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Abstract. Duffus wrote in his 1978 Ph.D. thesis, “It is not obvious that P is connected
and PP ∼= QQ imply that Q is connected”, where P and Q are finite nonempty posets. We
show that, indeed, under these hypotheses Q is connected and P ∼= Q.
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1. Introduction

In the 1979 Proceedings of the American Mathematical Society, Duffus and Wille

proved that PP ∼= QQ implies P ∼= Q if P and Q are both finite, nonempty, and

connected (see [8], Theorem, page 14). Duffus said in 1984 in [6], page 90, “It is

still an open problem to show connectedness can be dropped.” He notes in his 1978

thesis [4], page 53, “It is not obvious that P is connected and PP ∼= QQ imply that Q

is connected.” (Note that, if this is the case, then the Duffus-Wille result implies

P ∼= Q.) We prove that, indeed, if P and Q are finite, nonempty posets such that

PP ∼= QQ and P is connected, then Q is connected.

In other words, we have resolved the issue from Duffus’s 1978 thesis in that we

have “half-dropped” the connectedness hypothesis used in the 1979 Proceedings of

the American Mathematical Society paper, whereas the 1984 problem asked if it

could be dropped entirely.

We assume the reader is familiar with the basic facts about the arithmetic of or-

dered sets, the basic consequences of Hashimoto’s refinement theorem, and Professor
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Birkhoff’s theorem on finite distributive lattices (e.g., [16], Propositions 3.1 and 4.1

and [3], Theorems 5.9 and 5.12 and also see [17]).

Let P and Q be posets. For p, p′ ∈ P , we write p ≡ p′ if p and p′ are in the same

connected component of P ; h(P ) denotes the height of the finite, nonempty poset P ,

the largest value of |C| − 1 for C a chain in P , and hP (p) denotes the height of an

element p in P . Note that h(P ×Q) = h(P )+h(Q) for P and Q finite and nonempty

(see [2], Chapter I, §9, Exercise 4 (a)).

Let PQ denote the poset of order-preserving maps from Q to P , where, for

f, g ∈ PQ,

f 6 g if for all q ∈ Q, f(q) 6P g(q)

(see [1], page 312). For p ∈ P , denote the constant map f(q) = p for all q ∈ Q by 〈p〉.

Let D(PQ) denote

{g ∈ PQ : g is constant on each connected component of Q}

and for Q 6= ∅ let C(PQ) denote

{f ∈ PQ : f ≡ g for some g ∈ D(PQ)}

(see [16], Definition 2.1). Note that, despite the notation, C(PQ) is really a function

of P and Q, not PQ (as far as the author knows).

Figure 1. PP where P is the 4-element crown, see [4], page 54.

The n-element chain is denoted n. A poset P is directly irreducible if |P | 6= 1 and

whenever P ∼= A×B for posets A and B, then |A| = 1 or |B| = 1. A finite poset P

is absolutely C-indecomposable if it is connected, directly irreducible, and, whenever

P ∼= C(AB) for posets A and B, B 6= ∅, we have P ∼= A and |B| = 1.

The following result comes from a remark McKenzie leaves to the reader after [16],

Proposition 4.1, which nonetheless is true for finite, nonempty posets. (For a proof

of (1), see [11], Theorem 2.8.)
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Proposition 1. Let P , Q, and R be nonempty posets. Then:

(1) C(PQ×R) ∼= C(C(PQ)R) if P , Q, and R are finite;

(2) C(PQ+R) ∼= C(PQ)× C(PR);

(3) if R is connected, C((P +Q)R) ∼= C(PR) + C(QR);

(4) C((Q×R)P ) ∼= C(QP )× C(RP ).

We also use the structure theorems of McKenzie (see [16], Theorems 8.1, 9.1–9.2

and [15], Theorem 5.1):

Theorem 2.

(1) Let A, B, C, and D be finite, nonempty, connected posets. Assume C andD are

directly irreducible and C ≇ D. Then if C(AC) ∼= C(BD), there exists a finite,

nonempty, connected poset E such that A ∼= C(ED) and B ∼= C(EC). (Note

that “AQ” should be “EQ” on [16], page 211.)

