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Abstract. We consider certain class of second order nonlinear nonautonomous delay
differential equations of the form

a(t)x′′ + b(t)g(x, x′) + c(t)h(x(t− r))m(x′) = p(t, x, x′)

and
(a(t)x′)′ + b(t)g(x,x′) + c(t)h(x(t− r))m(x′) = p(t, x, x′),

where a, b, c, g, h, m and p are real valued functions which depend at most on the arguments
displayed explicitly and r is a positive constant. Different forms of the integral inequality
method were used to investigate the boundedness of all solutions and their derivatives.
Here, we do not require construction of the Lyapunov-Krasovskǐı functional to establish
our results. This work extends and improve on some results in the literature.

Keywords: boundedness; nonlinear; differential equation of third order; integral in-
equality
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1. Introduction

The qualitative behaviour of solutions of differential equations with and without

delay has been extensively studied by many researchers. The surge interest in this

area in over five decades is evidenced by numerous research papers on the subject

and lots of published books. For example, we refer to the works of Bellman and

Cooke [6], Driver [14], Èl’sgol’ts [16], Èl’sgol’ts and Norkin [17], Gopalsamy [19],

Hale [22], Kolmanovskii and Myshkis [25], Krasovskǐı [27]. The expositions of Adams

and Olutimo [1], Ademola et al. [2], Burton and Hatvani [11], Burton and Hering [12],

Afuwape and Omeike [3], Gabsi et al. [18], Mahmoud and Tunç [30], Olutimo and
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Adams [34], Omeike [35], Omeike et al. [36], Remili and Beldjerd [40], [41], Tunç [43],

[44], [46], [47], [49]–[51], Tunç and Erdur [52], Tunç and Tunç [53]–[55], Yao and

Wang [60] among others are important contributions in this regard.

It is important to note that differential equations with delay play significant role

in the research field of various applied sciences such as control theory, electrical net-

works, population dynamics, environmental science, biology and life science (see [15]).

Several authors have considered work on second order nonlinear delay differential

equations. For instance, in [63], Zhang considered the retarded Liènard equation

x′′ + f(x)x′ + g(x(t− h)) = 0

in which h is a nonnegative constant and g, f are continuous with f(x) > 0 for all

x ∈ R. The author obtained conditions for the boundedness and global asymptotic

stability results. Furthermore, in [64], Zhang examined the same equation and gave

results on the uniform boundedness, uniform ultimate boundedness and oscillation

of solutions. Moreover, Peng (see [38]) studied the second order nonlinear system

with delay

x′′(t) + f(x(t), x′(t)) + g(x(t), x′(t))ψ(x(t − τ)) = p(t),

where f , g, p are continuous functions, ψ is a differentiable function, τ is a positive

constant, and gave four theorems on the stability of zero solution, the boundedness

of solutions, the existence of periodic solutions, and the existence and uniqueness of

stationary oscillation. Also, in [48], Tunç established some results for the stability

and the boundedness of solutions of nonautonomous differential equations of second

order with a variable deviating argument of the form

x′′(t) + f(t, x(t), x′(t))x′(t) + b(t)g(x(t − τ(t))) = q(t),

where τ(t) is variable deviating argument; f , b, g and q are continuous functions in

their arguments on R
3, R, R and [0,∞), respectively.

Ogundare et al. in [32] considered second order nonlinear differential equations of

the form

x′′ + a(t)f(x, x′) + g(x(t− τ)) = p(t, x, x′),

where a, f , g and p are continuous functions that depend (at most) only on the

arguments displayed explicitly and τ ∈ [0, h], τ > 0. The authors obtained results

for the global asymptotic stability, boundedness and ultimate boundedness of the

solutions, respectively.

However, Athanassov (see [5]) considered the boundedness of all solutions and

their first derivatives for the second order nonlinear differential equations

(a(t)x′)′ + b(t)f(x, x′) + c(t)g(x)h(x′) = p(t, x, x′)
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and

a(t)x′′ + b(t)f(x, x′) + c(t)g(x)h(x′) = p(t, x, x′),

where a, b, c, f , g, h, and p are real valued functions which depend at most on the

arguments displayed explicitly. These forms of nonlinear differential equations have

been extensively investigated by several authors. Majority of the results obtained re-

quire the use of energy (Lyapunov) functions while few considered the use of integral

inequalities as a viable tool in establishing boundedness results.

The motivation for this work comes from the work by Athanassov (see [5]), where

the author made use of two forms of the second mean value theorem for integrals

and Stieltjes integral inequalities to investigate the boundedness of a class of second

order nonlinear nonautonomous differential equations. It can be observed that the

investigation of qualitative behaviour in nonlinear differential equations with delay

has been carried out by several authors (see Yao and Wang [60]) who made use of

Lyapunov-Krasovskǐı functionals to obtain their results. The challenge now is using

the notions employed by Athanassov (see [5]) in the investigation of a certain class

of second order nonlinear nonautonomous differential equations with delay in which

to the best of our knowledge this approach is new.

In this paper, we consider the second order nonlinear nonautonomous differential

equations with delay

a(t)x′′ + b(t)g(x, x′) + c(t)h(x(t − r))m(x′) = p(t, x, x′),(1)

(a(t)x′)′ + b(t)g(x, x′) + c(t)h(x(t − r))m(x′) = p(t, x, x′),(2)

where a, b, c, g, h, m and p are real valued functions which depend at most on

the arguments displayed explicitly and r is a positive constant. It is assumed that

solutions of the class of delay differential equations being considered exist, a, b, c, g,

h, m and p are continuous in their respective arguments (see Rao [39]). This work

extends and improves on the paper by Athanassov (see [5]) and some references listed

below. It also gives an alternative approach to the study of qualitative behaviour of

solutions for a certain class of second order nonlinear delay differential equations.

2. Notation and preliminaries

First, we give some basic information for a general nonautonomous differential

system with delay (see Burton [9], Burton and Markay [13], Tunç [45], see also

Kolmanovskii and Myshkis [25], Kolmanovskii and Nosov [26], Krasovskǐı [27] and

Yoshizawa [61]).

305



Consider the general nonautonomous differential system with delay

(3) z′(t) = f(t, zt), zt(s) = z(t+ s), −r 6 s 6 0, t > 0, ′ =
d

dt
,

where f : [0,∞) × CH → R
n is continuous and maps bounded sets into bounded

sets, and f(t, 0) = 0. Here, (C, ‖·‖) is the Banach space of continuous functions

ϕ : [−r, 0] → R
n with supremum norm, σ is a nonnegative constant, CH is the open

H-ball in CH := {ϕ ∈ (C[−r, 0],Rn) : ‖ϕ‖ < H}.

Standard existence (see Burton [9]) shows that if ϕ ∈ CH and t > 0, then there

is at least one continuous solution z(t, t0, ϕ) on [t0, t0 + α) satisfying (3) for t > t0,

zt(t0, ϕ) = ϕ and α being some positive constant; if there is a closed subset B ⊂ CH

such that the solution remains in B, then α = ∞. In addition, |·| denotes the norm

in R
n with |z| = max

16i6n
|zi|.

