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Abstract. Absolute direct summand in lattices is defined and some of its properties in
modular lattices are studied. It is shown that in a certain class of modular lattices, the direct
sum of two elements has absolute direct summand if and only if the elements are relatively
injective. As a generalization of absolute direct summand (ADS for short), the concept
of Goldie absolute direct summand in lattices is introduced and studied. It is shown that
Goldie ADS property is inherited by direct summands. A necessary and sufficient condition
is given for an element of modular lattice to have Goldie ADS.
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1. Introduction

The purpose of this paper is to introduce and study absolute direct summands in

a certain class of lattices. The concept of absolute direct summands was first studied

in modules by Fuchs in 1970 (see [4]). He called such modules ADS modules. Then

ADS modules were investigated in [2]. Takil in her Ph.D. thesis collected results in

this direction (see [10]). Some characterizations of ADS modules and rings have been

studied by Alahmadi et al. in [1]. They provided equivalent conditions for a module

to have ADS. In 2015, Mutlu in [11] studied properties of ADS modules with respect

to summand intersection property.

In 2018, Quynh et al. (see [9]) introduced and studied Goldie absolute direct

summand, which is a generalization of Goldie extending modules and ADS modules.

They analyzed when a direct sum of Goldie absolute direct summands is Goldie

absolute direct summand in a module.
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In the present paper, an analogue of ADS module is defined and studied as an ADS

lattice. As a generalization of absolute direct summand property, Goldie absolute di-

rect summand is defined and some characteristics of Goldie absolute direct summands

are analyzed by using the concept of mutual ejectivity. For later concepts see [12].

The undefined concepts of lattice theory used in this paper are from Grätzer

(see [5]). The following definitions are from Călugăreanu (see [3]). Let a, b ∈ L and

a 6 b. Then a is said to be essential in b (or b is an essential extension of a) if there

is no nonzero c 6 b such that a ∧ c = 0. It is denoted by a 6e b. If a 6e b and there

is no c > b such that a 6e c, then b is called a maximal essential extension of a.

An element a ∈ L is closed (or essentially closed) in b if a has no proper essential

extension in b. It is denoted by a 6cl b.

The following concepts are defined by Nimbhorkar and Shroff in [7]. If a, b ∈ L

and b is a maximal element in the set {x : x ∈ L, a∧x = 0}, then b is said to be a max-

semicomplement of a. This concept is different from that of a pseudocomplement

of an element in a lattice. For example, in the lattice L shown in Figure 1, b, c are

max-semicomplements of a but a does not have a pseudocomplement in L.
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Figure 1.

Throughout this paper, L denotes a lattice with the least element 0 and wherever

necessary, it is assumed that L satisfies one or more of the following conditions:

(C1) For any a 6 b in L there exists a maximal essential extension of a in b.

(C2) For any a 6 b in L, c 6 b with c ∧ a = 0 there exists a max-semicomplement

d > c of a in b.

A familiar and important class of lattices with these conditions is upper continuous

modular lattices, in particular, the lattice of all ideals of a modular lattice with 0.

If a, b, c ∈ L are such that a ∨ b = c and a ∧ b = 0, then a and b are called direct

summands of c and it is denoted by c = a⊕ b. Here c is a direct sum of a and b. In

a modular lattice L, the direct summands of c ∈ L are closed in c and if a, b, c ∈ L

are such that a 6 b 6 c and a is a direct summand of c, then a is also a direct

summand of b. An element c of a lattice L is called indecomposable if c = a ⊕ b

implies either a = 0 or b = 0. If for any two direct summands b, c of a ∈ L, b ∨ c

is a direct summand of a, then a satisfies the summand sum property. Also, if for

any two direct summands b, c of a ∈ L with b ∧ c 6= 0, b ∧ c is a direct summand

of a, then a satisfies the summand intersection property. In a modular lattice, the

summand sum (intersection) property is inherited by direct summand.
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2. Absolute direct summands

In this section, absolute direct summand of an element of a lattice is defined.

Definition 2.1. Let L be a lattice with 0. An element a ∈ L is said to have

absolute direct summands if for every decomposition a = a1 ⊕ a2 of a and every

max-semicomplement b of a1 in a, a = a1 ⊕ b.

