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Abstract. Let L = K(α) be an extension of a number field K, where α satisfies the monic
irreducible polynomial P (X) = Xp

− β of prime degree belonging to oK [X] (oK is the ring
of integers of K). The purpose of this paper is to study the monogenity of L over K by a
simple and practical version of Dedekind’s criterion characterizing the existence of power
integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index
ideal. As an illustration, we determine an integral basis of a pure nonic field L with a pure
cubic subfield, which is not necessarily a composite extension of two cubic subfields. We
obtain a slightly simpler computation of the discriminant dL/Q.
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1. Introduction

Let R be a Dedekind ring of characteristic zero and K its fraction field. Let L/K

be a finite separable extension. It is well known that the integral closure oL of R

in L is not necessarily a free R-module but a projective R-module of finite local

constant rank (see [2]). We say that a field L posseses a relative integral basis (RIB

for short) if oL is finite free R-module (i.e., oL admits a finite basis over R). The

problem of the existence or nonexistence of RIB is a hard open problem and there are

only few results for some pure cyclic extensions of small degree (of degree 2 and 3,

see [19], Theorem 2; [27] and [29]). A particular case of this problem is the question

of monogenity. The field L is said to be monogenic if oL = R[θ] for some element θ

in oL. In this case the field L is said to possess a power integral basis (PIB for short).

The problem of monogenity is a classical topic of algebraic number theory. It was
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originally examined by Dedekind (see [11]) and since then many number theorists

have been attracted (cf. [3], [4], [5], [8], [9], [13], [14], [15], [18], [20], [22], [23], [24],

[26], [27], [28] and others). Indeed, there are several results on the existence or

nonexistence of PIB for certain Abelian extensions L/Q, or certain relative Abelian

extensions L/K where both K and L are certain ray class fields of an imaginary

quadratic field (see [3], [4], [15], [20], [27]). Except for those investigations, there are

few results on PIB for relative extensions of degree greater than 4 and published works

deal with decomposable extensions (which are the composite of two pure subfields).

There is no known work for relative Abelian indecomposable extension L/K of higher

degree (i.e., which is not a composite at last of two “pure” subfields). The purpose

of this paper is the study of the monogenity of pure cyclic extensions of degree equal

to an arbitrary odd prime number p over a number field. Our method in this paper

is, in the first step, to provide a new version of the Dedekind criterion (Theorem 4.1)

that tests when a given α ∈ oL generates a power integral basis for oL over R (i.e., it

tests when oL = R[α], see 4.1) and, in the second step, to apply the previous results

to study the monogenity of relative pure cyclic fields of degree equal to an odd prime

number. Indeed, Theorem 4.1 and Proposition 4.2 give a necessary and sufficient

condition for a relative cyclic extension to admit a power integral basis (PIB). Using

the previous work, we find a simpler condition for a cubic relative field to have PIB

(Theorem 5.1) and we exhibit an integral basis for nonic extensions L = K(α), which

are relative cubic over a pure cubic field K = Q( 3
√
m) where α is a root of a monic

irreducible polynomial P (X) = X3−β ∈ oK [X ] and m is cube-free, not equal to ±1.

As a consequence, we compute the discriminant dL/Q given by the tower formula

dL/Q = NK/Q(dL/K) · (dK/Q)
[L:K],

where NK/Q denotes the norm from K to Q (see [21], Corollary 10.2 and [12]).

2. Preliminaries

Throughout this paper, R is a Dedekind ring of characteristic zero (i.e., contain-

ing Z), K its fraction field. Let p be a nonzero prime ideal in R and υp the p-adic

discrete valuation associated to p. Hence, for each nonzero element a ∈ R, υp(a) is

the greatest nonnegative integer l such that pl divides aR.

Let L be a finite separable extension of K, oL the integral closure of R in L and

α ∈ oL such that L = K(α). Recall that the primitive element α of L is said to be

a power basis generator over K (PBG for short) if B = {1, α, α2, . . . , αn−1} is an
integral basis of oL over R (i.e., oL = R[α]). Then L/K is monogenic, if L admits

a power basis generator over K.
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The index ideal [oL : R[α]]R of R is called the index of α over R (for details on

the index ideal, see [2], [6] or [12]) and may also be denoted by IndR(α). It is clear

that oL = R[α] if and only if IndR(α) = R.