However, in this paper we use the following notation: R is the real line, R and I

are intervals (0,∞) and [0,∞), respectively, and |·| is the absolute value. Moreover,

C(X,R) and C′(X,R) denote the sets of R-valued functions defined on the set X

that are continuous and continuously differentiable with respect to each variable,

respectively. L1(X) is the set of Lebesgue integrable functions on X . It is assumed

that all solutions of (1) and (2) are continuous (for instance, see [5], [57]).

The following lemmas are two forms of the second mean value theorem for integrals

which will be useful in the proofs. For example, one can refer to Hildebrandt [23]

and Athanassov [5].

Lemma 1. If u ∈ L1[α1, β1] and v is a positive, bounded and nonincreasing

function on [α1, β1], then there is a number δ ∈ [α1, β1] such that

∫ β1

α1

u(η)v(η)dη = v(α1 + 0)

∫ δ

α1

u(η) dη.

Lemma 2. If u ∈ L1[α1, β1] and v is a positive, bounded and nondecreasing

function on [α1, β1], then there is a number δ ∈ [α1, β1] such that

∫ β1

α1

u(η)v(η) dη = v(β1 − 0)

∫ β1

δ

u(η) dη.

The following generalization of Gronwall’s inequality for Riemann-Stieltjes inte-

grals is a modification of a result given by Jones [24], see also Athanassov [5].
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Lemma 3. Let u, v, w be real valued functions defined and continuous on [α1, β1].

Let u, v be nonnegative and let w be nondecreasing on [α1, β1]. If

u(t) 6 c+

∫ t

α1

u(η)v(η) dw(η)

for some positive constant c, then

u(t) 6 c exp

(
∫ t

α1

v(η) dw(η)

)

for all t ∈ [α1, β1].

Lemma 4. If, for t ∈ [α1, β1], u(t) is real valued, continuous, of bounded varia-

tion, and if u(t) > 0, then
∫ β1

α1

1

u(η)
du(η) = log u(β1)− log u(α1).

3. Main results

The following are the basic assumptions used to formulate the results:

(i) a, b, c ∈ C(I,R+);

(ii) g ∈ C(R2,R), h ∈ C(R,R), m ∈ C(R,R+), p ∈ C(I × R
2,R);

(iii) g(x, y)y > 0 for all (x, y) ∈ R
2, y 6= 0;

(iv) H(x) → ∞ as |x| → ∞, where H(x) =
∫ x

0
h(τ) dτ > 0;

(v) M(y) → ∞ as |y| → ∞, where M(y) =
∫ y

0
(τ/m(τ)) dτ ;

(vi)
∫ t

0

∫ t

t−r
h′(x(s))y(s)y(τ) ds dτ 6 β for all (x, y) ∈ R

2 and r, β are constants;

(vii) There is a nonnegative function e(t) ∈ L1(I) such that |p(t, x, y)y| 6 e(t)m(y)

for all (t, x, y) ∈ I × R
2.

(viii) There are positive constants α and k such that y2/m(y) 6 αM(y) for all |y| > k

and a nonnegative function e1(t) ∈ L1(I) such that |p(t, x, y)| 6 e1(t) for all

(t, x, y) ∈ I × R
2.

R em a r k 5. The assumptions (i) and (ii) guarantee the local existence of so-

lutions of (1) and (2), (iii) is standard in the case when a(t) = b(t) = c(t) ≡ 1,

m(x′) ≡ 1 and h(x(t − r)) ≡ h(x), t > r (see [4], [5], [8], [56]). The assump-

tions (iv) and (v) have been used by a number of papers to establish boundedness

and continuability theorems (see [5], [10], [20], [28], [59]). In (vi), the double inte-

grals are bounded by a constant. Moreover, the condition (vii) is a generalization of

a condition by Legatos (see [5], [29]). The first part of (viii) is less restrictive than

bounding m from above and below or asking y2/m(y) 6 αM(y) for all y (see [5],

[10], [33], [37]) and this does not contradict the assumption (v). The second part

of (viii) generalizes a condition by Tejumola (see [5], [42]).
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Now, we state and prove theorems on the boundedness of solutions for the non-

linear delay differential equation

(4) x′′ + b(t)g(x, x′) + c(t)h(x(t − r))m(x′) = p(t, x, x′)

which is a special case of the equation (1) when a(t) ≡ 1. This can be re-written as:

let x′ = y, then

(5) y′ + b(t)g(x, y) + c(t)h(x)m(y) − c(t)m(y)

∫ t

t−r

h′(x(s))y(s) ds = p(t, x, y).

The results obtained are then related to the equivalent system for the equation (1)

as corollaries.

Theorem 6. Suppose that the conditions (i)–(vi) hold and c(t) is nondecreasing

on I. Then any solution x(t) of (5) is bounded. If, in addition, c(t) is bounded from

above on I, then y(t) is also bounded.

P r o o f. Let x(t) and y(t) be solutions defined on [0, t], respectively. Multiply-

ing (5) by y(t)/(c(t)m(y(t))) and integrating both the sides of the resulting equation

from 0 to t, we have

∫ t

0

y(τ)y′(τ)

c(τ)m(y(τ))
dτ +

∫ t

0

b(τ)g(x(τ), y(τ))y(τ)

c(τ)m(y(τ))
dτ +

∫ t

0

h(x(τ))y(τ) dτ

−

∫ t

0

∫ t

t−r

h′(x(s))y(s)y(τ) ds dτ 6

∫ t

0

|p(τ, x(τ), y(τ))y(τ)|

c(τ)m(y(τ))
dτ.

The integral in the second term on the left is nonnegative because of (i)–(iii) and by

Lemma 1 it follows that there is δ ∈ [0, t] such that

1

c(0)

∫ δ

0

y(τ)

m(y(τ))y′(τ)
dτ +

∫ t

0

h(x(τ))y(τ) dτ −

∫ t

0

∫ t

t−r

h′(x(s))y(s)y(τ) ds dτ

6
1

c(0)

∫ δ

0

|p(τ, x(τ), y(τ))y(τ)|

m(y(τ))
dτ.

Applying (iv)–(vii), then

1

c(0)
(M(y(δ)) −M(y(0))) +H(x(t)) −H(x(0)) − β 6

1

c(0)

∫

∞

0

e(τ) dτ.

Moreover, (i) leads to the estimate

H(x(t)) 6 H(x(t)) +
1

c(0)
M(y(δ)) 6 H(x(0)) + β +

1

c(0)

(

M(y(0)) +

∫

∞

0

e(τ) dτ

)

.