In short, it is said that the element a has ADS property. A lattice L is said to

have ADS property if every element a of L has ADS property.

E x am p l e 2.1. Consider the element f in the lattice shown in Figure 2. Here

f = a⊕ d and e is a max-semicomplement of a such that f = a⊕ e. Similarly, it can

be checked for other decompositions of f . Hence, f has ADS property.
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Figure 2.
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Figure 3.

Note that in a distributive lattice, every element has ADS but for modular lattice

this fails. Consider the modular lattice L shown in Figure 3. In this lattice element

f = d ⊕ c but b is a max-semicomplement of c such that f 6= b ⊕ c. Hence, f does

not have the ADS property.

In the following lemma it is proved that ADS property is inherited by direct

summands.

Lemma 2.1. Let L be a modular lattice satisfying conditions (C1) and (C2) and

a ∈ L. If a has ADS, then every nonzero direct summand of a has ADS.

P r o o f. Let a = b ⊕ c and b1 be a direct summand of b. Let b2 be a max-

semicomplement of b1 in b. Then by Theorem 2.2 of [6], b2 ⊕ c is a max-

semicomplement of b1 in a. By ADS property of a, a = b1 ⊕ (b2 ⊕ c). Now by

using modularity of L,

b = a ∧ b = (b1 ⊕ b2 ⊕ c) ∧ b = (b1 ⊕ b2)⊕ (c ∧ b) = b1 ⊕ b2.

Hence, b has ADS property. �
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Nimbhorkar and Shroff in [8] defined the injectivity in lattices as follows.

Definition 2.2. Let a, b, c ∈ L be such that a = b ⊕ c. Then c is said to be

b-injective in a if for every d 6 a with d∧c = 0 there exists e 6 a such that a = e⊕ c

and d 6 e. If c is b-injective and b is c-injective in a, then b and c are said to be

relatively injective.

In the following lemma, a necessary and sufficient condition is given for an element

of a lattice to have ADS property.

Lemma 2.2. Let L be a modular lattice satisfying conditions (C1) and (C2). An

element a ∈ L has ADS if and only if for every decomposition a = a1⊕a2 of a, a1, a2

are relatively injective.

P r o o f. Let a ∈ L have ADS and a = a1 ⊕ a2. To show that a1, a2 are relatively

injective let d 6 a be such that d∧a2 = 0. If d is a max-semicomplement of a2, then

by ADS property, d⊕ a2 = a.

If d is not a max-semicomplement of a2, then by condition (C2) there exists a

max-semicomplement e of a2 such that d 6 e. Again by ADS property, e ⊕ a2 = a.

Hence, a1 is a2-injective.

Similarly, a1-injectivity of a2 can be proved.

Conversely, suppose that for each decomposition a = a1 ⊕ a2 of a, a1, a2 are

relatively injective. To show that a has ADS let b 6 a be a max-semicomplement

of a1 in a. Since a1 is a2-injective, b ∧ a1 = 0 implies that there exists b1 6 a such

that a = a1 ⊕ b1, b 6 b1. But b is maximal with the property that b ∧ a1 = 0 yields

that b = b1. Hence a has ADS. �

The following remark is obvious from the above lemma.

R em a r k 2.1. Let L be a modular lattice satisfying conditions (C1) and (C2).

An element a ∈ L has ADS if and only if for any direct summand b of a such that

b ∧ c = 0 for c 6 a, b is c-injective.

Proposition 2.1. Let L be a modular lattice satisfying conditions (C1) and (C2)

and a, b, c ∈ L be such that a and b are closed in c. If a∧ b = 0 and c has ADS, then

a⊕ b is closed in c.

P r o o f. Let a ⊕ b be not closed in c, then by condition (C1), there exists a

maximal essential extension d of a⊕ b in c such that a⊕ b 6e d.

Now, a ∧ b = 0 implies that there exists a max-semicomplement k of a such that

b 6 k. By ADS, c = a⊕ k and by modularity of L for b 6 k,

a⊕ b 6e d ⇒ (a⊕ b) ∧ k 6e d ∧ k ⇒ b 6e d ∧ k.
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But b is closed in c, so b = d ∧ k. Again, by modularity of L for a 6 d,

a⊕ b = a⊕ (k ∧ d) = (a⊕ k) ∧ d = c ∧ d = d.

