EXISTENCE RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS WITH DEGENERATE COERCIVITY
 AND SINGULAR LOWER-ORDER TERMS

Rabah Mecheter, M'sila, Fares Mokhtari, Algiers

Received October 3, 2021. Published online December 6, 2022. Communicated by Ondřej Kreml

Abstract

In this paper, we study the existence results for some parabolic equations with degenerate coercivity, singular lower order term depending on the gradient, and positive initial data in L^{1}.

Keywords: singular equation; nonlinear parabolic equation; degenerate coercivity MSC 2020: 35K55, 35K65, 35K67

1. Introduction

We study the existence and regularity results for the following parabolic problem:

$$
\begin{cases}\partial_{t} u+L u+B \frac{|\nabla u|^{p}}{u^{\theta}}=u^{r} & \text { in } Q_{T}=(0, T) \times \Omega \tag{P}\\ u(0, x)=u_{0}(x) \geqslant 0 & \text { in } \Omega \\ u=0 & \text { on } \Gamma_{T}=(0, T) \times \partial \Omega\end{cases}
$$

where $T>0, B>0$ are real numbers, $u_{0} \in L^{1}(\Omega), \Omega$ is a bounded open subset of $\mathbb{R}^{N}(N>2)$ with boundary denoted by $\partial \Omega, p$ is a real number such that $p \geqslant 2$ and L is the operator given by

$$
L u=-\operatorname{div}\left(A(t, x, u)|\nabla u|^{p-2} \nabla u\right)
$$

This research is supported by the Ministry of Higher Education and Scientific Research of Algeria, Algiers University, Faculty of Sciences, Department of Mathematics, PRFU project C00L03UN160120190001.

Here, we suppose that $A:(0, T) \times \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function and for almost every $(t, x) \in(0, T) \times \Omega$, for all $s \in \mathbb{R}$ satisfies

$$
\begin{equation*}
\frac{\beta}{(a(t, x)+|s|)^{\varrho}} \leqslant A(t, x, s) \leqslant \alpha, \tag{1.1}
\end{equation*}
$$

where α, β are strictly positive real numbers and $\varrho \geqslant 0, a:(0, T) \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a measurable nonnegative function verifying

$$
\begin{equation*}
a(t, x) \leqslant \delta \tag{1.2}
\end{equation*}
$$

where δ is a strictly positive real number. We furthermore suppose that

$$
\begin{equation*}
0<\theta<1, \quad 0<r<p-\theta \tag{1.3}
\end{equation*}
$$

If (1.1) holds true, the differential operator L is not coercive when u is large. Moreover, the lower order term is singular as u tends to zero. We overcome these two difficulties by approximation of (P) by a sequence of nondegenerate and nonsingular problems (in the case $u_{0} \in L^{\infty}(\Omega)$), and passing to the limit in the approximate problems we prove that (P) admits at least one solution $u \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap$ $L^{\infty}(\Omega)$. In the case $u_{0} \in L^{1}(\Omega)$ we approach u_{0} by $u_{0 n} \in L^{\infty}(\Omega)$ and we use the results of the first case to achieve the passage to the limit in the approximate problems by proving the existence of the solution $u \in L^{q}\left(0, T ; W_{0}^{1, q}(\Omega)\right), q=p-\theta N /(N+1)$.

For the case $p=2, \varrho=0$ and for positive initial data, the existence of solutions to problem (P) is proved in [3] under the operator $v \rightarrow-\operatorname{div}(M(t, x) \nabla v)$, where $M: Q_{T} \rightarrow \mathbb{R}^{N^{2}}$ is a measurable bounded and uniformly elliptic matrix.

If the nonlinear right-hand term is not present, i.e., in the evolutive case, problems as

$$
\begin{cases}\partial_{t} u-\Delta_{p} u+B \frac{|\nabla u|^{p}}{u^{\theta}}=f & \text { in } Q_{T}=(0, T) \times \Omega \tag{P1}\\ u(0, x)=u_{0}(x) & \text { in } \Omega, \\ u=0 & \text { on } \Gamma_{T}=(0, T) \times \partial \Omega\end{cases}
$$

under various assumptions on the summability of the source f, have been considered in the case $p=2$ and $\theta<1$ in [8]. If $\theta=1$, the existence solution has been considered in [12] and [13] for smooth strictly positive data, while degenerate problems were studied in [15] in the one dimensional case and $p>2$.

Let us also mention that in [4] the authors proved the existence and nonexistence of solutions for a general class of singular homogeneous (i.e., $f \equiv 0$) parabolic problems as (P 1) with $p \geqslant 2$.

In [11], the author showed the existence of positive solutions of elliptic equations with degenerate coercivity and singular quadratic lower-order terms

$$
-\operatorname{div}(M(x, u) \nabla u)+b(x) \frac{|\nabla u|^{2}}{u^{\theta}}=u^{r}+f, \quad f \in L^{1}(\Omega)
$$

The aim of this paper is to extend the results in [3] to the case of degenerate parabolic equations with $p \geqslant 2$ and establish the existence of weak solutions of problem (P) for nonnegative initial data $u_{0} \in L^{1}(\Omega)$.