(2) Let A, B, and C be finite, nonempty posets. Assume C is connected. Then

A ∼= B if C(AC) ∼= C(BC).

(3) Let n ∈ N. Let A and B be finite, nonempty, connected posets, and let

C1, . . . , Cn be posets such that C(AB) ∼= C1 × . . . × Cn. Then there exist

finite, nonempty posets A1, . . . , An such that Ci
∼= C(AB

i ) for i = 1, . . . , n and

A ∼= A1 × . . .×An.

(4) Let A be a finite, connected, directly irreducible poset. Then there exists an

absolutely C-indecomposable connected poset B and a finite, nonempty poset P

such that A ∼= C(BP ).

We now extend parts of Theorem 2 to the analogue of [12], Theorem 8.2, using

similar steps. The proofs of Lemma 3 and Theorem 4 first occurred in [9], but an

editor asked that they be included as [10], Lemma 8 and Theorem 9.

Lemma 3. Let A, B, C, and D be finite, nonempty, connected posets such that

C(AC) ∼= C(BD). Assume that no nontrivial poset is isomorphic to both a direct

factor of C and a direct factor of D. Then there exists a finite, nonempty, connected

poset E such that A ∼= C(ED) and B ∼= C(EC).

Theorem 4. Let A, B, C, and D be finite, nonempty, connected posets such

that C(AC) ∼= C(BD). Then there exist finite, nonempty, connected posets E, X , Y ,

and Z such that A ∼= C(EX), B ∼= C(EY ), C ∼= Y × Z, and D ∼= X × Z.
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P r o o f. Hashimoto’s refinement theorem tells us we can find finite, nonempty,

connected posets X , Y , and Z such that C ∼= Y × Z, D ∼= X × Z, and X and Y do

not share a nontrivial direct factor. Thus, by Proposition 1 (1),

C(C(AY )Z) ∼= C(AY×Z) ∼= C(AC) ∼= C(BD) ∼= C(BX×Z) ∼= C(C(BX)Z).

Now C(AY ), C(BX) 6= ∅ since A, B, X , and Y are nonempty and connected. Hence,

by Theorem 2 (2), C(AY ) ∼= C(BX). By Lemma 3, there exists a finite, nonempty,

connected poset E such that A ∼= C(EX) and B ∼= C(EY ). �

In [4], Theorem 3.2.6, Duffus proves an outstanding version of Hashimoto’s refine-

ment theorem for posets A, B, C, and D that are sums of connected posets with

a finite maximal chain such that A × B ∼= C ×D and A and C are connected. He

never published this proof, although it is used in [8]. We only require one of the four

posets to be connected. (We don’t actually need this result, but the structure of its

proof helps the reader understand the proof of the theorem we do need: this proof

foreshadows the proof of Theorem 10.)

Theorem 5. Let A, B, C, and D be finite posets. Let A be connected and

nonempty. Assume that A× B ∼= C ×D. Then there exist posets W , X , Y , and Z

such that A ∼= W ×X , B ∼= Y × Z, C ∼= W × Y , and D ∼= X × Z.

P r o o f. Note that B = ∅ if and only if either C = ∅ or D = ∅. First assume

B = ∅ = C. Then let W = A, X = 1, Y = ∅, and Z = D. Next, assume B = ∅ = D.

Then let W = 1, X = A, Y = C, and Z = ∅.

From now on, assume that B, C, and D are nonempty.

Let B =
∑
b∈H

Bh, C =
∑
i∈I

Ci, and D =
∑
j∈J

Dj be the decompositions of B, C,

and D, respectively, into connected components. Since A × B ∼=
∑
h∈H

A × Bh has

the same number of components as C × D ∼=
∑

i∈I, j∈J

Ci × Dj , there is a bijection

Ψ: I × J → H such that Ci ×Dj
∼= A×BΨ(i,j) for all i ∈ I, j ∈ J .