The right-hand side of the last inequality is a constant independent of t, say K, and

therefore (iv) implies that x(t) is bounded on I.
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We now suppose that c(t) 6 c0 on I. Substitute x(t) and y(t) into (5), multiply

both the sides by y(t)/m(y(t)) and integrate from 0 to t. By (i)–(iii), we obtain

∫ t

0

y(τ)y′(τ)

m(y(τ))
dτ +

∫ t

0

b(τ)g(x(τ), y(τ))y(τ)

m(y(τ))
dτ +

∫ t

0

c(τ)h(x(τ))y(τ) dτ

−

∫ t

0

∫ t

t−r

c(τ)h′(x(s))y(s)y(τ) ds dτ 6

∫ t

0

|p(τ, x(τ), y(τ))y(τ)|

m(y(τ))
dτ.

The integral in the second term on the left is nonnegative because of (i)–(iii) and by

Lemma 2 there exists δ ∈ [0, t] such that

∫ t

0

y(τ)

m(y(τ))y′(τ)
dτ + c(t)

∫ t

δ

h(x(τ))y(τ) dτ − c(t)

∫ t

δ

∫ t

t−r

h′(x(s))y(s)y(τ) ds dτ

6

∫ t

0

|p(τ, x(τ), y(τ))y(τ)|

m(y(τ))
dτ.

Applying (iv)–(vii), then

M(y(t))−M(y(0)) + c(t)(H(x(t)) −H(x(δ))) − c(t)β 6

∫

∞

0

e(τ) dτ.

Since c(t)H(x(t)) is nonnegative on I, we have

M(y(t)) 6M(y(t)) + c(t)H(x(t))

6M(y(0)) + c(t)H(x(δ)) + c(t)β +

∫

∞

0

e(τ) dτ

6M(y(0)) + c0(K + β) +

∫

∞

0

e(τ) dτ = L,

a constant independent of t. Hence, (v) implies that y(t) is bounded on I. �

R em a r k 7. The equation (4) considered above improved on the equation con-

sidered by Athanassov (see [5]) for the case in which a(t) ≡ 1 and h(x(t−τ)) = h(x),

where t ∈ R
+, x ∈ R, t > τ , and τ > 0 is a constant.

As a consequence of Theorem 6 we have the following result.

An equivalent system of (1) becomes x′ = y, then

(6) a(t)y′ + b(t)g(x, y) + c(t)h(x)m(y) − c(t)m(y)

∫ t

t−r

h′(x(s))y(s) ds = p(t, x, y).

Corollary 8. Suppose that the conditions (i)–(vii) hold and a(t) is bounded away

from zero on I. If the quotient c(t)/a(t) is nondecreasing on I, then any solution x(t)

of (6) is bounded. If, in addition, c(t)/a(t) is bounded from above on I then y(t) is

also bounded.
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P r o o f. Multiply both the sides of (6) by a−1(t)y(t)/(c(t)m(y(t))), and then by

a−1(t)y(t)/m(y(t)), respectively. So, the conclusion follows by Theorem 6. We have

that

H(x(δ)) 6 H(x(0)) +
a(0)

c(0)
M(y(0)) + β +

1

c(0)

∫

∞

0

e(τ) dτ =W1,

whereW1 is a constant independent of t and by (iv) this implies that x(t) is bounded

on I. Further,

M(y(t)) 6M(y(0)) +
c0
a0

(W1 + β) +
1

a0

∫

∞

0

e(τ) dτ =W2,

where W2 is a constant independent of t. Hence, (v) implies that y(t) is bounded

on I. �

Theorem 9. Suppose that the conditions (i)–(vi) and (viii) hold and let c(t)

be nonincreasing on I. Then, for any solution x(t) of (5), y(t) is bounded. If, in

addition, c(t) is bounded away from zero on I, then x(t) is also bounded.

P r o o f. Multiplying (5) by y(t)/m(y(t)), integrating both the sides of the

resulting equation from 0 to t, and by the assumptions (i)–(iii), we obtain

∫ t

0

y(τ)y′(τ)

m(y(τ))
dτ +

∫ t

0

c(τ)h(x(τ))y(τ) dτ −

∫ t

0

∫ t

t−r

c(τ)h′(x(s))y(s)y(τ) ds dτ

6

∫ t

0

|p(τ, x(τ), y(τ))y(τ)|

m(y(τ))
dτ.

By Lemma 1 it follows that there is δ ∈ [0, t] such that

∫ t

0

y(τ)

m(y(τ))y′(τ)
dτ + c(0)

∫ δ

0

h(x(τ))y(τ) dτ − c(0)

∫ δ

0

∫ t

t−r

h′(x(s))y(s)y(τ) ds dτ

6

∫ t

0

|p(τ, x(τ), y(τ))y(τ)|

m(y(τ))
dτ.

If |y| 6 max{a, k}, y2/m(y) 6 d1 for some d1 > 0, so y2/m(y) 6 d1+αM(y) for all y.

Also, for |y| 6 max{1, k}, |y|/m(y) 6 d2, d2 > 0 and for |y| > max{1, k}, |y|/m(y) 6

y2/m(y), so |y|/m(y) 6 d2 ± y2/m(y) 6 d1 + d2 + αM(y) = D + αM(y) for all y.

310



Thus, using (vii), (viii) and Lemma 1, there exists δ ∈ [0, t] such that

M(y(t))−M(y(0)) + c(0)H(x(δ)) − c(0)H(x(0))− c(0)β

6 (D + αM(y))

∫

∞

0

e1(τ) dτ,

M(y(t)) 6M(y(t)) + c(0)H(x(δ))

6M(y(0)) + c(0)H(x(0)) + c(0)β

+D

∫

∞

0

e1(τ) dτ + α

∫

∞

0

e1(τ)M(y(τ)) dτ,

M(y(t)) 6 K1 + α

∫

∞

0

e1(τ)M(y(τ)) dτ,

whereK1 =M(y(0))+c(0)H(x(0))+c(0)β+D
∫

∞

0
e1(τ) dτ is a nonnegative constant.

By Gronwall’s inequality, it follows that

M(y(t)) 6 K1 exp
(

α

∫

∞

0

e1(τ) dτ
)

= L1,

a constant independent of t. Thus the condition (v) implies that y(t) is bounded on I.

We now suppose that c(t) > c0 > 0 on I. Multiply (5) by y(t)/(c(t)m(y(t))) and

integrate from 0 to t. By (i)–(iii) and Lemma 2, it follows that there exists δ ∈ [0, t]

such that

1

c(t)

∫ t

δ

y(τ)

m(y(τ))y′(τ)
dτ +

∫ t

0

h(x(τ))y(τ) dτ −

∫ t

0

∫ t

t−r

h′(x(s))y(s)y(τ) ds dτ

6
1

c(t)

∫ t

δ

|p(τ, x(τ), y(τ))y(τ)|

m(y(τ))
dτ.

Applying (iv)–(vi) and (viii), then

M(y(t))−M(y(δ))

c(t)
+H(x(t))−H(x(0)) − β 6

D + αM(y)

c(t)

∫

∞

0

e1(τ) dτ,

H(x(t)) 6
M(y(t))

c0
+H(x(t)) 6

M(y(δ))

c0
+H(x(0)) + β +

αL1 +D

c0

∫

∞

0

e1(τ) dτ.