Let P ∈ K[X ] be the minimal monic irreducible polynomial of α over K. Since R

is integrally closed, then P ∈ R[X ] (see [16], page 7). Let DiscR(P ) be the principal

ideal of R generated by Res(P, P ′), where Res(P, P ′) denotes the resultant of the

two polynomials P and its derivative P ′. The index-discriminant formula

(2.1) DiscR(P ) = IndR(α)
2DR(oL)

is well known (see [2], [6] or [12]).

In view of the index-discriminant formula (2.1), the element α is a PBG of L

over K if and only if p doesn’t divide the index ideal [oL : R[α]]R for any nonzero

prime ideal p in R such that p2 divides DiscR(P ). This fact lead us to introduce, for

any irreducible polynomial P , the set SP of primes ideal whose square divides the

ideal DiscR(P ). Then:

SP = {p ∈ specR : p2 divides DiscR(P )}.

We see that the set SP is very useful when using the Dedekind criterion (see

Theorem 4.1) in order to decide if L is monogenic or not. Indeed SP is the set of

nonzero prime ideals, which may divide the ideal IndR(α).

Before presenting the main results, we state some lemmas that we will use later.

3. Some lemmas

Let R be a commutative ring, let p be a prime ideal in R and S = R \ p. The

resulting localization S−1M is usually denoted by Mp and called the localization

of M at the prime ideal p for an R-module M . Let M and N be two R-modules

such that N ⊆ M . It is well known (by applying [1], Proposition 3.8, page 40 to

the R-module quotient M/N) that N = M if and only if Mp = Np for every prime

ideal p of R. When R is a Dedekind ring and N ⊆ M are two projective R-modules

of the same finite constant rank, then Mp = Np for any prime ideal p of R (see [2],

Lemma 3, page 10). More precisely, we assert the following deep result.

Lemma 3.1. Let R be a Dedekind ring and N ⊆ M be two projective R-modules

of the same finite constant rank. Then [Mp : Np]Rp
= ([M : N ]R)p for any nonzero

prime ideal p in R. In particular, N = M if and only if Mp = Np for every prime

ideal p of R which divides the index ideal [M : N ]R.
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P r o o f. Indeed, by applying Proposition 3.8, page 40 in [1] to the R-module

quotient M/N we see that N = M if and only if Mp = Np for every prime ideal p

of R. On the other hand, [Mp : Np]Rp
= ([M : N ]R) · Rp for any nonzero prime

ideal p in R (see [6] or [2], property (2), page 10). Therefore, Mp = Np for any

nonzero prime ideal p in R which doesn’t divide the index ideal [M : N ]R. To

conclude, it suffices then to use Proposition 3.8, page 40 in [1]. �

Lemma 3.2. Let R be an integrally closed ring and K its quotient field, L a finite

separable extension of K, α a primitive element of L integral over R. Then (R[α])p =

Rp[α] for every prime ideal p of R. In particular, oL = R[α] if and only if Rp[α] is

integrally closed for every prime ideal p of R if and only if R[α] is integrally closed.

P r o o f. We obtain the result from the isomorphism R[α] = R[X ]/ 〈P (X)〉, the
properties of an integrally closed ring and its integral closure, and the properties

of a multiplicatively closed subset S of a ring R, notably, S−1(R[X ]) = (S−1R)[X ]

(see [1]). �

R em a r k 3.1. Let us keep the notation of Lemma 3.2. Let B be the integral

closure of Rp in L. Then B = (oL)p where (oL)p is the localization of oL by the

prime ideal p (see [1], Proposition 5.12, page 62).

Lemma 3.3. Let R be a Dedekind ring, K its fraction field, L a finite separable

extension over K and oL the integral closure of R in L. Let α ∈ oL be an algebraic

integer over R such that L = K(α). Let p be a nonzero prime ideal in R and B the

integral closure of Rp in L. Then IndRp
(α) = (IndR(α))p. In particular p doesn’t

divide the index ideal IndR(α) if and only if B = Rp[α].

P r o o f. We obtain the result from Lemma 3.1 and Lemma 3.2, and the fact that

any multiplicatively closed subset S of a ring R permutes with the integral closure

(see [1], Proposition 5.12, page 62), notably, S−1(oL) is equal to the integral closure

of (S−1R) in L like in Remark 3.1. �

The spectrum of a commutative ring R, denoted by Spec(R), is the set of prime

ideals of R.