Let A1, A2, . . . , Ar (r > 0) be the pairwise nonisomorphic connected, directly

irreducible posets that could arise in the factorizations of any of A, Bh (h ∈ H), Ci

(i ∈ I), and Dj (j ∈ J). Say A ∼=
r∏

l=1

(Al)
kl where kl > 0 (l = 1, . . . , r). For each

l ∈ {1, . . . , r}, let cl ∈ N0 be the highest power of Al such that A
cl
l is a factor of

all of the Ci (i ∈ I). Let W :=
r∏

l=1

A
min{cl,kl}
l . Let X :=

r∏
l=1

A
kl−min{cl,kl}
l . Then

W × X ∼=
r∏

l=1

Akl

l
∼= A. Clearly, for all i ∈ I, W is a factor of Ci. Hence, we may

let C̃i be Ci with W factored out, that is, Ci
∼= C̃i ×W (i ∈ I). Let Y :=

∑
i∈I

C̃i.

Claim 6. For each j ∈ J , X is a factor of Dj .
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P r o o f. Assume for a contradiction that X does not divide Dj for some j ∈ J .

Then there exists l ∈ {1, . . . , r} such that Akl−cl
l does not divide Dj and so kl > cl.

Pick i ∈ I such that cl is the highest power of Al dividing Ci. Then the highest

power of Al dividing Ci × Dj is less than cl + kl − cl = kl, a contradiction, since

Ci ×Dj
∼= A×BΨ(i,j) and Akl

l divides the right-hand side. �

By Claim 6, we may let D̃j be Dj with X factored out (j ∈ J). Let Z =
∑
j∈J

D̃j.

Claim 7. For all (i, j) ∈ I × J , BΨ(i,j)
∼= C̃i × D̃j.

P r o o f. We know

A×BΨ(i,j)
∼= Ci ×Dj

∼= W ×X × C̃i × D̃j
∼= A× C̃i × D̃j ,

so BΨ(i,j)
∼= C̃i × D̃j . (See [13], (4.3).) �

Thus B ∼= Y × Z. By definition, C ∼= W × Y and D ∼= X × Z. �

A “strong” or “strict” version of Theorem 5 would be useful (see [16], Proposi-

tion 3.1).

Lemma 8. Let A be a finite, connected, directly irreducible poset. Let B and P

be posets such that P 6= ∅. If A ∼= C(BP ), then P is finite and connected, and B is

finite, connected, and directly irreducible.

P r o o f. We have B 6= ∅. Also |B| > 2. If P = C +D for posets C,D 6= ∅, then,

by Proposition 1 (2), A ∼= C(BC)× C(BD). Therefore since A is directly irreducible,

1 ∼= C(BC) or 1 ∼= C(BD), a contradiction (|C(BC)|, |C(BD)| > 2 since C,D 6= ∅).

Hence P is connected.

If B = E+F for posets E,F 6= ∅, then by Proposition 1 (3), A ∼= C(EP )+C(FP ),

a contradiction. Hence B is connected. Thus there exist x, y ∈ B such that x < y,

so if P is infinite, then |P | 6 |2P | 6 |C(BP )|, a contradiction. Hence P is finite.

Also, B is finite. If B ∼= G × H for posets G and H , then by Proposition 1 (4),

A ∼= C(GP ) × C(HP ), therefore, by the direct irreducibility of A, without loss of

generality |C(GP )| = 1, so |G| = 1. �

Lemma 9. Let A be a connected, finite, directly irreducible poset. Let B be

a finite, nonempty, connected poset. Then:

(1) C(AB) is connected and directly irreducible.

(2) Let C and D be nonempty posets. If C(CD) ∼= C(AB), then C is directly

irreducible, finite, and connected, and D is finite and connected.
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(3) There exist unique (up to isomorphism) nonempty posets E and F with the

following two properties:

(a) C(AB) ∼= C(EF ) and

(b) whenever C and D are nonempty posets such that C(AB) ∼= C(CD), then

there exists a poset G such that C(EG) ∼= C and G×D ∼= F .

We can choose as E any absolutely C-indecomposable poset E such that

C(EJ) ∼= C(AB) for some nonempty poset J , and we can choose that J as

our “F”. If H is a finite, nonempty, connected poset, then E and F × H are

the posets that work for C(AB×H).

