}<\infty$.

Proof. We prove the nontrivial implications.
$(\mathrm{v}) \Rightarrow(\mathrm{ix}):$ Let $\Phi \in \Phi$ and $\sup _{f \in X^{\Phi}}\left\|\chi_{E_{f}}\right\|_{X}<\infty$. If $E \in \mathcal{A}$ and $\chi_{E} \in X^{\Phi}$, then

$$
\left\|\chi_{E}\right\|_{X} \leqslant \sup _{f \in X^{\Phi}}\left\|\chi_{E_{f}}\right\|_{X}<\infty
$$

and so (ix) holds.
(ix) \Rightarrow (vi): Let $\sup \left\{\left\|\chi_{E}\right\|_{X}: E \in \mathcal{A}_{\infty}\right\}<\infty$, and $\Phi \in \Phi$. Since X^{Φ} is solid (see Remark 1.5), for each $f \in X^{\Phi} \backslash\{0\}$ and $N \in \mathbb{N}$ we have $\chi_{A_{N, f}} \in X^{\Phi}$ and

$$
\frac{1}{N}\left\|\chi_{A_{N, f}}\right\|_{\Phi} \leqslant\|f\|_{\Phi}
$$

where $A_{N, f}:=\{x \in \Omega: 1 / N<|f(x)|\}$. So, for some $\lambda>0$,

$$
\Phi\left(\frac{1}{\lambda}\right) \chi_{A_{N, f}}=\Phi\left(\frac{\chi_{A_{N, f}}}{\lambda}\right) \in X
$$

which shows that $\chi_{A_{N, f}} \in X$ because $\Phi(1 / \lambda) \neq 0$. Hence, by assumption (ix), for each $N \in \mathbb{N}$ we have

$$
\left\|\chi_{A_{N, f}}\right\|_{X} \leqslant K
$$

where $K:=\sup \left\{\left\|\chi_{E}\right\|_{X}: E \in \mathcal{A}_{\infty}\right\}<\infty$. Finally, since X satisfies the MC property, we have

$$
\left\|\chi_{E_{f}}\right\|_{X}=\lim _{N \rightarrow \infty}\left\|\chi_{A_{N, f}}\right\|_{X} \leqslant K
$$

and this completes the proof.
(vii) $\Rightarrow(\mathrm{v}):$ Let $\Phi \in \Phi$ and $a \in D_{\Phi}$ such that $X^{\Phi} \subset X^{\Phi_{1 / a}}$. By [4], Lemma 2.3 and Remark 1.5 there exists $K>0$ such that for each $f \in X^{\Phi}$,

$$
\begin{equation*}
\left\||f|^{a}\right\|_{\Phi}^{1 / a}=\|f\|_{\Phi_{1 / a}} \leqslant K\|f\|_{\Phi} . \tag{2.4}
\end{equation*}
$$

For each $0 \neq f \in X^{\Phi}$ we have $\chi_{\left\{x: N^{-1}<|f(x)|<N\right\}} \leqslant|N f|$, and so

$$
\chi_{\left\{x: N^{-1}<|f(x)|<N\right\}} \in X^{\Phi}
$$

for all $N \in \mathbb{N}$.
Therefore, by the assumption we have $\chi_{\left\{x: N^{-1}<|f(x)|<N\right\}} \in X^{\Phi_{1 / a}}$ for all $N \in \mathbb{N}$. By relation (2.4) and Lemma 2.3,

$$
\begin{aligned}
\frac{1}{\Phi^{-1}\left(\left\|\chi_{E_{f}}\right\|_{X}^{-1}\right)} & =\lim _{N \rightarrow \infty} \frac{1}{\Phi^{-1}\left(\left\|\chi_{\left\{N^{-1}<|f|<N\right\}}\right\|_{X}^{-1}\right)} \\
& =\lim _{N \rightarrow \infty}\left\|\chi_{\left\{N^{-1}<|f|<N\right\}}\right\|_{\Phi} \leqslant K^{a /(1-a)}
\end{aligned}
$$

Hence,

$$
\left\|\chi_{E_{f}}\right\|_{X} \leqslant \frac{1}{\Phi\left(K^{a /(a-1)}\right)}
$$

and this completes the proof.
(iv) \Rightarrow (viii): Let $\Phi \in \Phi$ and $a \in D_{\Phi}$. By assumption (iv), for each $f \in X^{\Phi}$ we have $\chi_{E_{f}} \in X$. Let $f \in X^{\Phi}$. Then there is $\lambda>0$ such that $\Phi(|f| / \lambda) \in X$. Note that

$$
\Phi_{1 / a}\left(\frac{|f|}{\lambda^{1 / a}}\right)=\Phi\left(\frac{|f|^{a}}{\lambda}\right)=\Phi\left(\frac{|f|^{a}}{\lambda}\right) \chi_{\{|f| \leqslant 1\}}+\Phi\left(\frac{|f|^{a}}{\lambda}\right) \chi_{\{|f|>1\}} .
$$