Lemma 3.4. Let R be a Dedekind ring, K its fraction field, L a finite separable

extension over K and oL the integral closure of R in L. Let α ∈ oL be an algebraic

integer over R such that L = K(α). Let P ∈ R[X ] be the monic minimal polynomial

of α and SP = {p ∈ Spec(R) : p2 divides DiscR(P )}. Then α is a PBG of L over K

if and only if p doesn’t divide the index ideal IndR(α) for any prime ideal p in SP .
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P r o o f. Indeed, we see that if p is a nonzero prime ideal in R and p /∈ SP then—

by the index-discriminant formula—p doesn’t divide the index ideal IndR(α). We

obtain the result from Lemmas 3.1–3.3, and the fact that α is a PBG of L over K if

and only if (oL)p = Rp[α], for all nonzero prime ideals p in R if and only if p doesn’t

divide the index ideal IndR(α) for all nonzero prime ideals p in SP . �

Spec(R) is equipped with the Zariski topology, for which the closed sets are the sets

V (I) = {p ∈ Spec(R) : I ⊆ p}

where I is an ideal in R. Note also that for any ideal I in R and n ∈ N we have

V (In) = V (I). So, from a suitable condition we have the following basic result.

Lemma 3.5. Let R be a Dedekind ring, K its fraction field and oK be the integral

closure of R in K. Given any (s,m) ∈ N∗ × N, we put θ = s
√
m and assume that

θ ∈ oK . Then V (θoK) = V (moK).

Lemma 3.6. Let (R, p = πR, k) be a discrete valuation ring with a finite residue

field k. Suppose that the characteristic of R is zero and pR = pe where p is a prime

number. Let β ∈ R − p and t = |k| the cardinality of k. Let s be a positive integer
less than or equal to min(p, e + 1). Then β is a p-power modulo ps if and only if

υπ(β
t−1 − 1) > s.

P r o o f. Let a ∈ R be such that β ≡ ap mod ps, then βt−1 ≡ ap(t−1) mod ps. But

a(t−1) ≡ 1 mod p (since a /∈ p), then at−1 = 1 + πu (u ∈ R) and hence ap(t−1) = 1 +

πpup+πe+1v. As s 6 min(p, e+1), then ap(t−1) ≡ 1 mod ps. From this we conclude

βt−1 ≡ 1 mod ps. Conversely, suppose that υp(β
t−1 − 1) > s, then βt−1 = 1 + πsb

(b ∈ R) and like p ∤ t−1 there exists (u, v) ∈ Z2 such that up+v(t−1) = 1, therefore

β = βup + cπsβup with c ∈ R since βv(t−1) ≡ 1 mod ps. It follows that β = ap + zπs

where a = βu, z = cβup. Consequently, β ≡ ap mod ps. �

4. Monogenity of relative cyclic extensions

4.1. Dedekind criterion for relative extensions using Gaussian valuation.

Let K be a nonzero commutative field and υ be a valuation on K. Let P = a0 +

a1X + . . . + anX
n ∈ K[X ]. We put υG(P ) = inf{υ(ai) : 0 6 i 6 n}. Then υG is

a valuation on K[X ] called the Gauss valuation on K[X ] relative to υ. First we

present a new simple version of the Dedekind criterion in global case.

Theorem 4.1 (Dedekind criterion). Let R be a Dedekind ring, K its fraction

field, L be a finite separable extension over K and oL be the integral closure of R

in L. Let α ∈ oL be an algebraic integer over R such that L = K(α). Let
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P = Irrd(α,R) ∈ R[X ] be the monic irreducible polynomial of α. Let p be a nonzero

prime ideal in R and k := R/p its residual field. Let P be the image in k[X ] of P and

assume that P =
r
∏

i=1

Pi
li
is the prime decomposition of P in k[X ] with Pi ∈ R[X ]

being a monic lift of the irreducible polynomial Pi for 1 6 i 6 r. Let Vi ∈ R[X ] be

the remainder of the Euclidean division of P by Pi. Let υp be the p-adic discrete

valuation associated to p. Let υG be the Gauss valuation on K[X ] associated to υp.

Then p doesn’t divide the index ideal IndR(α) if and only if υG(Vi) = 1 for all

i = 1, . . . , r such that li > 2.

P r o o f. In view of Proposition 3.2, it suffices to show the result in the local

case. Then we can assume that (R, p, k) is a discrete valuation ring, K its quotient

field, p = πR its maximal ideal and k = R/p its residual field. Let α be an algebraic

integer over R, A = R[α] and L = K(α) a finite separable extension over K.