P r o o f. (1) The poset C(AB) is nontrivial since A is nontrivial. By Theorem 2 (3),

C(AB) is directly irreducible. It is connected since A and B are connected.

(2) See Lemma 8.

(3) Using (1), take the poset E given by Theorem 2 (4). (We want E that is

absolutely C-indecomposable.) There exists a nonempty finite poset F such that

C(EF ) ∼= C(AB). By (2), F is connected.

If C(AB) ∼= C(CD), where C and D are nonempty posets, then by (2) C and D are

finite and connected and C(EF ) ∼= C(CD), so by Theorem 4, there exist nonempty,

finite, connected posets U , G, W , and X such that

C ∼= C(UG), E ∼= C(UW ), D ∼= W ×X, F ∼= G×X.

By absolute C-indecomposability, |W | = 1 and E ∼= U , so the result follows.

If E′ and F ′ have the same property as E and F , then there exists a poset G′

such that C(E′G′

) ∼= E and G′ × F ∼= F ′. By absolute C-indecomposability, E′ ∼= E

and |G′| = 1, so F ∼= F ′. �

Theorem 10. Let A, B, C, and D be finite nonempty posets such that A is

connected, B and D are nontrivial and connected, and C(BA) ∼= C(DC). Then

there exist finite, nonempty posets W , X , Y , and Z such that Z is nontrivial and

A ∼= W ×X , B ∼= C(ZY ), C ∼= W × Y , and D ∼= C(ZX).

P r o o f. Let B =
∏

h∈H

Bh be a representation of B as a product of connected,

directly irreducible posets. Let D =
∏
j∈J

Dj be a similar product. Let C =
∑
i∈I

Ci

be a decomposition into connected components. Let Al (l ∈ L) be the finitely many

pairwise nonisomorphic connected, directly irreducible posets that could arise in the

factorizations of A and Ci (i ∈ I). Say A ∼=
∏
l∈L

Akl

l where kl > 0 (l ∈ L). For each

l ∈ L, let cl ∈ N0 be the maximum power of Al such that A
cl
l is a factor of all of

the Ci (i ∈ I). That means, of course, that it is the highest power of Al in one
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of the Ci. Let W =
∏
l∈L

A
min{cl,kl}
l . Let X =

∏
l∈L

A
kl−min{cl,kl}
l . Then

W ×X ∼=
∏

l∈L

Akl

l
∼= A.

Claim 11. For all i ∈ I, W is a factor of Ci.

P r o o f. We made sure that Acl
l is a factor of every Ci, and W is a product of

all of those powers of Al or even smaller powers. Since the different Al are pairwise

nonisomorphic and we are working with connected posets, by Hashimoto’s refinement

theorem we have “unique factorization”, so Acl
l ×A

cl′
l′ is a factor if and only if A

cl
l is

a factor, and A
cl′
l′ is a factor, when l 6= l′. �

By Claim 11, we may let C̃i be Ci with W factored out (i ∈ I). Let Y =
∑
i∈I

C̃i.

Then W × Y ∼=
∑
i∈I

W × C̃i
∼=

∑
i∈I

Ci = C.

Note that by Proposition 1 (1),

C(BA) ∼= C(C(BX)W ) and C(DC) ∼= C(C(DY )W ),

and by Theorem 2 (2), sinceW , being a factor of a finite, nonempty, connected poset,

is finite, nonempty, and connected, C(BX) ∼= C(DY ).

Claim 12. X and Y have no nontrivial factor in common.