Since 1/c0M(y(t)) is nonnegative on I, then

H(x(t)) 6 H(x(0)) +
1

c0

(

L1 + β + (αL1 +D)

∫

∞

0

e1(τ) dτ

)

= L2,

a constant independent of t. Hence, (iv) implies that x(t) is bounded on I. �
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Corollary 10. Suppose that the conditions (i)–(vi) and (viii) hold and let a(t) be

bounded away from zero on I. If the quotient c(t)/a(t) is nonincreasing on I, then

for any solution x(t) of (6), y(t) is bounded. If, in addition, c(t)/a(t) is bounded

from below on I, then x(t) is bounded.

P r o o f. Multiply both the sides of (6) by a−1(t)y(t)/m(y(t)), and then by

a−1(t)y(t)/c(t)m(y(t)), respectively. By the proof of Theorem 9, the following results

can be obtained:

M(y(t)) 6W3 exp

(

α

∫

∞

0

e1(τ) dτ

)

=W4,

a constant independent of t, where

W3 =M(y(0)) +
c(0)

a(0)
(H(x(0)) + β) +

D

a(0)

∫

∞

0

e1(τ) dτ

is a nonnegative contant. Thus, the condition (v) implies that y(t) is bounded on I.

Now, suppose that a(t)c(t) > u0 > 0, then for the boundedness of x(t), by the

assumption (iv), we have

H(x(t)) 6 H(x(δ)) +
a0
u0

(

W4 + β + (αW4 +D)

∫

∞

0

e1(τ) dτ

)

=W5,

a constant independent of t. �

We now consider the boundedness of solutions for the equation (2). We construct

the equivalent system as: let x′ = y,

(7) a′(t)y + a(t)y′ + b(t)g(x, y) + c(t)h(x)m(y)

− c(t)m(y)

∫ t

t−r

h′(x(s))y(s) ds = p(t, x, y).

The proof of the following theorem resembles that of Theorem 9.

Theorem 11. Suppose that the assumptions (i)–(vi) and (viii) hold and let c(t)

be nonincreasing on I. If a(t) ∈ C1(I,R+), a′(t) 6 0, and if a(t) is bounded away

from zero on I, then for any solutions x(t) of (7), y(t) is bounded. If, in addition,

c(t) is bounded away from zero on I, then x(t) is bounded.

P r o o f. Multiplying (7) by y(t)/m(y(t)) and integrating from 0 to t, we have
∫ t

0

a′(τ)(y(τ))2

m(y(τ))
dτ +

∫ t

0

a(τ)y(τ)y′(τ)

m(y(τ))
dτ +

∫ t

0

b(τ)g(x(τ), y(τ))y(τ)

m(y(τ))
dτ

+

∫ t

0

c(τ)h(x(τ))y(τ) dτ −

∫ t

0

∫ t

t−r

c(τ)h′(x(s))y(s)y(τ) ds dτ

6

∫ t

0

|p(τ, x(τ), y(τ))y(τ)|

m(y(τ))
dτ.
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Considering the assumptions (i)–(iii), we have
∫ t

0

a′(τ)(y(τ))2

m(y(τ))
dτ +

∫ t

0

a(τ)y(τ)y′(τ)

m(y(τ))
dτ +

∫ t

0

c(τ)h(x(τ))y(τ) dτ

−

∫ t

0

∫ t

t−r

c(τ)h′(x(s))y(s)y(τ) ds dτ 6

∫ t

0

|p(τ, x(τ), y(τ))y(τ)|

m(y(τ))
dτ.

As in the proof of Theorem 9, there are d1 > 0 and d2 > 0 such that y2/m(y) 6

d1 + αM(y) and |y|/m(y) 6 d1 + d2 + αM(y) for all y. Thus, using the supposition

that a′(t) 6 0 and (viii), we obtain

(8) (d1 + αM(y))

∫ t

0

a′(τ) dτ +

∫ t

0

a(τ)(M(y(τ))′ dτ +

∫ t

0

c(τ)h(x(τ))y(τ) dτ

−

∫ t

0

∫ t

t−r

c(τ)h′(x(s))y(s)y(τ) ds dτ 6 (D + αM(y))

∫

∞

0

e1(τ) dτ.

Applying integration by parts on the second integral and using Lemma 1 on the third

and fourth integrals of the inequality (8), we obtain

d1

∫ t

0

a′(τ) dτ + α

∫ t

0

a′(τ)M(y(τ)) dτ + a(t)M(y(t)) − a(0)M(y(0))

−

∫ t

0

a′(τ)M(y(τ)) dτ + c(0)

∫ δ

0

h(x(τ))y(τ) dτ

− c(0)

∫ δ

0

∫ t

t−r

h′(x(s))y(s)y(τ) ds dτ

6 D

∫

∞

0

e1(τ) dτ + α

∫

∞

0

e1(τ)M(y(τ)) dτ.

Then, by the assumption (vi), we have

d1a(t)− d1a(0) + α

∫ t

0

a′(τ)M(y(τ)) dτ + a(t)M(y(t))− a(0)M(y(0))

−

∫ t

0

a′(τ)M(y(τ)) dτ + c(0)H(x(δ)) − c(0)H(x(0))− c(0)β

6 D

∫

∞

0

e1(τ) dτ + α

∫

∞

0

e1(τ)M(y(τ)) dτ.

So

a(t)M(y(t)) 6 a(t)M(y(t)) + c(0)H(x(δ)) + d1a(t)

6 R+ (1− α)

∫ t

0

a′(τ)M(y(τ)) dτ + α

∫

∞

0

e1(τ)M(y(τ)) dτ,

where

R = d1a(0) + a(0)M(y(0)) + c(0)H(x(0)) + c(0)β +D

∫

∞

0

e1(τ) dτ.
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If α 6 1 then by Gronwall’s inequality we obtain

M(y(t)) 6
R

a0
exp

(

α

a0

∫

∞

0

e1(τ) dτ

)

= V1

and if α > 1 (which implies 1− α 6 0), this gives

M(y(t)) 6
R

a0
exp

(α− 1)a(0)

a0
exp

(

α

a0

∫

∞

0

e1(τ) dτ

)

= V2,

where a0 is the lower bound (positive) of a(t) on I. Thus (v) implies that y(t) is

bounded on I.

Since there is c0 > 0 such that c(t) > c0 on I. Multiplying (7) by y(t)/

(c(t)m(y(t))), integrating from 0 to t, using the assumptions (i)–(iii) and (viii),

and applying Lemma 2, we have

∫ t

0

a′(τ)(y(τ))2

c(τ)m(y(τ))
dτ +

∫ t

0

a(τ)y(τ)y′(τ)

c(τ)m(y(τ))
dτ +

∫ t

0

h(x(τ))y(τ) dτ

−

∫ t

0

∫ t

t−r

h′(x(s))y(s)y(τ) ds dτ 6

∫ t

0

|p(τ, x(τ), y(τ))y(τ)|

c(τ)m(y(τ))
dτ.