Hence, a⊕ b is closed in c. �

R em a r k 2.2. Let L be a modular lattice satisfying conditions (C1) and (C2)

and a, b, c ∈ L be such that a and b are closed in c. If a, a ∧ b are direct summands

and c has ADS, then a ∨ b is closed in c.

P r o o f. Let k be a complement of a∧ b in c. Then by ADS, c = (a∧ b)⊕ k. Now

by modularity of L for a ∧ b 6 b,

b = c ∧ b = [(a ∧ b)⊕ k] ∧ b = (a ∧ b)⊕ (k ∧ b).

Then

a ∨ b = a ∨ [(a ∧ b) ∨ (k ∧ b)] = [a ∨ (a ∧ b)] ∨ (k ∧ b) = a ∨ (k ∧ b) = a⊕ (k ∧ b).

Hence, by Proposition 2.1, the proof is complete. �

Proposition 2.2. Let L be a modular lattice satisfying conditions (C1) and (C2)

and a, b, c ∈ L be such that a, b are direct summands of c. If a has ADS and SIP,

then a ∨ b is closed in c.

P r o o f. Since c has SIP, a ∧ b is a direct summand of a. Then by Remark 2.2,

a ∨ b is closed in c. �

From [7], recall that for any finite number of nonzero elements a1, a2, . . . , an ∈ L,

a1 ∨ . . .∨ an is a direct sum if ai’s are join independent, i.e., aj ∧
( n

∨

i=1,i6=j

ai

)

= 0 for

each j. The following theorem follows from Lemma 2.2.

Theorem 2.1. Let L be a modular lattice satisfying conditions (C1) and (C2)

and a, ai ∈ L, i ∈ I be such that a =
⊕

i∈I

ai, where all ai are indecomposable. If a

has ADS, then ai is aj-injective for i 6= j, i, j ∈ I.

Next result motivates the following question: ‘Do the absolute direct summand

property (ADS) and the summand intersection property (SIP) necessitate the other?’

To answer this, consider the lattice given in the Figure 2. It has already been

discussed in Example 2.1 that f has ADS. The element f has direct summands d

and e such that d ∧ e = b is not a direct summand. Hence, f does not satisfy

summand intersection property.

Theorem 2.2. Let L be a modular lattice satisfying conditions (C1) and (C2) and

a, b ∈ L be such that a and b has ADS. If every x ∈ L can be expressed as x = x1⊕x2

for some x1 6 y1, x2 6 y2 with x 6 y and y = y1 ⊕ y2, then a⊕ b has ADS.
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P r o o f. Let p be a direct summand of a ⊕ b. Then a ⊕ b = p ⊕ q for a direct

summand q of a⊕ b. By assumption, p = a1⊕ b1 and q = a2⊕ b2 for some a1, a2 6 a,

b1, b2 6 b. It is clear that a1, a2 are direct summands of a and b1, b2 are direct

summands of b. Let k be a max-semicomplement of p in a⊕b. Again by assumption,

k = a3 ⊕ b3 for some a3 6 a, b3 6 b. Also, p⊕ k 6e a⊕ b,

p⊕ k 6e a⊕ b ⇒ (a1 ⊕ b1)⊕ (a3 ⊕ b3) 6e a⊕ b

⇒ (a1 ⊕ a3)⊕ (b1 ⊕ b3) 6e a⊕ b

⇔ a1 ⊕ a3 6e a, b1 ⊕ b3 6e b.

Since a1, a3 are direct summands of a, a1 is a max-semicoplement of a3 and b1, b3
are direct summands of b, so b1 is a max-semicoplement of b3. Since a and b have

ADS, a1 ⊕ a3 = a, b1 ⊕ b3 = b. Hence, p⊕ k = a⊕ b and a⊕ b has ADS. �

An element a of a lattice L is called extending if every nonzero b 6 a is essential

in a direct summand of a. Note that in a modular lattice L satisfying conditions

(C1) and (C2), a ∈ L is extending if every max-semicomplement in a is a direct

summand of a. Also, if a ∈ L is extending, then every direct summand of a is

extending.

