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Abstract. Let D be an integral domain with the quotient field K, X an indetermi-
nate over K and x an element of D. The Bhargava ring over D at x is defined to be
Bx(D) := {f ∈ K[X] : for all a ∈ D, f(xX+a) ∈ D[X]}. In fact, Bx(D) is a subring of the
ring of integer-valued polynomials over D. In this paper, we aim to investigate the behavior
of Bx(D) under localization. In particular, we prove that Bx(D) behaves well under local-
ization at prime ideals of D, when D is a locally finite intersection of localizations. We also
attempt a classification of integral domains D such that Bx(D) is locally free, or at least
faithfully flat (or flat) as a D-module (or D[X]-module, respectively). Particularly, we are
interested in domains that are (locally) essential. A particular attention is devoted to pro-
vide conditions under which Bx(D) is trivial when dealing with essential domains. Finally,
we calculate the Krull dimension of Bhargava rings over MZ-Jaffard domains. Interesting
results are established with illustrating examples.
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Introduction

Let D be an integral domain with the quotient field K and X an indeterminate

over K. The ring of integer-valued polynomials over D is defined by Int(D) :=

{f ∈ K[X ] : f(D) ⊆ D}. Clearly, Int(D) is a ring between D[X ] and K[X ]. For any

element x of D, the Bhargava ring over D at x is defined as

Bx(D) := {f ∈ K[X ] : for all a ∈ D, f(xX + a) ∈ D[X ]}.

Investigation on Bhargava rings, relatively to commutative algebra, is still in the

beginning and it is a promising research topic. Originally, Manjual Bhargava intro-

duced the notion of integer-valued polynomials of modulus x in June 2000 during the
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second meeting on the integer-valued polynomials held at C.I.R.M. (Centre Interna-

tional de Rencontres Mathématiques) in Marseille. In 2004, under the supervision of

Paul-Jean Cahen, Yeramian devoted her Ph.D. thesis (see [27]) to the study of that

remarkable subring of the ring of integer-valued polynomials which she named the

“Bhargava ring” in honor to Bhargava. She studied Bhargava rings over an arbitary

integral domain and investigated localization properties, trivial cases, the module

structure and the spectrum of Bhargava rings over some particular integral domains.

Further, in 2009, Elliott in [10] pointed out that the question of flatness of the

D-module Int(D) can be reduced to the question of flatness of Bhargava rings. In

other words, if Bx(D) is flat as a D-module for every nonzero element x of D then

Int(D) is also flat as a D-module (cf. [10], Proposition 6.4). It is worth noting that

in [5], Bhargava et al. refer to Bx(D) by Intx(D) and use the term “the ring of

integer-valued polynomials of modulus x” instead of “the Bhargava ring”. Later

in [1], Alrasasi and Izelgue continued the previous investigations and focused on the

description of the prime spectrum and the evaluation of the Krull and valuative di-

mensions of Bhargava rings over general integral domains. Recently in 2020, Park

and Tartarone investigated the PvMD property of Bhargava rings over some partic-

ular classes of PvMDs, namely valuation domains, Krull-type domains and almost

Dedekind domains (see [22]).

Note that B0(D) = Int(D) and Bx(D) = D[X ] for any unit element x in D. Also,

we have the containments D[X ] ⊆ Bx(D) ⊆ Int(D). Moreover, as proved in [27],

we have Int(D) =
⋃

06=x∈D

Bx(D) and, for each nonzero element x of D, Bx(D) =
⋂

a∈D

D[(X − a)/x]. For a detailed review on Bhargava rings see [1], [27], [28], [29].

The purpose of this paper is to investigate some properties of Bhargava rings such

as localization, local freeness, faithful flatness and calculation of the Krull dimension

over various classes of integral domains. Thus, in Section 1 we collect some useful

facts concerning the localization of Bx(D). Our main result in this section states

that if D is an integral domain such that D =
⋂

p∈P

Dp for some subset P of Spec(D)

and the intersection
⋂

p∈P

Dp is locally finite, then Bx(D)p = Bx(Dp) for each prime

ideal p of D and for each element x of D (Proposition 1.3). In Section 2, we attempt

a classification of integral domains D such that Bx(D) is locally free, or at least

faithfully flat (or flat) as a D-module (or as an overring of D[X ], respectively).