Let T ∈ R[X ] satisfying P =
r
∏

i=1

P li
i + πT where π is a uniformizer of R. Let

Ui ∈ R[X ] be the remainder of the Euclidean division of T by Pi and Vi ∈ R[X ] the

remainder of the Euclidean division of P by Pi. The uniqueness of the remainder

shows that Vi = πUi. As P i is irreducible then gcd(P i, T ) = 1 if and only if U i 6= 0,

which is equivalent to υG(Ui) = 0 and therefore to υG(Vi) = 1. Then p doesn’t

divide the index ideal IndR(α) if and only if the element α is a PBG of L over Rp

(see [17] and Lemma 3.3).

Finally, by the Dedekind criterion (see [5], Theorem 3.1, [17] or [25]), the element α

is PBG of L over Rp if and only if gcd(P i, T ) = 1 for all i = 1, . . . , r such that li > 2

if and only if υG(Vi) = 1 for all i = 1, . . . , r such that li > 2. �

4.2. Monogenity of relative pure cyclic extension: Local case. Let R be

a Dedekind ring containing Z and p be a nonzero prime ideal in R. It is clear that

char(R/p) = p if and only p ∈ V (pR). Let P = Xp − β be a monic irreducible

polynomial in R[X ] (p is an odd prime number). Then the discriminant of P is

equal to DiscR(P ) = ppβ(p−1)R. As p > 3, then the set SP = V (pR) ∪ V (βR). Now

it is time to give our first main result.

Theorem 4.2. Let (R, p = πR, k) be a discrete valuation ring with a finite resid-

ual field. Let K be the quotient field of R, L a finite separable extension of K,

α a primitive element of L which is integral over R, and P = Xp − β its monic

irreducible polynomial in R[X ], where p is an odd prime number. Let υπ = υp be

the p-adic discrete valuation associated to p. Suppose that the characteristic of the

residual field k is a prime number q. Let t = |k| be the cardinality of k (i.e., the
number of elements in k). If β ∈ p then α is a PBG of L/K if and only if υπ(β) = 1.

Suppose that β ∈ R− p. Then the following properties hold:
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(1) If q = p, then the following assumptions are equivalent:

(a) α is a PBG of L/K,

(b) υπ(β
t−1 − 1) = 1,

(c) β is not a p-power modulo π2.

(2) If q 6= p then α is a PBG of L/K.

We summarize our results in Table 1.

vp(b) > 1 α is a PBG ⇔ vπ(b) = 1

q 6= p q = p

vp(b) = 0 α is a PBG α is a PBG ⇔ υπ(β
t−1 − 1) = 1

Table 1. Monogenity in the local case.

P r o o f. For simplicity of notations, write s instead of υπ(β). If β ∈ p, then the

remainder of the Euclidean division of P byX is r(X) = β. Hence, from Theorem 4.1,

α is a PBG if and only if υπ(β) = 1. We now turn to the case β ∈ R − p.

(1) Assume that q = p.

(a)⇔ (b): As s = 0, then SP = {πR}. Reducing P modulo the prime ideal πR
of R which lies above pR yields

P (X) ≡ X
p − β modπR

≡ X
p − β

t
modπR (since βt ≡ β modπ)

≡ (X − β
pf−1

)p modπR.

Moreover, let r(X) be the remainder of the Euclidean division of P by

X − βpf−1

. It is clear that r(X) = P (βpf−1

) and then r(X) = βpf − β.

Hence α is a PBG if and only if υπ(β
t − β) = 1.

(b) ⇔ (c): We apply Lemma 3.6 above for s = 2.

(2) Assume that q 6= p. Since β ∈ R−p, it follows that P is a separable polynomial.

Otherwise, if P has α as a double root, then from P ′(X) = pXp−1 we get α = 0

which means that β ∈ p and completes the proof in this case. �

R em a r k 4.1. Let us keep all the notations of Proposition 4.2. We can resume

the above result as follows.

(1) If char(k) = p then α is a PBG of L/K if and only if υp(β
t − β) = 1.

(2) If char(k) 6= p then α is a PBG of L/K if and only if υp(β) 6 1.
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4.3. Monogenity of relative pure cyclic extension: the Dedekind case.

Let R be a commutative ring containing Z, K its fraction field and p a prime number.