Definition 2.3. Let L be a lattice with 0. An element a ∈ L is called SSP

extending if it is extending and satisfies summand sum property.

Theorem 2.3. Let L be a modular lattice satisfying conditions (C1) and (C2)

and a ∈ L be a SSP extending. Then a has a unique maximal essential extension if

and only if a has ADS and SIP.

P r o o f. Let a have a unique maximal essential extension. Since a is extending,

by Proposition 4.2 in [8], a is G-extending. Now, a has a unique maximal essential

extension and is G-extending, so a satisfies SIP.

Let a = a1 ⊕ a2. Since a is extending with SSP, by Lemma 3.6 in [8], a1, a2 are

relatively injective. Hence, by Lemma 2.2, a has ADS.

Conversely let a have ADS and SIP. Let b, c, d 6 a be such that b 6e c 6cl a

and b 6e d 6cl a. Since a is extending, c and d are direct summands of a. By

assumption, c ∧ d is a direct summand of a. Then by ADS, a = k ⊕ (c ∧ d) for a

max-semicomplement k of c ∧ d in a. By using modularity of L for c ∧ d 6 d,

c = c ∧ a = c ∧ [k ⊕ (c ∧ d)] = (c ∧ k)⊕ (c ∧ d).

Also, b 6e d ⇒ b ∧ c 6e d ∧ c and b ∧ c 6e d ∧ c with k ∧ (c ∧ d) = 0 implies that

k ∧ (b ∧ c) = 0 ⇒ b ∧ (k ∧ c). Finally, b 6e c, b ∧ (k ∧ c) = 0 ⇒ k ∧ c = 0, therefore

c = c ∧ d ⇒ c 6 d. Similarly, d 6 c can be obtained. Hence c = d. �
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3. Goldie absolute direct summands

In this section, Goldie absolute direct summand in lattices is defined, it is called

Goldie ADS. It is a generalization of absolute direct summands.

Nimbhorkar and Shroff in [8] defined a β relation as follows:

⊲ Let a, b ∈ L. Then a β b if and only if a∧ b 6e a and a∧ b 6e b. Note that a β b

is an equivalence relation on L.

By using relation β, Goldie absolute direct summand is defined as follows:

Definition 3.1. Let L be a lattice with 0 and a, b, c ∈ L be such that c =

a ⊕ b. The element c is said to have Goldie absolute direct summands if for every

decomposition c = a⊕ b of c and every max-semicomplement k of a in c there exists

d 6 c such that c = a⊕ d, k β d. In short it is called Goldie ADS.

A bounded lattice L is said to have Goldie ADS if for every decomposition a⊕b = 1,

a, b ∈ L and every max-semicomplement k of a in L there exists d ∈ L such that

1 = a⊕ d, k β d.

R em a r k 3.1. Consider the element g ∈ L in the lattice shown in Figure 4.

Here g = a ⊕ f and a has max-semicomplements d, e (other than f). For max-

semicomplement d there exists e 6 g such that d β e and g = a ⊕ e. Also, for

max-semicomplement e there exists d 6 g such that e β d and g = a ⊕ d. Sim-

ilarly, it can be checked for all decompositions of g. Hence, g has Goldie ADS

property.

Note that x β x for every element of the lattice. In the lattice shown in Figure 5,

g = d ⊕ c, b is a max-semicomplement of c such that g 6= b ⊕ c. Hence, g does not

have Goldie ADS property.
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Figure 4.
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Lemma 3.1. Let L be a modular lattice satisfying conditions (C1) and (C2) and

a ∈ L. If a has Goldie ADS, then every nonzero direct summand of a has Goldie ADS.
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P r o o f. Let d 6= 0 be a direct summand of a. Then there exist c 6 a such that

d ⊕ c = a. Let c = c1 ⊕ c2 and k be a max-semicomplement of c1 in c. Then

a = (c1 ⊕ c2) ⊕ d = c1 ⊕ (c2 ⊕ d). Since c is a direct summand of a and k is a max-

semicomplement of c1 in c, by Theorem 2.2 in [6], k is a max-semicomplement of

c1 ⊕ d in a. But a has Goldie ADS, therefore there exist t 6 a such that k β t and

a = c1 ⊕ d⊕ t. Now, by modularity of L,

c = a ∧ c = (c1 ⊕ d⊕ t) ∧ c = c1 ⊕ [(d⊕ t) ∧ c].