P r o o f. Assume for a contradiction that X and Y do have a nontrivial factor in

common. Then since X is a factor of A, we may assume the common factor is Al

for some l ∈ L. As A is connected, for Al to be a factor of Y , it must be a factor

of C̃i for all i ∈ I. But then we would have pulled it out with W , as it were. To be

precise, since Al is a factor of X , we must have cl < kl, and so there is i ∈ I such

that C̃i has no factor of Al, a contradiction. �

Write C(BX) ∼=
∏

h∈H

C(BX
h ) and C(DY ) ∼=

∏
i∈I

∏
j∈J

C(DC̃i

j ). By Lemma 9 (1), C(BX
h )

(h ∈ H) and C(DC̃i

j ) (i ∈ I, j ∈ J) are directly irreducible. As those factors are

connected, by [5], Corollary 2 (cf. [14], Theorem 6.4) there is a bijectionΨ: I×J → H

such that C(DC̃i

j ) ∼= C(BX
h ) for all (i, j) ∈ I × J . By Theorem 4 there are finite,

nonempty, connected posets Uh, Rh, Sh, and Th (where h = Ψ(i, j)) such that

Bh
∼= C(URh

h ), Dj
∼= C(USh

h ), X ∼= Sh × Th, and C̃i
∼= Rh × Th.

Moreover, by Lemma 8, Uh is directly irreducible.

Claim 13. For each j ∈ J , choose some i′ ∈ I and let Ej and Fj be the posets

corresponding to Dj (where h = Ψ(i′, j)) given by part (3) of Lemma 9. Then X is

a factor of Fj .
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P r o o f. By part (2) of Lemma 9, Fj is finite and connected. Assume for a

contradiction that X does not divide Fj . Then there exists l ∈ L such that Akl−cl
l

does not divide Fj , and so kl > cl. Pick i ∈ I such that cl is the highest power of Al

dividing Ci. Consider

C(DCi

j ) ∼= C(DC̃i×W
j ) ∼= C(C(DC̃i

j )W ) ∼= C(C(BX
Ψ(i,j))

W ) ∼= C(BX×W
Ψ(i,j) )

∼= C(BA
Ψ(i,j)).

By part (3) of Lemma 9, A is a factor of Fj × Ci and Akl

l divides A, so Akl−cl
l

divides Fj , a contradiction. �

By Claim 13, we may let F̃j be Fj with X factored out (j ∈ J).

Claim 14. For all (i, j) ∈ I × J , BΨ(i,j)
∼= C(E

C̃i×F̃j

j ).

P r o o f. Note that

C(BA
Ψ(i,j))

∼= C(DCi

j ) ∼= C(C(E
Fj

j )Ci) ∼= C(C(E
X×F̃j

j )W×C̃i) ∼= C(C(E
C̃i×F̃j

j )A)

so BΨ(i,j)
∼= C(E

C̃i×F̃j

j ) by Theorem 2 (2) since A is connected. Thus

B ∼=
∏

i∈I, j∈J

C(C(E
F̃j

j )C̃i) ∼=
∏

j∈J

C(C(E
F̃j

j )Y ) ∼= C
((∏

j∈J

C(E
F̃j

j )
)Y )

.

Let Z =
∏
j∈J

C(E
F̃j

j ). We know

D ∼=
∏

j∈J

Dj
∼=

∏

j∈J

C(E
Fj

j ) ∼=
∏

j∈J

C(C(E
F̃j

j )X) ∼= C
((∏

j∈J

C(E
F̃j

j )
)X)

∼= C(ZX).

�

We also need a trivial extension of [15], Lemma 2.3 (although the added trivialities

take up perhaps more space than is warranted).

Lemma 15. Let A and B be finite posets. Then:

(1) AB = ∅ if and only if A = ∅ and B 6= ∅;

(2) AB is an antichain if and only if A is an antichain or B = ∅, in which case

|AB | =






|A|c if A 6= ∅ or B 6= ∅, where c is the number

of connected components of B,

1 if A = B = ∅;

(3) let f, g ∈ AB be such that f 6 g. Assume A 6= ∅. Then hAB ([f, g]) = h(AB) if

and only if f, g ∈ D(AB) and hA([f(b), g(b)]) = h(A) for all b ∈ B;

(4) when A 6= ∅, h(AB) = h(A)|B|.
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P r o o f. (1) This is clear.