This implies

d1 + αM(y)

c(t)

∫ t

δ

a′(τ) dτ +
1

c(t)

∫ t

δ

a(τ)(M(y(τ)))′ dτ +

∫ t

0

h(x(τ))y(τ) dτ

−

∫ t

0

∫ t

t−r

h′(x(s))y(s)y(τ) ds dτ 6
D + αM(y)

c(t)

∫

∞

0

e1(τ) dτ.

Applying integration by parts on the second integral and the conditions (iv)–(vi) on

the above inequality, we have

d1
c(t)

∫ t

δ

a′(τ) dτ +
α

c(t)

∫ t

δ

a′(τ)M(y(τ)) dτ +
a(t)

c(t)
M(y(t))−

a(δ)

c(t)
M(y(δ))

−
1

c(t)

∫ t

δ

a′(τ)M(y(τ)) dτ +H(x(t)) −H(x(0)) − β

6
D + αM(y)

c(t)

∫

∞

0

e1(τ) dτ.

Thus,

H(x(t)) 6 H(x(0))−
a(t)

c(t)
M(y(t)) +

a(δ)

c(t)
M(y(δ))−

d1
c(t)

∫ t

δ

a′(τ) dτ

−
α

c(t)

∫ t

δ

a′(τ)M(y(τ)) dτ +
1

c(t)

∫ t

δ

a′(τ)M(y(τ)) dτ

+ β +
D + αM(y)

c(t)

∫

∞

0

e1(τ) dτ,
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where δ ∈ [0, t]. Put V = max(V1, V2) and then, since M(y(t)) 6 V on I, we obtain

H(x(t)) 6 H(x(0)) −
1

c(t)
(d1 + αV − V )

∫ t

δ

a′(τ) dτ + β +
D + αV

c(t)

∫

∞

0

e1(τ) dτ.

Hence, with c(t) > c0 such that c0 > 0, then

H(x(t)) 6 H(x(0)) + V
a(δ)

c0

(d1
V

+ α− 1
)

+ β +
1

c0
(D + αV )

∫

∞

0

e1(τ) dτ.

Therefore, H(x(t)) is bounded on I and (iv) implies that x(t) is bounded. This

completes the proof. �

In the following two theorems, by using Riemann-Stieltjes integrals and examining

the quotients a(t)/c(t) and c(t)/a(t), the boundedness results for the solutions of (7)

are obtained as follows.

Theorem 12. Suppose that the conditions (i)–(vii) hold. If a(t) ∈ C1(I,R+),

a′(t) > 0, and the quotient a(t)/c(t) is nondecreasing and bounded from above on I,

then any solution x(t) of (7), along with its derivative y(t), is bounded for all t ∈ I.

P r o o f. Multiplying (7) by y(t)/(c(t)m(y(t))), integrating both the sides of the

equation from zero to some t > 0, and using (i)–(iii), we have

∫ t

0

a′(τ)(y(τ))2

c(τ)m(y(τ))
dτ +

∫ t

0

a(τ)y(τ)y′(τ)

c(τ)m(y(τ))
dτ +

∫ t

0

h(x(τ))y(τ) dτ

−

∫ t

0

∫ t

t−r

h′(x(s))y(s)y(τ) ds dτ 6

∫ t

0

|p(τ, x(τ), y(τ))y(τ)|

c(τ)m(y(τ))
dτ.

Applying (iv), (vii), and the fact that a′(t) > 0, then

(9)

∫ t

0

a(τ)

c(τ)
(M(y(τ)))′ dτ +

∫ t

0

h(x(τ))y(τ) dτ

−

∫ t

0

∫ t

t−r

h′(x(s))y(s)y(τ) ds dτ 6

∫ t

0

e(τ)

c(τ)
dτ.

By the assumed monotonicity of the quotient a(t)/c(t) we can conclude that a(t)/c(t)

is of bounded variation on [0, t]. Thus, by the theorem of reduction of a Riemann-

Stieltjes integral to a Riemann integral for the first term in the inequality (9), and

applying the assumptions (iv) to (vii) and Lemma 1 where necessary, we obtain

∫ t

0

a(τ)

c(τ)
dM(y(τ)) +H(x(t)) −H(x(0))− β 6

1

c(0)

∫

∞

0

e(τ) dτ.
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Using the integration by parts formula for the Riemann-Stieltjes integral, we have

a(t)

c(t)
M(y(t))−

a(0)

c(0)
M(y(0))−

∫ t

0

M(y(τ)) d
(a(τ)

c(τ)

)

+H(x(t)) −H(x(0))− β

6
1

c(0)

∫

∞

0

e(τ) dτ.

Then the inequality above becomes

(10)
a(t)

c(t)
M(y(t)) +H(x(t)) 6 N +

∫ t

0

M(y(τ)) d
(a(τ)

c(τ)

)

,

where N = H(x(0)) + (a(0)/c(0))M(y(0)) + β + (1/c(0))
∫

∞

0
e(τ) dτ .

Since H(x(t)) > 0 on I, we have

a(t)

c(t)
M(y(t)) 6 N +

∫ t

0

a(τ)

c(τ)

c(τ)

a(τ)
M(y(τ)) d

(a(τ)

c(τ)

)

.

By Lemma 4, we obtain

a(t)

c(t)
M(y(t)) 6 N exp

(
∫ t

0

1

(a(τ)/c(τ))
d
(a(τ)

c(τ)

)

)

6 N exp
(

log
a(t)

c(t)
− log

a(0)

c(0)

)

6 N exp
(

ln
(a(t)/c(t))

a(0)/c(0)

)

which implies that
a(t)

c(t)
M(y(t)) 6 N

a(t)/c(t)

a(0)/c(0)
.

Hence,

(11) M(y(t)) 6 N
c(0)

a(0)

and by assumption (v) this implies that y(t) is bounded on I. SinceM(y(t)) > 0 and

a(t)/c(t) is bounded from above on I, we have from (10) that

(12) H(x(t)) 6 N +

∫ t

0

M(y(τ)) d
(a(τ)

c(τ)

)

.

Now, substituting the inequality (11) in the integral in (12), we have

H(x(t)) 6 N +

∫ t

0

N
c(0)

a(0)
d
(a(τ)

c(τ)

)

6 N +N
c(0)

a(0)

(a(t)

c(t)
−
a(0)

c(0)

)

.

By assumption, there exists r0 > 0 such that a(t)/c(t) 6 r0 for all t ∈ I. Then

1/c(t) 6 r on I, where r = r0/a(0). We have

H(x(t)) 6 Nr0
c(0)

a(0)
.