It remains to show that kβ [(d⊕t)∧c], i.e., [k∧(d⊕t)] 6e k, [k∧(d⊕t)] 6e [(d⊕t)∧c].

Note that

t ∧ k 6 (d⊕ t) ∧ k 6 k, t ∧ k 6e k ⇒ (d⊕ t) ∧ k 6e k.

Let p 6 [(d⊕t)∧c] such that p∧[(d⊕t)∧k] = 0. Then p∧(t∧k) 6 p∧[(d⊕t)∧k] = 0.

Since k is a max-semicomplement of c1 ⊕ d in a, by using modularity of L,

k ⊕ (c1 ⊕ d) 6e a = c1 ⊕ d⊕ t ⇒ [k ⊕ (c1 ⊕ d)] ∧ c 6e [c1 ⊕ d⊕ t] ∧ c

⇒ (k ⊕ c1)⊕ (d ∧ c) 6e c1 ⊕ [(d⊕ t) ∧ c]

⇒ (k ⊕ c1) 6e c1 ⊕ [(d⊕ t) ∧ c]

⇒ k 6e [(d⊕ t) ∧ c].

Then k 6e [(d⊕ t) ∧ c], (d⊕ t) ∧ k 6e k ⇒ (d⊕ t) ∧ k 6e (d⊕ t) ∧ c.

Lemma 3.2. Let L be a lattice with 0 and c ∈ L. Then the following statements

are equivalent.

(1) c has a Goldie ADS.

(2) For every decomposition c = a⊕ b and every max-semicomplement k of a there

exists d 6 c and x 6 c such that x 6e k and x 6e d and c = a⊕ d.

P r o o f. (1) ⇒ (2): Let c have Goldie ADS. Then for every decomposition c =

a⊕ b and every max-semicomplement k of a there exists d 6 c such that k β d, i.e.,

k ∧ d 6e k and k ∧ d 6e d and c = a⊕ d. By putting x = k ∧ d, (2) follows.

(2) ⇒ (1): Suppose (2) holds. Let p 6 d be such that (k ∧ d) ∧ p = 0. Then

0 = p ∧ (k ∧ d) = (p ∧ k) ∧ d = p ∧ k

p ∧ x 6 p ∧ k = 0, x 6e k ⇒ p = 0 ⇒ k ∧ d 6e d.

Using similar argument, k ∧ d 6e k can be obtained. �
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Before stating the next result, recall the definition of ejective element in lattice

from [8].

Definition 3.2. Let a, b, c ∈ L be such that a = b ⊕ c. Then b is said to be

c-ejective in a if for every d 6 a such that d ∧ b = 0 there exists f 6 a such that

a = b ⊕ f and d ∧ f 6e d. If b is c-ejective and c is b-ejective, then b and c are said

to be relatively ejective.

In the following lemma, a necessary and sufficient condition is given for an element

of a lattice to have Goldie ADS.

Theorem 3.1. Let L be a modular lattice satisfying conditions (C1) and (C2)

and a ∈ L. The element a has Goldie ADS if and only if for every decomposition

a = a1 ⊕ a2 of a, a1 and a2 are mutually ejective.

P r o o f. Let a = a1 ⊕ a2 have Goldie ADS. To show that a1 is a2-ejective let

k 6 a be such that k ∧ a1 = 0. Then there exists max-semicomplement p of a1 such

that k 6 p. Since a has ADS, there exists d 6 a such that p β d and a = a1 ⊕ d.

Now, p β d ⇒ p ∧ d 6e d, p ∧ d 6e p. It is now sufficient to show that k ∧ d 6e k. If

c 6 k be such that (k ∧ d) ∧ c = 0, then

(k ∧ d) ∧ c = 0 ⇒ d ∧ c = 0 ⇒ (p ∧ d) ∧ c = 0.

Now,

(p ∧ d) ∧ c = 0, c 6 k 6 p, p ∧ d 6e p ⇒ c = 0.

Hence, k∧d 6e k and a1 is a2-ejective. Similarly, a1-ejectivity of a2 can be obtained.