Among other results, we show that, for any locally essential domain D, the D-

module Bx(D) is faithfully flat and it is locally free under an additional condition on

the associated primes of D (Theorem 2.1). This last result includes the case when

the integral domain D is either almost Krull, generalized Krull or t-almost Dedekind

(Corollary 2.2). Also, we derive an interesting corollary about the D-module Int(D)
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(Corollary 2.4). In the case of essential domains, we show that Bx(D) is flat over

D[X ] if and only if Bx(D) is trivial, that is, Bx(D) = D[X ] (Theorem 2.7). Then,

we give some conditions under which Bx(D) is trivial (Theorem 2.9). Further, we

calculate the Krull dimension of Bx(D) when D is an MZ-Jaffard domain. We end

with a list of examples illustrating some of our results.

In order to avoid trivialities, we always assume that D is not a field.

1. Preliminary results

In this section we provide many preliminary results that will be used at some

further point in the article to prove our main results. First, we begin with the

following useful lemmas.

Lemma 1.1. Let D be an integral domain such that D =
⋂
i

S−1
i D, where Si is

a multiplicative subset of D for each i. Then Bx(D) =
⋂
i

Bx(S
−1
i D) =

⋂
i

S−1
i Bx(D)

for each element x of D.

P r o o f. By [28], Lemma 2.1, Bx(D) ⊆ S−1
i Bx(D) ⊆ Bx(S

−1
i D) for each i, so

we only need to show that
⋂
i

Bx(S
−1
i D) ⊆ Bx(D). To do this, let f ∈

⋂
i

Bx(S
−1
i D).

Then f(xX + a) ∈ S−1
i D[X ] for each i and each a ∈ S−1

i D, and hence f(xX + a) ∈

S−1
i D[X ] for each i and each a ∈ D because D =

⋂
i

S−1
i D. Thus f(xX + a) ∈

⋂
i

S−1
i D[X ] = D[X ] for each a ∈ D, that is, f ∈ Bx(D), and this completes the proof.

�

The previous result can be viewed as a generalization of the first statement of [22],

Proposition 2.5.

Lemma 1.2. Let D be an integral domain. Then Bx(Dp)q = (Dp)q[X ] for each

pair of prime ideals p and q of D with p 6= q and each element x of D, and thus

Bx(Dp)q = Bx(Dq)p.

P r o o f. It follows immediately from [11], Lemma 2.5 and the inclusions

(Dp)q[X ] ⊆ Bx(Dp)q ⊆ Int(Dp)q. �

For polynomial rings, the equality S−1(D[X ]) = (S−1D)[X ] always holds for any

integral domain D and any multiplicative subset S of D. However, in the case of

Bx(D), we always have S−1Bx(D) ⊆ Bx(S
−1D) (see [28], Lemma 2.1) and when the

reverse inclusion holds we say that Bx(D) has the property of the good behavior un-

der localization, i.e., S−1Bx(D) = Bx(S
−1D) for each multiplicative subset S of D.

This last property plays a pivotal role in studying the ring or the module structure
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of Bx(D). In fact this condition allows us to reduce our studies to the local case; for

example when dealing with domains that are either t-locally rank-one discrete valu-

ation or t-locally valuation ones (such as Krull domains, generalized Krull domains

and Krull-type domains). Thus, with the good behavior under localization of Bx(D)

we only need to investigate the case Bx(V ), where V is a rank-one discrete valuation

domain or a valuation domain. From now on, for brevity’s sake, we will use DVR to

refer rank-one discrete valuation domain.

In [29], Proposition 1.1, Yeramian proved that Bx(D) behaves well under localiza-

tion when D is a Noetherian domain, and if D is a Krull domain and x ∈ D\{0} then

Bx(D)p = Bx(Dp) for each height-one prime ideal p of D. Recently in [22], the au-

thors have generalized the previous result as follows: if D is an integral domain such

that D =
⋂

p∈P

Dp for some subset P of Spec(D) and the intersection
⋂

p∈P

Dp is locally

finite, then Bx(D)p = Bx(Dp) for each p ∈ P and for each x ∈ D. So, in the following,

we improve that result by showing that the equality holds for all prime ideals.