Therefore, (iv) implies that x(t) is bounded on I and this completes the proof. �
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Theorem 13. Suppose that the conditions (i)–(vii) hold. If a(t) ∈ C′(I,R+),

a′(t) > 0, and the quotient c(t)/a(t) is nondecreasing and bounded above on I, then

any solution x(t) of (7) along with its derivative y(t) is bounded for all t ∈ I.

P r o o f. Multiplying (7) by y(t)/(a(t)m(y(t))), integrating both sides of the

equation from zero to some t > 0, using (i)–(iii) as in the proof of Theorem 12, and

since a′(t) > 0, we have

(13)

∫ t

0

y(τ)y′(τ)

m(y(τ))
dτ +

∫ t

0

c(τ)

a(τ)
h(x(τ))y(τ) dτ −

∫ t

0

∫ t

t−r

c(τ)

a(τ)
h′(x(s))y(s)y(τ) ds dτ

6

∫ t

0

|p(τ, x(τ), y(τ))y(τ)|

a(τ)m(y(τ))
dτ.

Applying the assumptions (iv) to (vii) and Lemma 1 where necessary in inequal-

ity (13), we obtain

(14) M(y(t))−M(y(0)) +

∫ t

0

c(τ)

a(τ)
dH(x(τ)) −

c(0)

a(0)
β 6

1

a(0)

∫ t

0

e(τ) dτ.

Following an argument similar to that used in the proof of Theorem 12, we have that

c(τ)/a(τ) is Riemann-Stieltjes integrable with respect to H(x(τ)) on [0,t]. That is,

∫ t

0

c(τ)

a(τ)
h(x(τ))y(τ) dτ =

∫ t

0

c(τ)

a(τ)
dH(x(τ)).

Hence, the integral on the left above is a Riemann-Stieltjes integral. As a consequence

of this, using the integration by parts formula for the Riemann-Stieltjes integral, the

inequality (14) becomes

M(y(t))−M(y(0)) +
c(t)

a(t)
H(x(t)) −

c(0)

a(0)
H(x(0))

−

∫ t

0

H(x(τ)) d
( c(τ)

a(τ)

)

−
c(0)

a(0)
β 6

1

a(0)

∫ t

0

e(τ) dτ.

Now

c(t)

a(t)
H(x(t)) 6M(y(t)) +

c(t)

a(t)
H(x(t)) 6 Q1 +

∫ t

0

H(x(τ)) d
( c(τ)

a(τ)

)

,

where Q1 =M(y(0)) + (c(0)/a(0))H(x(0)) + (c(0)/a(0))β + (1/a(0))
∫

∞

0
e(τ) dτ.

It then follows that

c(t)

a(t)
H(x(t)) 6 Q1 +

∫ t

0

a(τ)

c(τ)

c(τ)

a(τ)
H(x(τ)) d

( c(τ)

a(τ)

)

.
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By Lemma 3, we have

c(t)

a(t)
H(x(t)) 6 Q1 exp

(
∫ t

0

a(τ)

c(τ)
d
( c(τ)

a(τ)

)

)

and by Lemma 4, we obtain

c(t)

a(t)
H(x(t)) 6 Q1 exp

(
∫ t

0

1

c(τ)/a(τ)
d
( c(τ)

a(τ)

)

)

6 Q1 exp
(

log
c(t)/a(t)

c(0)/a(0)

)

,

H(x(t)) 6 Q1

a(0)

c(0)

on I. Then by (iv), this implies the boundedness of x(t).

By hypothesis, (c(t)/a(t)) 6 ̺ for some ̺ > 0 and for all t ∈ I, then

M(y(t)) 6 Q1 +

∫ t

0

H(x(τ)) d
( c(τ)

a(τ)

)

6 Q1 +Q1

a(0)

c(0)

∫ t

0

d
( c(τ)

a(τ)

)

6 Q1 +Q1

a(0)

c(0)

( c(t)

a(t)
−
c(0)

a(0)

)

.

Thus,

M(y(t)) 6 Q1̺
a(0)

c(0)
.

�

R em a r k 14. A number of papers have dealt with the boundedness of solu-

tions of the form (7) for the case h(x(t − r)) = h(x), where t ∈ R
+, x ∈ R,

t > r, r > 0 is a constant. For instance see Graef and Spikes [21], Nápoles [31]

and Zarghamee and Mehri [62]. Theorem 12 and 13 generalized the corresponding

results in Athanassov [5].

Throughout the remainder of this study, we now replace the monoticity conditions

of a(t) and c(t) by integral conditions on the derivatives a′(t), c′(t) and (c(t)/a(t))′.

Theorem 15. Let assumptions (i)–(vii) hold and let c(t) ∈ C′(I,R+) be bounded

away from zero and |c′(t)| ∈ L1(I). Then both the solution x(t) of (5) and its

derivative y(t) are bounded.

P r o o f. Multiplying (5) by y(t)/m(y(t)), integrating from 0 to t and using

(i)–(vii) with the application of Lemma 2 where necessary, we have

(15) M(y(t))−M(y(0)) +

∫ t

0

c(τ) dH(x(τ)) − c(0)β 6

∫ t

0

e(τ) dτ.
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Using integration by parts at the third term of inequality (15), we obtain

(16) M(y(t))−M(y(0)) + c(t)H(x(t)) − c(0)H(x(0))

−

∫ t

0

H(x(τ)) dc(τ)− c(0)β 6

∫ t

0

e(τ) dτ.

Then

(17) c(t)H(x(t)) 6M(y(t)) + c(t)H(x(t))

6M(y(0)) + c(0)H(x(0)) + c(0)β

+

∫

∞

0

e(τ) dτ +

∫ t

0

|c′(τ)|H(x(τ)) dτ

6 Q2 +

∫ t

0

|c′(τ)|H(x(τ)) dτ,

where Q2 =M(y(0)) + c(0)H(x(0)) + c(0)β +
∫

∞

0
e(τ) dτ. Therefore,

H(x(t)) 6
Q2

c(t)
+

1

c(t)

∫ t

0

|c′(τ)|H(x(τ)) dτ.

By the hypothesis c(t) > c0 for some c0 > 0 and for all t ∈ I, and by Gronwall’s

inequality, we obtain

H(x(t)) 6
Q2

c0
exp

(
∫

∞

0

|c′(τ)|
dτ

c0

)

= Φ.

So, by assumption (iv) it implies that x(t) is bounded.

Furthermore, following from the inequality (16), it is clear that

M(y(t)) 6 Q2 +

∫ t

0

|c′(τ)|H(x(τ)) dτ 6 Q2 +Φ

∫ t

0

|c′(τ)| dτ

and by (v), this implies that y(t) is bounded. �

Corollary 16. Suppose that assumptions (i)–(vii) hold. If a(t) and c(t)/a(t) ∈

C′(I,R+) are bounded away from zero and |(c(t)/a(t))′| ∈ L1(I), then any solution

x(t) of (5) along with its derivative y(t) is bounded.

Theorem 17. Let the conditions (i)–(vii) hold and let a(t) be nonincreasing on I.