Conversely, suppose that for every decomposition a = a1 ⊕ a2 of a, a1 and a2 are

mutually ejective. Let k be a max-semicomplement of a1. Then by ejectivity, there

exists d 6 a such that a = a1⊕ d and k∧d 6e k. It remains to show that k∧d 6e d.

Since k is a max-semicomplement of a1, k ⊕ a1 6e a. Also,

k ∧ d 6e k, k ∧ a1 = 0 ⇒ (k ∧ d)⊕ a1 6e k ⊕ a1 = a.

By modularity of L for k ∧ d 6 d,

(k ∧ d)⊕ a1 6e a ⇒ [(k ∧ d)⊕ a1] ∧ d 6e a ∧ d ⇒ k ∧ d 6e d.

Hence, a has Goldie ADS. �

Corollary 3.1. Let L be a modular lattice satisfying conditions (C1) and (C2)

and a ∈ L. If a has Goldie ADS and d 6 a is closed in a, then a has ADS.
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P r o o f. Let a have Goldie ADS. Then for every decomposition a = a1 ⊕ a2, a1

and a2 are mutually ejective. By Lemma 4.3 of [8], a1 and a2 are mutually injective.

Then by Lemma 2.2, a has ADS.

Lemma 3.3. Let L be a modular lattice satisfying conditions (C1) and (C2) and

a ∈ L have Goldie ADS. Then for every decomposition a = a1 ⊕ a2, a1 is b-ejective

for every nonzero b 6 a2.

P r o o f. Let a = a1 ⊕ a2 and 0 6= b 6 a2 be such that k = a1 ⊕ b and l 6 k be

such that l ∧ a1 = 0. By Theorem 3.1, a1 is a2-ejective, therefore

l ∧ a1 = 0 ⇒ a = a1 ⊕ c, l ∧ c 6e l for some c 6 a.

Then by modularity of L, for a1 6 k, k = a ∧ k = (a1 ⊕ c) ∧ k = a1 ⊕ (c ∧ k). Also,

(c ∧ k) ∧ l = c ∧ l 6e l. Hence, a1 is b-ejective b 6 a2. �

As a generalization of an extending element, Nimbhorkar and Shroff in [8] defined

a Goldie extending element in a lattice by using the relation β as follows:

Let L be a lattice and a ∈ L. If for every b 6 a there exists a direct summand c of a

such that bβc, then a is said to be a Goldie extending (G-extending) element. Equiv-

alently, in a modular lattice L, an element a ∈ L is called a Goldie extending if for

every closed element b 6 a there exists a direct summand c of a such that bβ c holds.

Definition 3.3. Let L be a lattice with 0 and an element a ∈ L is said to be

Goldie SSP if a is G-extending and satisfies summand sum property.

A lattice L with 0 is said to be Goldie SSP if every a ∈ L is Goldie extending and

satisfies summand sum property.

Proposition 3.1. Let L be a modular lattice satisfying conditions (C1) and (C2).

If L is Goldie SSP, then L is Goldie ADS.

P r o o f. Let a, a1, a2 ∈ L be such that a = a1 ⊕ a2. Let b ∈ L be a max-

semicomplement of a1 in a. Then a1 ⊕ b 6e a. Since L is G-extending, there exists

a direct summand d of a such that b β d, i.e., b ∧ d 6e b and b ∧ d 6e d. Here

b ∧ d 6e b ⇒ a1 ⊕ (b ∧ d) 6e a1 ⊕ b ⇒ a1 ⊕ (b ∧ d) 6e a,

a1 ⊕ (b ∧ d) 6e a, a1 ⊕ (b ∧ d) 6 a1 ⊕ d 6 a ⇒ a1 ⊕ d 6e a.

Now,

0 = b ∧ a1 = (b ∧ d) ∧ a1 = (b ∧ d) ∧ (d ∧ a1),

b ∧ d 6e d, (b ∧ d) ∧ (d ∧ a1) = 0 ⇒ d ∧ a1 = 0.

Since L satisfies summand sum property and d ⊕ a1 is a direct summand of a,

a1 ⊕ d 6e a ⇒ a1 ⊕ d = a. �
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