(2) Assume AB is an antichain. If A is not an antichain and B 6= ∅, then {〈a〉 :

a ∈ A} ∼= A is a subposet of AB , a contradiction. Conversely, if B = ∅, then c = 0

and |AB| = 1, so AB is an antichain. If B 6= ∅ but A is an antichain, then for all

f, g ∈ AB, if f < g, there exists b ∈ B such that f(b) < g(b) in A, a contradiction.

Hence AB is an antichain. For all f ∈ AB and for every connected component C

of B, |f [C]| = 1, so |AB | = |A|c.

(3) This is [15], Lemma 2.3 (3) if f < g. Now assume f = g. If hAB ([f, g]) = h(AB),

then AB is a nonempty antichain, so by (2) either B = ∅ and the forward implication

is vacuous or B 6= ∅ and A is a nonempty antichain, so by the above, f, g ∈ D(AB)

and for all b ∈ B, f(b) = g(b), so hA([f(b), g(b)]) = 0 = h(A).

Conversely, suppose f, g ∈ D(AB) and 0 = hA([f(b), g(b)]) = h(A) for all b ∈ B.

If B = ∅ then h(AB) = h(1) = 0 = hAB ([f, g]). If B 6= ∅, let b0 ∈ B. The fact

hA([f(b0), g(b0)]) = 0 = h(A) means A is an antichain.

By (1) and (2), AB is a nonempty antichain, so h(AB) = 0 = hAB ([f, g]).

(4) This is true by [7], Corollary 2.2 if A,B 6= ∅. If A 6= ∅ but B = ∅, then

h(AB) = h(1) = 0 = h(A) · 0. �

Theorem 16. Let P and Q be finite, nonempty posets such that P is connected.

Assume PP ∼= QQ. Then Q is connected, and therefore P ∼= Q.

P r o o f. If Q is connected, then P ∼= Q by [8], Theorem. Assume now that Q

is disconnected. Say Q = Q0 +D, where D 6= ∅ and Q0 is any component of Q of

maximum height.

We show that Q0 is the unique component of Q of height h(Q), and we will also

show that Q0 is a proper direct factor of P .

Claim 17. PP and P are not antichains. Hence |Q0| 6= 1.

P r o o f. By our assumption, |Q| > 2, therefore |QQ| = |PP | > 2. Hence |P | > 2.

As P is connected, P is not an antichain and, thus PP is not an antichain. (Look

at two constant maps, the images of which form a two-element chain.) If |Q0| = 1,

then h(Q) = 0 and thus Q is an antichain, so QQ ∼= PP is an antichain. �

Pick q0 ∈ Q0 of maximum height in Q. Using Lemma 15, 〈q0〉 corresponds to 〈p0〉

for some p0 of maximum height in P . Since P is connected, C(PP ) = {f ∈ PP :

f ≡ 〈p0〉}.

Claim 18. C(QQ
0 ) = {g ∈ QQ : g ≡ 〈q0〉}.
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P r o o f. Let g ∈ QQ be such that g ≡ 〈q0〉. Then g[Q] ⊆ Q0 and g ∈ C(QQ
0 ).

Let h ∈ C(QQ
0 ). Then h ∈ QQ, and, in Q

Q
0 , h ≡ k for some k ∈ D(QQ

0 ), and

k ≡ 〈q〉 for some q ∈ Q0. But Q0 is connected, so 〈q〉 ≡ 〈q0〉. Hence h ≡ 〈q0〉. �

We conclude that C(PP ) ∼= C(QQ
0 ) via the original isomorphism. This is because

we have described both C(PP ) and C(QQ
0 ) in terms just involving P

P andQQ, respec-

tively, and in the same way, up to the isomorphism, since the original isomorphism

maps 〈p0〉 to 〈q0〉. Because the preceding argument can be repeated for any compo-

nent of Q of maximum height, Q0 must be the only component with height equal to

that of Q.

By Proposition 1 (2), C(QQ
0 )

∼= C(QQ0

0 ) × C(QD
0 )

∼= C(PP ). By Theorem 2 (3),

there exist finite, nonempty, connected posets A1 and A2 such that P ∼= A1×A2 and

C(QQ0

0 ) ∼= C(AP
1 ). By Theorem 4, there exist nonempty, finite, connected posets E,

X , Y , and Z such that

A1
∼= C(EX), Q0

∼= C(EY ), Q0
∼= X × Z, P ∼= Y × Z.