Let {Dα}α∈Λ be a family of integral domains contained in the same field. The

intersection
⋂

α∈Λ

Dα is said to be locally finite if every nonzero element of this inter-

section is a unit in Dα for all but finitely many α ∈ Λ.

Proposition 1.3. Let D =
⋂

p∈P

Dp, where P ⊆ Spec(D), be an integral domain

and let x be an element of D. If the intersection
⋂

p∈P

Dp is locally finite, then

S−1Bx(D) = Bx(S
−1D) for each multiplicative subset S of D. Moreover, we have:

Bx(D)p = Bx(Dp) = Dp[X ] for each p ∈ Spec(D) \ P .

P r o o f. It is sufficient to prove that Bx(D)p = Bx(Dp) for each prime ideal p

of D. So, let p ∈ Spec(D). Two cases are possible:

Case 1: p ∈ P . Then the desired equality follows from the second statement

of [22], Proposition 2.5.

Case 2: p 6∈ P . Then the finite character and [26], Lemma 1.5 assert that Dp =⋂
q∈P

(Dq)p. On the other hand, for each q ∈ P , we have p 6= q and then, by Lemma 1.2,

Bx((Dq)p) = (Dq)p[X ]. Thus it follows from Lemma 1.1 that

Bx(Dp) =
⋂

q∈P

Bx((Dq)p) =
⋂

q∈P

(Dq)p[X ] = Dp[X ].

Therefore Bx(D)p = Bx(Dp) = Dp[X ], and the proof is complete. �

R em a r k 1.4. With a slight modification of the proof of [22], Proposition 2.5,

we can adapt it to prove Proposition 1.3 as follows:
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Let q ∈ Spec(D), we always have Bx(D)q ⊆ Bx(Dq) (see [28], Lemma 2.1). For

the other inclusion, let f ∈ Bx(Dq). Clearly, there exists d ∈ D \ {0}, such that

df ∈ D[X ]. Set B := {p ∈ P , d ∈ p}. The finite character of D implies that B is a

finite set. Then, by Lemma 1.2, we have Bx(Dq) ⊆ Bx(Dp)q for each p ∈ B. So, for

each p ∈ B there exists sp ∈ D \ q such that spf ∈ Bx(Dp). Now, we set s =:
∏
p∈B

sp.

Then, since B is finite, s ∈ D \ q and sf ∈ Bx(Dp) for each p ∈ B. On the other

hand, since d is a unit in Dp for each p ∈ P \ B and df ∈ D[X ], one has f ∈ Dp[X ]

and then sf ∈ Dp[X ] ⊆ Bx(Dp). Hence sf ∈ Bx(Dp) for each p ∈ P , and then

sf ∈
⋂

p∈P

Bx(Dp). Thus, by Lemma 1.1, sf ∈ Bx(D). Therefore f ∈ Bx(D)q since

s ∈ D \ q, and the equality is proved.

By taking x = 0 in Proposition 1.3, we recover the following well-known result.

Corollary 1.5 ([11], Theorem 1.1). Let D =
⋂

p∈P

Dp, where P ⊆ Spec(D), be

an integral domain. If the intersection
⋂

p∈P

Dp is locally finite, then S−1Int(D) =

Int(S−1D) for each multiplicative subset S of D.

Following [7], a prime ideal p of D is called an associated prime of a principal

ideal aD of D if p is minimal over (aD : bD) for some b ∈ D \ aD. For brevity, we

call p an associated prime of D and we denote by Ass(D) the set of all associated

prime ideals of D.

Proposition 1.6. Let D be an integral domain and let x be an element of D.

Then Bx(D)m = Bx(Dm) = Dm[X ] for each maximal ideal m of D which is not an

associated prime.

P r o o f. Let m be a maximal ideal of D that is not associated prime. Then,

we can write Dm =
⋂

p∈Ass(D),p(m

Dp [7], Proposition 4. Since Dp has an infinite

residue field for each p ∈ Ass(D) with p ( m, then Bx(Dp) = Dp[X ] and hence, by

Lemma 1.1,

Bx(Dm) =
⋂

p∈Ass(D),p(m

Bx(Dp) =
⋂

p∈Ass(D),p(m

Dp[X ] = Dm[X ].

Therefore, the thesis follows from the inclusions Dm[X ] ⊆ Bx(D)m ⊆ Bx(Dm). �

As a first application, we characterize the good behavior under localization of

Bhargava rings in terms of associated primes.