If c(t) ∈ C′(I,R+) is bounded away from zero and |c′(t)| ∈ L1(I), then any solution

x(t) of (6) is bounded. If, in addition, a(t) is bounded away from zero, then y(t) is

also bounded.
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P r o o f. Multiply (6) by y(t)/m(y(t)) and integrate from 0 to t. Then, we have

∫ t

0

a(τ)y(τ)y′

m(x′(τ))
dτ +

∫ t

0

c(τ)h(x(τ))y(τ) dτ −

∫ t

0

∫ t

t−r

c(τ)h′(x(s))y(s)y(τ) dτ

6

∫ t

0

|p(τ, x(τ), y(τ))y(τ)|

m(y(τ))
dτ.

Applying the assumptions (i) to (iii), (vi), (vii) and using Lemma 1 where necessary,

we have

a(0)M(y(δ))− a(0)M(y(0)) +

∫ t

0

c(τ) dH(x(τ)) − c(0)β 6

∫ t

0

e(τ) dτ.

Employing integration by parts at the third term of the above inequality, then

a(0)M(y(δ)) + c(t)H(x(t)) 6 Q3 +

∫ t

0

|c′(τ)|H(x(τ)) dτ,

where Q3 = a(0)M(y(0)) + c(0)H(x(0)) + c(0)β +
∫

∞

0
e(τ) dτ and δ = [0, t].

Now

c(t)H(x(t)) 6 c(t)H(x(t)) + a(0)M(y(δ)) 6 Q3 +

∫ t

0

|c′(τ)|H(x(τ)) dτ.

Since c(t) > c0 for some c0 > 0 and all t ∈ I, we have

H(x(t)) 6
Q3

c0
+

1

c0

∫ t

0

|c′(τ)|H(x(τ)) dτ.

By Gronwall’s inequality and the assumption (iv), it follows that x(t) is bounded on I.

Suppose now that a(t) > a0 for some a0 > 0 and all t ∈ I. Multiplying (6) by

y(t)/m(y(t)), integrating from 0 to t and applying assumptions (i) to (vii) including

Lemma 2, we have

M(y(t))−M(y(0)) +
1

a(t)

∫ t

δ

c(τ) dH(x(τ)) −
1

a(t)

∫ t

δ

c(τ)β dτ 6
1

a(t)

∫ t

0

e(τ) dτ,

where δ ∈ [0, t].

Using integration by parts at the first integral above, we have

M(y(t))−M(y(0)) +
c(t)

a(t)
H(x(t))−

c(δ)

a(t)
H(x(δ)) +

c(t)

a(t)
β −

c(δ)

a(δ)
β

6
1

a(t)

∫ t

δ

|c′(τ)|H(x(τ)) dτ +
1

a(t)

∫ t

0

e(τ) dτ.
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From the condition on c(t) we have that c(t) tends to a positive limit as t→ ∞ and

then, c(δ) is bounded from above, say by c1. Thus, from the above inequality, we

have the estimate

M(y(t)) 6M(y(t)) +
c(t)

a(t)
H(x(t)) +

c(t)

a(t)
β

6M(y(0)) +
c(t)

a(t)
Φ +

c1
a0
β +

Φ

a0

∫ t

δ

|c′(τ)| dτ +
1

a(t)

∫ t

0

e(τ) dτ,

where

Φ =
Q2

c0
exp

(
∫

∞

0

|c′(τ)|
dτ

c0

)

.

Therefore, (v) implies the boundedness of y(t) and this completes the proof. �

R em a r k 18. In the relationship with some of the results on the boundedness

behaviour of solutions for equations the (1) and (2), it can be observed in Theorem 11

that c(t) is nonincreasing on I, and a(t) ∈ C′(I,R+) and a(t) bounded away from

zero while in Theorem 17 a(t) is nonincreasing on I and c(t) ∈ C′(I,R+) and is

bounded away from zero. Then it was satisfied that (iv) and (v) imply that x(t)

and y(t) are bounded, respectively, in the theorems.

Theorem 19. Let the conditions (i)–(vi) and (viii) hold, and let a(t) and c(t) be

bounded away from zero. If a(t), c(t) ∈ C′(I,R+) and |a′(t)|, |c′(t)| ∈ L1(I), then

any solution x(t) of (6) along with its derivative y(t) is bounded on I.

P r o o f. Multiplying (6) by y(t)/m(y(t)), integrating from 0 to t and using (i)

to (vi) and (viii), and also from the proof of Theorem 9, we get:

∫ t

0

a(τ)(M(y(τ)))′ dτ +

∫ t

0

c(τ)(H(x(τ)))′ dτ +

∫ t

0

c(τ)β

6 D

∫ t

0

e1(τ) dτ + α

∫ t

0

e1(τ)M(y(τ)) dτ.

Then

a(t)M(y(t)) − a(0)M(y(0))−

∫ t

0

|a′(τ)|M(y(τ)) dτ + c(t)H(x(t))

− c(0)H(x(0))−

∫ t

0

|c′(τ)|H(x(τ)) dτ + c(t)β − c(0)β

6 D

∫ t

0

e1(τ) dτ + α

∫ t

0

e1(τ)M(y(τ)) dτ.
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This implies

a(t)M(y(t)) + c(t)H(x(t)) + c(t)β

6 Q4 +

∫ t

0

(|a′(τ)| + |c′(τ)| + αe1(τ))(M(y(τ)) +H(x(τ))) dτ.

Therefore,

j(M(y(t)) +H(x(t)) + β)

6 Q4 +

∫ t

0

(|a′(τ)| + |c′(τ)|+ αe1(τ))(M(y(τ)) +H(x(τ))) dτ,

where j = min(a0, c0), a0 and c0 being the lowest bounds of a(t) and c(t), respectively,

and

Q4 = a(0)M(y(0)) + c(0)H(x(0)) + c(0)β +D

∫

∞

0

e1(τ) dτ.

By Gronwall’s inequality, it follows that M(y(t)) + H(x(t)) + β is bounded and

then the conditions (iv) to (vi) imply that x(t) and y(t) are bounded on I. The proof

is now completed. �

R em a r k 20. Theorem 19 generalizes Theorem 7 of Bihari [7], Theorem 4 of

Wong [58] and Theorem 11 of Athanassov [5].

4. Examples

First, consider a special case of (1) which is the second order nonlinear delay

differential equation

(18) x′′ + (1 + t)(2 + sinx)x′ +
2(1 + t)

1 + x′2
x(t − r) =

1

2
sin t.

The equivalent system of (18) is given as follows: let x′ = y then

(19) y′ + (1 + t)(2 + sinx)y +
2(1 + t)x

1 + y2
−

2(1 + t)

1 + y2

∫ t

t−r

d(x(θ)) =
1

2
sin t.

Take r = 2

25
and the initial conditions x(0) = 1, y(0) = 1.

The following basic conditions are satisfied for the equation (19) which can be

related to the assumptions (i) to (v) of the main results.