Since E and Y are connected, there exists a finite, nonempty, connected poset F

such thatX ∼= C(FY ) by Theorem 2 (3) applied to the second and third isomorphisms

above. Now suppose |F | > 1. Since F is connected, it contains 2 and thus we

see C(FY ) and henceX contains 2Y . Since the dual of Y , Y ∂ , can be embedded in 2Y

(2Y is order-isomorphic to the lattice of up-sets of Y , and its poset of join-irreducibles

is given by the principal up-sets; under inclusion, these are ordered like the dual of Y ),

then Y ∂ × Z can be embedded in 2
Y × Z and thus in X × Z ∼= Q0. Hence

h(P ) = h(Y × Z) = h(Y ) + h(Z) = h(Y ∂) + h(Z) = h(Y ∂ × Z) 6 h(Q0) = h(Q)

and

|P | = |Y × Z| = |Y ||Z| = |Y ∂ ||Z| = |Y ∂ × Z| 6 |Q0| < |Q|,

so by Lemma 15 (4) and Claim 17, h(P ) 6= 0, so h(PP ) = |P |h(P ) < |Q|h(Q) =

h(QQ), a contradiction.

Thus |F | = 1, and |X | = 1, and so P ∼= Y ×Q0. If also |Y | = 1, then h(P ) = h(Q)

but |Q| > |P |, so h(QQ) > h(PP ), a contradiction stemming from Lemma 15 (4),

unless h(P ) = 0, which would make P an antichain, contradicting Claim 17. Thus Q0

is a proper direct factor of P .

We have that P and Q0 are nonempty and connected, so Theorem 10 applies to

the isomorphism we have already established, C(PP ) ∼= C(QQ
0 ): There exist finite,

nonempty posets E′, X ′, Y ′, and Z ′ such that

P ∼= C(E′X
′

), Q0
∼= C(E′Y

′

), P ∼= Y ′ × Z ′, and Q ∼= X ′ × Z ′.
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Since P is connected and nonempty, so are Y ′ and Z ′, and hence Z ′ divides every

component of Q, in particular, Q0—say, Z
′×T ∼= Q0 for some connected, nonempty

poset T . Again, Y ′ is connected and so is E′, by Proposition 1 (3), since Q0 is

connected. By Theorem 2 (3), since T is a factor ofQ0
∼= C(E′Y

′

), there exists a finite,

nonempty poset H such that T ∼= C(HY ′

); H is connected by Proposition 1 (3).

Case 1. |H | > 1. Then since H is connected, it contains 2, and hence T con-

tains 2Y ′

, which contains Y ′∂ (we get the dual for the same reason as before), and

Q0
∼= Z ′ × T contains Z ′ × Y ′∂ , so |Q0| > |Z ′ × Y ′∂ | = |Z ′||Y ′∂ | = |Z ′||Y ′| =

|Z ′ × Y ′| = |P |. As we already know that P properly contains Q0, we have a

contradiction.

Case 2. |H | = 1. Then |T | = 1 because HY ′

consists only of a constant map, and

Z ′ ∼= Q0, because Z
′×1 ∼= Z ′ and T ∼= 1, so Q0 is a factor of Q, because Q ∼= X ′×Z ′

and Z ′ ∼= Q0. But then h(Q0) = h(Q) = h(Q0) + h(X ′), so h(X ′) = 0 and X ′ is

an antichain. But if |X ′| > 1, then Q has two components of maximum height, a

contradiction.

Hence X ′ is a singleton, so Q ∼= X ′ ×Z ′ ∼= Z ′ ∼= Q0 and Q is connected, a contra-

diction. �

Perhaps one could prove that PP ∼= QQ implies P ∼= Q if P and Q are finite

and nonempty and P is directly irreducible. Of course, the remaining problem is to

show that PP ∼= QQ implies P ∼= Q if P and Q are finite and nonempty (or find a

counterexample).
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