Corollary 1.7. Let D be an integral domain and let x be an element of D. Then,

Bx(D) has a good behavior under localization if and only if Bx(D)m = Bx(Dm) for

each m ∈ Max(D) ∩ Ass(D) with finite residue field.
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On an integral domain D with the quotient field K the t-operation is defined by

It :=
⋃
(J−1)−1, where J ranges over the set of all nonzero finitely generated ideals

contained in I and J−1 := {x ∈ K,xJ ⊆ D}. A nonzero ideal I of D is a t-ideal if

It = I, and a t-maximal ideal is an ideal that is maximal among the proper t-ideals

(and hence it is a prime ideal). As any associated prime ideal with finite residue field

is t-maximal (cf. [10], Proposition 3.3), we deduce:

Corollary 1.8. Let D be an integral domain and let x be an element of D. Then

Bx(D)m = Bx(Dm) = Dm[X ] for each maximal ideal m of D which is not t-maximal.

We say that Bx(D) is a locally free D-module if Bx(D)m is a free Dm-module for

each maximal ideal m of D. Next, as a corollary, we give a key tool result that

characterizes the local freeness (or faithful flatness) of the D-module Bx(D) in terms

of maximal ideals that are associated primes.

Corollary 1.9. For any integral domain D and any element x of D, the following

statements are equivalent:

(1) Bx(D) is locally free (or faithfully flat, respectively) as a D-module;

(2) Bx(D)m is free (or faithfully flat, respectively) as a Dm-module for each maximal

ideal m of D which is an associated prime.

P r o o f. It follows from Proposition 1.6 and the fact that faithful flatness is

a local property, see [6], Chapitre II, §3, n◦4, Corollaire de la Proposition 15. �

2. Main results and examples

In this section, we give various results on the ring Bx(D) concerning local freeness,

(faithful) flatness and its Krull dimension.

First, we start by recalling that an essential domain is an integral domain D such

that D =
⋂

p∈P

Dp, where P is a subset of Spec(D) and Dp is a valuation domain for

each p ∈ P , and then the subset P is called a defining family of D. As this notion

does not carry up to localizations (cf. [15]), D is said to be a locally essential domain

if Dq is an essential domain for each q ∈ Spec(D); or equivalently, Dp is a valuation

domain for each p ∈ Ass(D) (cf. [21]).

Thus, we state our first main result for Bx(D) to be locally free, or at least faithfully

flat, as a D-module when D is a locally essential domain.

Theorem 2.1. Let D be a locally essential domain with the quotient field K and

let x be an element of D. We have:
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(1) Bx(D) is a faithfully flat D-module.

(2) If Ass(D) = X1(D), where X1(D) denotes the set of all height-one prime ideals

of D, then Bx(D) is locally free as a D-module.

P r o o f. (1) By Corollary 1.9, we only need to prove that Bx(D)m is a faithfully

flat Dm-module for each m ∈ Max(D) ∩ Ass(D). So, let m ∈ Max(D) ∩ Ass(D). We

haveDm = Bx(D)m∩K andDm is a valuation domain (becauseD is locally essential).

Then, by [17], Remark 3.4, Bx(D)m is a faithfully flat Dm-module. Thus Bx(D) is

a faithfully flat D-module, as desired.

(2) Let m ∈ Max(D) ∩ Ass(D). Since Ass(D) = X1(D), Dm is a one-dimensional

valuation domain and so two cases are possible:

Case 1: mDm is principal. Then Dm is a DVR and hence it follows from [8],

Corollary II.1.6 that Bx(D)m is a free Dm-module because Dm[X ] ⊆ Bx(D)m ⊆

Bx(Dm) ⊆ Int(Dm) and Dm is a PID.

Case 2: mDm is not principal. Then Dm is a valuation domain with nonprincipal

ideal and hence, by [8], Proposition I.3.16, Int(Dm) = Dm[X ]. Thus Bx(D)m =

Dm[X ] because Dm[X ] ⊆ Bx(D)m ⊆ Bx(Dm) ⊆ Int(Dm). Therefore Bx(D)m is a free

Dm-module.