We have

$$
\Phi\left(\frac{|f|^{a}}{\lambda}\right) \chi_{\{|f|>1\}} \leqslant \Phi\left(\frac{|f|}{\lambda}\right) \in X \quad \text { and } \quad \Phi\left(\frac{|f|^{a}}{\lambda}\right) \chi_{\{|f| \leqslant 1\}} \leqslant \Phi\left(\frac{1}{\lambda}\right) \chi_{E_{f}} \in X
$$

Thus, $f \in X^{\Phi_{1 / a}}$.
In the sequel, we intend to give a new version of [2], Theorem 3, page 155 for X^{Φ} spaces, where X is a Banach function space on a measure space $(\Omega, \mathcal{A}, \mu)$ and $\Phi \in \Phi$. For this, we give the next definition from [2], page 15.

Definition 2.5. Let Φ_{1} and Φ_{2} be two Young functions. We say that Φ_{2} is stronger than Φ_{1}, and write $\Phi_{1} \prec \Phi_{2}$ if there exist $a>0$ and $x_{0} \geqslant 0$ such that $\Phi_{1}(x) \leqslant \Phi_{2}(a x)$ for all $x \geqslant x_{0}$. While $x_{0}=0$, we say that Φ_{2} is stronger (globally) than Φ_{1}.

Theorem 2.6. Suppose that Φ_{1} and Φ_{1} are two Young functions, and for each $A \in \mathcal{A}$ with $\mu(A)<\infty, \chi_{A} \in X$. If $\Phi_{1} \prec \Phi_{2}$ (globally if $\mu(\Omega)=\infty$), then $X^{\Phi_{2}} \subseteq X^{\Phi_{1}}$.

Proof. Let $\Phi_{1} \prec \Phi_{2}$ and $f \in X^{\Phi_{2}}$. Then there exists $\lambda>0$ such that $\Phi_{2}(|f| / \lambda) \in X$. In the case $\mu(\Omega)=\infty$ and $\Phi_{1} \prec \Phi_{2}$ (globally), for some $b>0$ we have $\Phi_{1}(|f| /(b \lambda)) \leqslant \Phi_{2}(|f| / \lambda) \in X$. Hence, $\Phi_{1}(f /(b \lambda)) \in X$ by solidity of X, and so $f \in X^{\Phi_{1}}$. In the case $\Phi_{1} \prec \Phi_{2}$ (not necessarily globally) and $\mu(\Omega)<\infty$, there exist real numbers $b>0$ and $x_{0} \geqslant 0$ such that $\Phi_{1}(x) \leqslant \Phi_{2}(b x)$ for all $x \geqslant x_{0}$. Setting $B:=\left\{x \in \Omega: f(x)<x_{0}\right\}$ we have

$$
\begin{aligned}
\Phi_{1}\left(\frac{f}{\lambda}\right) & =\Phi_{1}\left(\frac{f \chi_{B}}{b \lambda}\right)+\Phi_{1}\left(\frac{f \chi_{\Omega-B}}{b \lambda}\right) \\
& \leqslant \Phi_{1}\left(\frac{x_{0}}{b \lambda}\right) \chi_{B}+\Phi_{2}\left(\frac{f \chi_{\Omega-B}}{\lambda}\right) \\
& \leqslant \Phi_{1}\left(\frac{x_{0}}{b \lambda}\right) \chi_{\Omega}+\Phi_{2}\left(\frac{f}{\lambda}\right) \in X
\end{aligned}
$$

and this completes the proof.
Acknowledgment. We would like to thank the referee for her /his so valuable comments and suggestions which have improved this work.

References

[1] R. del Campo, A. Fernández, F. Mayoral, F. Naranjo: Orlicz spaces associated to a quasi-Banach function space: Applications to vector measures and interpolation. Collect. Math. 72 (2021), 481-499.
[2] M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces. Pure and Applied Mathematics 146. Marcel Dekker, New York, 1991.
[3] J. L. Romero: When is $L^{p}(\mu)$ contained in $L^{q}(\mu)$? Am. Math. Mon. 90 (1983), 203-206.
[4] Y. Sawano, S. M. Tabatabaie: Inclusions in generalized Orlicz spaces. Bull. Iran. Math. Soc. 47 (2021), 1227-1233.
[5] B. Subramanian: On the inclusion $L^{p}(\mu) \subset L^{q}(\mu)$. Am. Math. Mon. 85 (1978), 479-481. zbl MR doi
[6] A. Villani: Another note on the inclusion $L^{p}(\mu) \subset L^{q}(\mu)$. Am. Math. Mon. 92 (1985), 485-487.
zbl MR doi
zbl MR
zbl MR doi
zbl MR doi

Authors' addresses: Seyyed Mohammad Tabatabaie, Alireza Bagheri Salec, Department of Mathematics, University of Qom, Qom, Iran, e-mail: sm.tabatabaie@qom.ac.ir, r-bagheri@qom.ac.ir.