(1) a(t) = 1 > 0, b(t) = (1 + t) > 0, c(t) = 2(1 + t) > 0;

(2) g(x, y) = (2 + sinx) > 0, h(x) = x > 0, m(y) = 1/(1 + y2) > 0, p(t, x, y) =
1

2
sin t > 0;

(3) g(x, y)y = (2 + sinx)y2 > 0 for all (x, y) ∈ R
2, y 6= 0;

(4) H(x) =
∫ x

0
τ dτ = 1

2
x2 → ∞ as x→ ∞ where

∫ x

0
h(τ) dτ =

∫ x

0
τ dτ > 0 and

(5)
∫ y

0
τ/m(τ) dτ =

∫ y

0
τ(1 + τ2) dτ = 1

2
y2 + 1

4
y4 → ∞ as y → ∞.
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Consequently, we consider a special case of the equation (2) which is the second

order nonlinear delay differential equation

(20) (5 exp(−t)x′)′ + (1 + t)(2 + sinx)x′ +
2(1 + t)

1 + x′2
x(t − r) =

1

2
sin t.

The equation (20) is re-written as

(21) (5 exp(−t)y)′ + (1 + t)(2 + sinx)y +
2(1 + t)x

1 + y2
−

2(1 + t)

1 + y2

∫ t

t−r

d(x(θ)) =
1

2
sin t.

Following the basic condtions (1) to (5) above for the equation (19), and taking

a(t) = 5 exp(t) > 0 along with conditions (2) to (5) for the equation (21), we now

have graphically the boundedness of solution satisfying equations (19) and (21),

respectively, see Figures 1 and 2.

5. Conclusion

It is interesting to note that several authors have studied the boundedness of so-

lutions of autonomous and nonautonomous delay differential equations by using the

Lyapunov-Krasovskǐı method to investigate the property. However, in this work,

we have successfully investigated the boundedness of all solutions and their deriva-

tives by applying different forms of the integral inequality method. We have applied

Gronwall’s inequality, two forms of the second mean value theorem for integrals and

Riemann-Stieltjes integrals to nonlinear differential equations with delay to estab-

lish our boundedness results. Examples to corroborate the established results for

the equations (1) and (2) are also included with graphical representations by using

Maple 2015.

x(t) y(t)

0 10 20 30 40 50 60 70 80 90
t

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0
x(t), y(t)

Figure 1. The graph showing the boundedness of solution for the equation (19). Hence, the
solution of the nonlinear delay differential equation (19) is bounded.
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t

−0.5

0

0.5

1.0

1.5

x(t), y(t)
x(t) y(t)

Figure 2. The graph showing the boundedness of solution for the equation (21). Thus, the
solution of the nonlinear differential equation (21) with delay is also bounded.

A c k n ow l e d gm e n t. The authors would like to appreciate the anonymous

reviewer for his/her comments and useful suggestions which have improved this work.

Thank you for your effort.

References

[1] D.O.Adams, A. L.Olutimo: Some results on the boundedness of solutions of a certain
third order non-autonomous differential equations with delay. Adv. Stud. Contemp.
Math., Kyungshang 29 (2019), 237–249. zbl

[2] A.T.Ademola, S.Moyo, B. S. Ogundare, M.O.Ogundiran, O.A.Adesina: New condi-
tions on the solutions of a certain third order delay differential equations with multiple
deviating arguments. Differ. Uravn. Protsessy Upr. 2019 (2019), 33–69. zbl MR

[3] A.U.Afuwape, M.O.Omeike: On the stability and boundedness of solutions of a kind
of third order delay differential equations. Appl. Math. Comput. 200 (2008), 444–451. zbl MR doi

[4] H.A.Antosiewicz: On nonlinear differential equations of the second order with integrable
forcing term. J. Lond. Math. Soc. 30 (1955), 64–67. zbl MR doi

[5] Z. S. Athanassov: Boundedness criteria for solutions of certain second order nonlinear
differential equations. J. Math. Anal. Appl. 123 (1987), 461–479. zbl MR doi

[6] R.Bellman, K. L.Cooke: Differential-Difference Equations. Mathematics in Science and
Engineering 6. Academic Press, New York, 1963. zbl MR

[7] I. Bihari: Researches of the boundedness and stability of the solutions of non-linear
differential equations. Acta Math. Acad. Sci. Hung. 8 (1957), 261–278. zbl MR doi

[8] T.A.Burton: The generalized Lienard equation. J. SIAM Control, Ser. A 3 (1965),
223–230. zbl MR doi

[9] T.A.Burton: Stability and Periodic Solutions of Ordinary and Functional Differential
Equations. Mathematics in Science and Engineering 178. Academic Press, Orlando,
1985. zbl MR doi

[10] T.A.Burton, R.C.Grimmer: Stability properties of (r(t)u′)′ + a(t)f(u)g(u′) = 0.
Monastsh. Math. 74 (1970), 211–222. zbl MR doi

[11] T.A.Burton, L.Hatvani: Stability theorems for nonautonomous functional differential
equations by Liapunov functionals. Tohoku Math. J., II. Ser. 41 (1989), 65–104. zbl MR doi

324

https://zbmath.org/?q=an:1438.34234
https://zbmath.org/?q=an:1414.34053
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3935484
https://zbmath.org/?q=an:1316.34070
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2421659
http://dx.doi.org/10.1016/j.amc.2007.11.037
https://zbmath.org/?q=an:0064.08404
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0065752
http://dx.doi.org/10.1112/jlms/s1-30.1.64
https://zbmath.org/?q=an:0642.34031
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0883702
http://dx.doi.org/10.1016/0022-247X(87)90324-6
https://zbmath.org/?q=an:0105.06402
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0147745
https://zbmath.org/?q=an:0097.29301
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0094516
http://dx.doi.org/10.1007/BF02020315
https://zbmath.org/?q=an:0135.30201
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0190462
http://dx.doi.org/10.1137/0303018
https://zbmath.org/?q=an:0635.34001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0837654
http://dx.doi.org/10.1016/s0076-5392(09)x6019-4
https://zbmath.org/?q=an:0195.09804
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0262613
http://dx.doi.org/10.1007/BF01303441
https://zbmath.org/?q=an:0677.34060
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0985304
http://dx.doi.org/10.2748/tmj/1178227868


[12] T.A.Burton, R.H.Hering: Liapunov theory for functional differential equations. Rocky
Mt. J. Math. 24 (1994), 3–17. zbl MR doi

[13] T.A.Burton, G.Makay: Asymptotic stability for functional differential equations. Acta
Math. Hung. 65 (1994), 243–251. zbl MR doi

[14] R.D.Driver: Ordinary and Delay Differential Equations. Applied Mathematical Sci-
ences 20. Springer, New York, 1977. zbl MR doi

[15] S.Dvořáková: The Qualitative and Numerical Analysis of Nonlinear Delay Differential
Equations: Doctoral Thesis. Brno University of Technology, Brno, 2011.
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