Consequently, by Corollary 1.9, the D-module Bx(D) is locally free. �

An integral domain D is called a generalized Krull domain (in the sense of Gilmer,

see [13], Section 43) if the intersection D =
⋂

p∈X1(D)

Dp is locally finite and Dp is

a valuation domain for each p ∈ X1(D). According to [23], an integral domain D

is said to be an almost Krull domain if Dm is Krull for each maximal ideal m of D.

An integral domain D is said to be a t-almost Dedekind domain if Dm is a DVR for

each t-maximal ideal m of D. Notice that Krull domains form a proper subclass of

generalized Krull domains, almost Krull domains and t-almost Dedekind domains.

Corollary 2.2. Let D be an integral domain and let x be an element of D. If D is

either t-almost Dedekind, almost Krull or generalized Krull, then Bx(D) is a locally

free D-module.

We say that an integral domain D has t-dimension one if it is not a field and

each t-maximal ideal of D has height one. Notice that generalized Krull domains

and t-almost Dedekind domains are locally essential domains of t-dimension one, and

if D has t-dimension one then Ass(D) = X1(D).

Corollary 2.3. For any locally essential domain D of t-dimension one, the D-

module Bx(D) is locally free.

If we take x = 0 in the previous results, we derive the following corollary.
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Corollary 2.4. Let D be an integral domain. We have:

(1) If D is locally essential, then Int(D) is a faithfully flat D-module.

(2) IfD is locally essential with Ass(D) = X1(D) (this holds, for example, if eitherD

is t-almost Dedekind, almost Krull, generalized Krull, or locally essential of t-

dimension one), then Int(D) is locally free as a D-module.

It is well-known that T is a localization of an integral domain R if and only

if T = RS , where S = {r ∈ R, r is a unit in T } (cf. [16], Introduction). Then,

from the fact that the set {f ∈ D[X ], f is a unit in Bx(D)} is exactly U(D), the

multiplicative group of units of D, we deduce the following:

Proposition 2.5. Let D be an integral domain and let x be an element of D.

Then Bx(D) is never a localization of D[X ] unless in the trivial case.

For an overring R of an integral domain D, we recall that R is said to be t-linked

over D if, for each nonzero finitely generated fractional ideal I of D, I−1 = D implies

that (IR)−1 = R. Notice that any flat overring is t-linked. An integral domain D

is called a GCD domain if the intersection of two principal ideals of D is principal.

Notice that valuation domains are GCD domains.

Corollary 2.6. Let D be a GCD domain and let x be an element of D. Then

Bx(D) is t-linked over D[X ] if and only if Bx(D) is trivial.

P r o o f. This is an immediate application of Proposition 2.5 since GCD domains

have the property that every t-linked overring is a localization (cf. [9], Corollary 3.8).

�

In what follows we deal with the flatness of D[X ] →֒ Bx(D) when D is an essential

domain.

Theorem 2.7. Let D be an essential domain and let x be an element of D. Then

Bx(D) is flat over D[X ] if and only if Bx(D) is trivial.

P r o o f. The direct implication is obvious. For the converse, assume that Bx(D)

is flat over D[X ]. Since D is essential, there exists a subset P of Spec(D) such that

D =
⋂

p∈P

Dp and Dp is a valuation domain for each p ∈ P . So, let p ∈ P . Then Dp

is a valuation domain and hence Dp[X ] is GCD [13], Theorem 34.10. Thus the

flatness of Bx(D)p as an overring of Dp[X ] and [3], Corollary 2 ensure that Bx(D)p
is a localization of Dp[X ]. Therefore, as cited before Proposition 2.5, Bx(D)p =

Dp[X ]S, where S = {f ∈ Dp[X ], f is a unit in Bx(D)p}. Consequently, Bx(D)p =

Dp[X ] and hence
⋂

p∈P

Bx(D)p =
⋂

p∈P

Dp[X ] = D[X ]. Therefore, by Lemma 1.1,

Bx(D) = D[X ], as desired. �
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We next recover the case of the ring of integer-valued polynomials.

Corollary 2.8 ([19], Theorem 3). Let D be an essential domain. Then Int(D) is

flat over D[X ] if and only if Int(D) = D[X ].

P r o o f. Just take x = 0 in Theorem 2.7. �

We next state some conditions under which the Bhargava ring Bx(D) is trivial.