We denote by FibK(p) or FibR(p) the set all nonzero prime ideals in R which lie

above p. It is clear that if R is a Dedekind ring then FibR(p) = V (pR).

Let R be a Dedekind ring containing Z and P = Xp − β a monic irreducible

polynomial in R[X ]. Recall that the discriminant of P is equal to DiscR(P ) =

ppβ(p−1)R. As p > 3, then the set SP = FibR(p) ∪ V (βR). Note also that if p is

a nonzero prime ideal in R then char(R/p) = p if and only p ∈ FibR(p).

Theorem 4.3. Let R be a Dedekind ring with a finite residual field and K its

fraction field. Assume that charK = 0 and L = K(α) is a finite separable extension

of K. Let P = Xp − β ∈ R[X ] be the monic minimal polynomial of α, where p is an

odd prime number. Then

(1) If FibR(p) ⊆ V (βR), then α is a PBG of L overK if and only if β is square free.

(2) Assume that FibR(p) * V (βR). Let FibR(p) − V (βR) = {p1, . . . , ps}. For all
i ∈ {1, . . . , s}, let us denote by υi the pi-adic valuation associated to pi and

ti = |R/pi| the cardinality of the residual field R/pi. Then α is a PBG of L

over K if and only if “β is square free” and υi(β
ti −β) = 1 for all i ∈ {1, . . . , s}.

P r o o f. Indeed, the discriminant of P is equal to DiscR(P ) = ppβ(p−1)R. As

p > 3, then the set SP = V (βR) ∪ (FibR(p) − V (βR)) is the disjoint union. By

Lemma 3.4, α is a PBG of L over K if and only if p doesn’t divide the index ideal

IndR(α) for any prime ideal p in SP . Let p be a prime in SP by localization at p,

the ring Rp is a discrete valuation ring. We may then apply Proposition 4.2 to Rp.

It is clear that if p in V (βR) then β ∈ p. Then by Proposition 4.2, the ideal p

doesn’t divide the index ideal IndR(α) if and only if υp(β) = 1. Then there are

two cases:

(1) If FibR(p) ⊆ V (βR) then SP = V (βR). Hence α is a PBG of L over K if and

only if, for any prime p in V (βR), the ideal p doesn’t divide the index ideal IndR(α).

Therefore by Proposition 4.2, α is a PBG of L over K if and only if β is square free.

(2) If FibR(p) * V (βR) then SP = V (βR) ∪ {p1, . . . , ps}, where p1, . . . , ps are in
FibR(p)− V (βR). It is clear that charR/pi = p (the characteristic of the field R/pi

is equal to p since pR ⊂ pi). According to Proposition 4.2, we can conclude that pi
doesn’t divide the index ideal IndR(α) if and only if υi(β

ti − β) = 1, where ti is the

cardinality of the residual field R/pi. �

R em a r k 4.2. Note that if R = Z, Theorem 4.3 coincides with the result ob-

tained in [7], Proposition 4.2 and [5], Proposition 5.2).
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5. Illustration: Pure nonic field

Using what we have proved in Section 4, we can now give in complete detail an

integral basis for certain extensions of degree 9. We first need to compute an integral

basis for relative cubic extension by giving the necessary and sufficient conditions,

which implies its monogenity.

Theorem 5.1. Let K = Q(θ) be a cubic number field, where θ = 3
√
m, m is

a cube-free integer not equal to ±1 and m ≡ 1 mod 3. Let β = θ + 1 and L = K(α)

be a cubic extension where α is a root of the monic irreducible polynomial P =

X3 −β ∈ R[X ], then α is a PBG of L over Q if and only if υ3(m− 1) = 1 and m+1

is square free. Furthermore the discriminant of L/K is dL/K = 27(θ + 1)2.

P r o o f. From [10], Proposition 6.4.14 and [16] there exists a unique prime

ideal b in R such that 3oK = b3. By Lemma 3.5, we have υb(θ) = 0 since 3 ∤ m.

Now we claim that υb(β) = 0. So, as m ≡ 1 mod 3, then υb(m + 1) = 0 and by

the formula (θ + 1)(θ2 − θ + 1) = m + 1, one checks that υb(β) = 0. Furthermore,

FibK(3) * V (βoK). Hence, by Theorem 4.3, α is a PBG of L over K if and only if

νb(β
3 − β) = 1 and β is square free. Let us first assume that νb(β

3 − β) = 1. As

β3 − β = θ(θ + 1)(θ + 2), then

(5.1) νb(θ) + νb(θ + 1) + νb(θ + 2) = 1.

On the other hand,

(5.2) νb(θ − 1) + νb(θ
2 + θ + 1) = νb(m− 1).

Then, νb(θ − 1) = νb(θ + 2) = 1 and νb(θ
2 + θ + 1) = νb((θ − 1)2 + 3θ) = 2 by

property of the dominance principle. So, we can deduce that νb(m − 1) = 3 which

implies ν3(m− 1) = 1. Conversely, if ν3(m− 1) = 1, then νb(m− 1) = 3 which gives

νb(θ − 1) + νb(θ
2 + θ + 1) = 1. So, we have 3 cases to study:

⊲ If νb(θ − 1) = 0, then using the dominance principle, we have νb(θ
2 + θ + 1) =

νb((θ − 1)2 + 3θ) = 0 which is a contradiction.

⊲ If νb(θ − 1) = 3, then using the dominance principle, we have νb(θ
2 + θ + 1) =

νb((θ − 1)2 + 3θ) = 3 which is a contradiction.

⊲ If νb(θ − 1) = 1, then using the dominance principle, we have νb(θ
2 + θ + 1) =

νb((θ − 1)2 + 3θ) = 2, hence grouping and using (5.1), we get νb(β
3 − β) = 1.

Secondly, let p be a prime ideal in V (β). We can see from this that β is square free

if and only if νp(β) = 1 (FibK(3) * V (βoK)). Let us write

(5.3) β(β2 − 3β + 3) = m+ 1.
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Then, νp(β) + νp(β
2 − 3β + 3) = νp(m + 1). Now, using the dominance principle,

νp(β
2 − 3β + 3) = 0. So, νp(β) = νp(m + 1). Putting all this together we have

proved β is square free if and only if m+ 1 is square free, since νp(m+ 1) > 1.

That proves the first part of the theorem. For the remainder, we have

dL/K = NL/K(P ′(α)) = NL/K(3β2) = 27(θ + 1)2.

�

Corollary 5.1. Under the conditions of Theorem 5.1, let L = Q(α, θ) and write

m = ab2 with a and b squarefree and coprime. We set

t =















θ2

b
if a2 6≡ b2 mod 9,

θ2 − a · b2θ + b2

3b
if a2 ≡ b2 mod 9.

Then

B = {1, θ, t, α, α · θ, α · t, α2, α2 · θ, α2 · t}

is an integral basis of L. Furthermore, the discriminant of L is given by

dL/Q =

{

−274 · (m+ 1)2 · a6 · b6 if a2 ≡ b2 mod 9,

−276 · (m+ 1)2 · a6 · b6 if a2 6≡ b2 mod 9.

P r o o f. The proof is presented for the first case, the second one is similar.

By [10], Theorem 6.4.13, page 346, if a2 6≡ b2 mod 9, we have that {1, β, β2/b} is an
integral basis of K over Q according to Theorem 5.1 and [8], Lemma 2.1. It is easily

seen that B = {1, θ, t, α, α · θ, α · t, α2, α2 · θ, α2 · t} is an integral basis of L. Indeed,
dL/Q = NK/Q(dL/K) · (dK/Q)

[L:K], so

dL/Q =

{

NK/Q(27 · (θ + 1)2) · (−3 · a2 · b2)3 if a2 ≡ b2 mod 9,

NK/Q(27 · (θ + 1)2) · (−27 · a2 · b2)3 if a2 6≡ b2 mod 9.

The minimal monic polynomial of θ+1 is given by T (X) = X3−3X2+3X−(m+1),

then

dL/Q =

{

−274 · (m+ 1)2 · a6 · b6 if a2 ≡ b2 mod 9,

−276 · (m+ 1)2 · a6 · b6 if a2 6≡ b2 mod 9.

�

126



R em a r k 5.1. Let us keep all the notations of Theorem 5.1. We know that

DiscR(P ) = I2α · dL/K ,

where the first factor is the square of the relative index of α over K, and P the

minimal monic polynomial of α. We can check that

I2α =

{

272 · b6 if a2 ≡ b2 mod 9,

b6 if a2 6≡ b2 mod 9.

In the first case, one can say that θ + 1 is not a PBG of L/Q if a2 ≡ b2 mod 9.
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