Theorem 2.9. Let D be an essential domain with the defining family P and

let x be an element of D. If x is a nonunit in Dp for each p ∈ P , then the following

statements are equivalent.

(1) Bx(D) = D[X ] and Bx(Dp) = Bx(D)p for each p ∈ P ;

(2) Bx(Dp) = Dp[X ] for each p ∈ P ;

(3) Dp has an infinite residue field or nonprincipal maximal ideal for each p ∈ P .

To prove this result we need the following well-known result.

Lemma 2.10. Let V be a valuation domain and let x be a nonunit element of V .

Then Bx(V ) = V [X ] if and only if the maximal ideal of V is not principal or its

residue field is infinite.

P r o o f. This is a consequence of [22], Proposition 1.3 (1). �

P r o o f of Theorem 2.9. (1) ⇒ (2). This is clear.

(2) ⇒ (1). Since D =
⋂

p∈P

Dp and Bx(Dp) = Dp[X ] for each p ∈ P , then it follows

from Lemma 1.1 that

Bx(D) =
⋂

p∈P

Bx(Dp) =
⋂

p∈P

Dp[X ] = D[X ].

The second statement follows from the inclusions Dp[X ] ⊆ Bx(D)p ⊆ Bx(Dp).

(2) ⇔ (3). This follows from Lemma 2.10 because Dp is a valuation domain for

each p ∈ P . �

Following [20], an integral domain D is called a Mott-Zafrullah DVR (in short, an

MZ-DVR) if Dp is a DVR for each p ∈ Ass(D). Notice that (almost) Krull domains

and (t-)almost Dedekind domains are MZ-DVRs, and any MZ-DVR D is an essential

domain with the defining family X1(D).

Corollary 2.11. Let D be an MZ-DVR and let x be an element of D. If x is

a nonunit in Dp for each p ∈ X1(D), then the following statements are equivalent.

(1) Bx(D) = D[X ] and Bx(Dp) = Bx(D)p for each p ∈ X1(D);

(2) Bx(Dp) = Dp[X ] for each p ∈ X1(D);

(3) Each height-one prime ideal of D has an infinite residue field.
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An integral domain D is called a Krull-type domain if it is an essential domain

with the defining family P such that the intersection
⋂

p∈P

Dp is locally finite. So, it

follows from Proposition 1.3 and Theorem 2.9:

Corollary 2.12. Let D be a Krull-type domain with the defining family P and

let x be an element of D. If x is a nonunit in Dp for each p ∈ P , then the following

statements are equivalent.

(1) Bx(D) = D[X ];

(2) Bx(Dp) = Dp[X ] for each p ∈ P ;

(3) Dp has an infinite residue field or nonprincipal maximal ideal for each p ∈ P .

Corollary 2.13. Let D be a Krull domain and let x be an element of D. If x

is a nonunit in Dp for each p ∈ X1(D), then Bx(D) = D[X ] if and only if each

height-one prime ideal of D has an infinite residue field.

R em a r k 2.14. Notice that the condition “Bx(Dp) = Bx(D)p for each p ∈ P”

is always true for any Krull-type domain D as asserted in Proposition 1.3. However,

this is not the case for almost Dedekind domains. For instance, [22], Example 2.13

provides an almost Dedekind domain, and hence an essential domain, D such that

Bx(D) = D[X ] for all x ∈ D, but Bx(Dp) 6= Bx(D)p for some p ∈ X1(D). Therefore,

the condition “Bx(Dp) = Bx(D)p for each p ∈ P” is not superfluous in Theorem 2.9.

To prove our next main result, we shall need the following preliminary lemmas.

In particular, the first lemma can be viewed as a generalization of [25], Lemma 1.2.

Lemma 2.15. Let R be a commutative ring. For any R-algebra A, one has

dim(A) = sup{dim(Am),m ∈ Max(R)},

where Am := AR\m denotes the localization of A at R \m.

P r o o f. It is well-known that dim(A) = sup{dim(AM),M ∈ Max(A)}. The

inequality “>” follows from the fact that dim(A) > dim(Am) for each maximal ideal

m of R. For the reverse inequality, letM be a maximal ideal of A and set p := M∩R.

Clearly, p is a prime ideal of R and so it is contained in a maximal ideal m of R.

Then AM = (Ap)M and Ap = (Am)p, and hence

dim(AM) 6 dim(Ap) 6 dim(Am).

Thus, dim(AM) 6 sup{dim(Am),m ∈ Max(R)} and therefore

dim(A) 6 sup{dim(Am),m ∈ Max(R)}.

Consequently, dim(A) = sup{dim(Am),m ∈ Max(R)}. �
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Recall that the valuative dimension of a domainD, denoted by dimv(D), is defined

to be the supremum of Krull dimensions of the valuation overrings of D. A finite

Krull dimensional domain D is said to be Jaffard if dimv(D) = dim(D), where

dim(D) denotes the Krull dimension of D. For instance, in the finite Krull dimen-

sional case, Noetherian domains and Prüfer domains are examples of Jaffard domains.

Lemma 2.16. Let D be an integral domain with the quotient field K and let R

be a ring between D[X ] and D + XK[X ]. Then D is Jaffard if and only if R is

Jaffard and dim(R) = 1 + dim(D).

P r o o f. This is a particular case of [2], Theorem 2 (3). �

An integral domain D is called an MZ -Jaffard domain if Dp is Jaffard for each

p ∈ Ass(D). In the finite Krull dimensional setting, it is clear that any locally

essential domain is MZ-Jaffard.

Now, we are ready to calculate the Krull dimension of Bhargava rings over MZ-

Jaffard domains.

Theorem 2.17. Let D be an MZ-Jaffard domain and let x be an element of D.

Then, dim(Bx(D)) = dim(D[X ]).

P r o o f. Let m be a maximal ideal of D and we examine the following two

possible cases:

Case 1: m 6∈ Ass(D). Then, by Proposition 1.6, dim(Bx(D)m) = dim(Dm[X ]).

Case 2: m ∈ Ass(D). As D is an MZ-Jaffard domain, Dm is a Jaffard domain and

then it follows from Lemma 2.16 that dim(Bx(D)m) = 1 + dim(Dm) = dim(Dm[X ])

because Dm[X ] ⊆ Bx(D)m ⊆ Dm +XK[X ].

Consequently, dim(Bx(D)m) = dim(Dm[X ]) for each maximal ideal m of D, and

therefore the desired equality follows by applying Lemma 2.15. �

As a consequence of Theorem 2.17, we deduce [12], Theorem 2.1 as a corollary.

Corollary 2.18 ([12], Theorem 2.1). For any locally essential domain D, we have

dim(Int(D)) = dim(D[X ]).

An integral domain D with the quotient field K is said to be seminormal if, for

each α ∈ K, whenever α2, α3 ∈ D, then α ∈ D. Note that Prüfer domains form

a subclass of seminormal domains.

It is well-known that Int(D) is a seminormal domain if and only if so is D (cf. [4],

Proposition 2.7).

Proposition 2.19. Let D be an integral domain with the quotient field K and

let x be an element of D. Then Bx(D) is a seminormal domain if and only if so is D.
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P r o o f. Assume that Bx(D) is a seminormal domain and let α ∈ K be such

that α2, α3 ∈ D. Since D ⊆ Bx(D), α2, α3 ∈ Bx(D) and then, by the seminormality

of Bx(D), α ∈ Bx(D). Thus α ∈ Bx(D) ∩K = D and therefore D is a seminormal

domain. For the converse, assume that D is a seminormal domain. Let f ∈ K(X)

such that f2, f3 ∈ Bx(D) and let a ∈ D. Since K[X ] is seminormal, f ∈ K[X ]. We

let ci denote the coefficient of X
i in f(xX + a) (which is an element of K). Then c2i

and c3i appear in f
2(xX+a) and f3(xX+a), respectively. Hence, as f2(xX+a) and

f3(xX + a) are polynomials of D[X ], c2i , c
3
i ∈ D and thus, by seminormality of D,

ci ∈ D, i.e., f(xX + a) ∈ D[X ]. Therefore, f ∈ Bx(D) and consequently, Bx(D) is

a seminormal domain. �

By taking x = 0 in Proposition 2.19, we deduce the following corollary.

Corollary 2.20. Let D be an integral domain. Then Int(D) is a seminormal

domain if and only if so is D.

An integral domain D is said to be a Prüfer v-multiplication domain (in short,

a PvMD) if Dm is a valuation domain for each t-maximal ideal m of D. Notice

that generalized Krull domains, Krull-type domains and t-almost Dedekind domains

are PvMDs.

Proposition 2.21. Let D be a generalized Krull domain and let x be an el-

ement of D. Then, Bx(D) is a PvMD. If, in addition, x 6= 0 then Bx(D) is of

t-dimension one.

P r o o f. Since D is a generalized Krull domain, Dm is a one-dimensional val-

uation domain for each t-maximal ideal m of D, and then, by [22], Corollary 1.9,

Bx(Dm) is a PvMD. Therefore the thesis follows from [22], Theorem 2.6. Moreover,

if x 6= 0 then the t-dimension of Bx(D) is one as asserted in [22], Corollary 2.10. �

For the sake of illustration, we list the following examples.

E x am p l e 2.22. Let x be an element of Z. It is well-known that Z is a PID

(principal ideal domain) with finite residue fields. By [8], Corollary II.1.6, Bx(Z)

is a free Z-module. If, moreover, x is nonzero, it follows from [27], Corollaire 4.5

and Lemma 2.16 that Bx(Z) is a two-dimensional Noetherian integrally closed do-

main, and hence it is a Krull domain that is not Prüfer. Now, if x is a nonzero

nonunit in Z, the factor ring Z/(x) is finite and then it follows from [1], Propo-

sition 2.4 that Bx(Z) is not trivial. Hence, by Theorem 2.7, Bx(Z) is not flat

over Z[X ]. We note that B0(Z) is also not flat over Z[X ] because B0(Z) = Int(Z)

and Int(Z) 6= Z[X ].
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R em a r k 2.23. From this last example, we can see that Bx(Z) is not a Prüfer

domain for any nonzero element x of Z, but this is not the case for Int(Z) = B0(Z).

In fact, as pointed out by the referee, if D is an integral domain different from

its quotient field and x a nonzero element of D then Bx(D) cannot be Prüfer

because it is contained in D[(X − a)/x], and D[(X − a)/x] ∼= D[X ] which is not

Prüfer. Thus, the only case, in which it can occur that Bx(D) is Prüfer, is when

Bx(D) = Int(D).

E x am p l e 2.24. Let D = Z[{T/pn}
∞
n=1], where {pn}

∞
n=1 is the set of all positive

prime integers and T is an indeterminate over Z. By [18], Example 166, D is a two-

dimensional locally Noetherian integrally closed domain which is neither Noetherian

nor Krull. Then D is an almost Krull domain and hence, by Corollary 2.2, Bx(D) is

locally free as a D-module for any element x of D. Moreover, by Lemma 2.16, Bx(D)

is a Jaffard domain of dimension 3 because locally Noetherian domains are Jaffard.

E x am p l e 2.25. Let A be the domain of all algebraic integers and {pn}
∞
n=1 be

the set of all positive prime integers. For each n choose a maximal ideal mn of A

lying over pnZ and set D = AS , where S = A \
∞⋃

n=1
mn.

In [14], Example 1, page 338, Gilmer showed that D is a one-dimensional Prüfer

domain which is not almost Dedekind. Then, by Corollary 2.3, Bx(D) is locally free

as a D-module for any element x of D. Moreover, Pirtle in [24], page 439 pointed

out that D is a generalized Krull domain and then it follows from Proposition 2.21

that Bx(D) is a PvMD of t-dimension one for any nonzero element x of D.

E x am p l e 2.26. Let E be the ring of entire functions and set D := E +TES[T ],

where T is an indeterminate over E and S is the set generated by the principal

primes of E .

According to [30], Example 2.6, D is a locally essential domain which is neither

PvMD nor almost Krull. Thus, by Theorem 2.1, the D-module Bx(D) is faithfully

flat for any element x of D.

We close this paper with the following two open questions.

(Q1) Is there an integral domain D such that Bx(D) is not (faithfully) flat as a D-

module for some x ∈ D?

(Q2) Does the flatness of Bx(D) overD[X ] for some x ∈ D force that Bx(D) = D[X ]?

In particular, is there a nonessential domainD such that Bx(D) is flat overD[X ]

but Bx(D) 6= D[X ] for some x ∈ D?

A c k n ow l e d g em e n t s. The authors would like to thank the referee for careful

reading and for providing Remark 2.23.
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