This paper is organized as follows. In Section 2, we define the weak solution and prove the existence of weak solutions u for the first case $u_{0} \in L^{\infty}(\Omega)$. Section 3 is devoted to the study of (P) with an initial datum $u_{0} \in L^{1}(\Omega)$. We give a better regularity result compared to [9] because if $\theta \in(0,1)$, we have

$$
1-\frac{\theta N}{N+1}>1-\frac{N}{N+1},
$$

so Theorem 3.1 improves (see Theorem 1, [9]).

2. Bounded initial data $\left(u_{0} \in L^{\infty}(\Omega)\right)$

In this section, we prove that there exists a weak solution of problem (P) for u_{0} bounded. For this, we use the result in [1] and then an L^{∞}-estimate procedure introduced by [5]. Given a real positive number k, we define the functions

$$
T_{k}(r)=\left\{\begin{array}{ll}
k & \text { if } r \geqslant k, \\
r & \text { if }|r|<k, \\
-k & \text { if } r \leqslant-k,
\end{array} \quad r \in \mathbb{R} .\right.
$$

Its primitive $\Theta_{k}: \mathbb{R} \rightarrow \mathbb{R}^{+}$is defined by

$$
\Theta_{k}(r)=\int_{0}^{r} T_{k}(t) \mathrm{d} t= \begin{cases}\frac{r^{2}}{2} & \text { if }|r| \leqslant k \\ k|r|-\frac{k^{2}}{2} & \text { if }|r|>k\end{cases}
$$

We then use the following results:

$$
\begin{equation*}
\int_{0}^{T}\left\langle\partial_{t} v, T_{k}(v)\right\rangle \mathrm{d} t=\int_{\Omega} \Theta_{k}(v(T)) \mathrm{d} x-\int_{\Omega} \Theta_{k}(v(0)) \mathrm{d} x \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
k|r|-\frac{k^{2}}{2} \leqslant \Theta_{k}(r) \leqslant k|r| \quad \forall r \in \mathbb{R} . \tag{2.2}
\end{equation*}
$$

Definition 2.1. A function u is a weak solution of problem (P) if $u \in$ $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}\left(Q_{T}\right)$ such that $\partial_{t} u \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)+L^{1}\left(Q_{T}\right), u>0$, $|\nabla u|^{p} / u^{\theta}$ belongs to $L^{1}\left(Q_{T}\right)$, and

$$
\begin{aligned}
\int_{\Omega} u(T) \varphi(T) \mathrm{d} x & -\int_{\Omega} u(0) \varphi(0) \mathrm{d} x+\int_{Q_{T}} u \partial_{t} \varphi \mathrm{~d} x \mathrm{~d} t \\
& +\int_{Q_{T}} A(t, x, u)|\nabla u|^{p-2} \nabla u \nabla \varphi \mathrm{~d} x \mathrm{~d} t \\
& +B \int_{Q_{T}} \frac{|\nabla u|^{p}}{u^{\theta}} \varphi \mathrm{d} x \mathrm{~d} t=\int_{Q_{T}} u^{r} \varphi \mathrm{~d} x \mathrm{~d} t
\end{aligned}
$$

for every $\varphi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}\left(Q_{T}\right)$ such that $\partial_{t} \varphi \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)+$ $L^{1}\left(Q_{T}\right)$.

Remark 2.2. Notice that because of the fact that $u \in C\left([0, T] ; L^{2}(\Omega)\right)$ (see [7]), the functions $\varphi(T)$ and $\varphi(0)$ in the above definition have sense and the meaning of the initial condition $u(0)=u_{0}$ is clear.

Theorem 2.3. Let $p \geqslant 2, u_{0} \in L^{\infty}(\Omega)$, suppose that (1.3) holds true. Then problem (P) has at least one weak solution $u \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}\left(Q_{T}\right) \cap$ $C\left([0, T] ; L^{1}(\Omega)\right)$.
2.1. Proof of Theorem 2.3. We approximate problem (P) by following nonsingular problem:
$\left(\mathrm{P}_{n}^{*}\right) \quad \begin{cases}\partial_{t} u_{n}-\operatorname{div}\left(A\left(t, x, T_{n}\left(u_{n}\right)\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\right) & \\ \quad+B \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(\left|u_{n}\right|+1 / n\right)^{\theta+1}}=T_{n}\left(\left|u_{n}\right|^{r}\right) & \text { in } Q_{T}, \\ u_{n}(0, x)=u_{0}(x) & \text { in } \Omega, \\ u_{n}=0 & \text { on } \Gamma_{T} .\end{cases}$
Note that by (1.1) we have

$$
A\left(t, x, T_{n}\left(u_{n}\right)\right) \geqslant \frac{\beta}{\left(a(t, x)+\left|T_{n}\left(u_{n}\right)\right|\right)^{\varrho}} \geqslant \frac{\beta}{(\delta+n)^{\varrho}},
$$

so the operator $B: v \mapsto \operatorname{div}\left(A\left(t, x, T_{n}(v)\right)|\nabla v|^{p-2} \nabla v\right)$ is coercive. Thus, the existence of the approximate solution is proved as in [7]. We begin by proving that $u_{n} \geqslant 0$, using $u_{n}^{-}=\min \left(0, u_{n}\right)$ as a test function in $\left(\mathrm{P}_{n}^{*}\right)$ and by (1.1), we have

$$
\begin{align*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{0}^{T}\left(u_{n}^{-}\right)^{2} \mathrm{~d} t & +\beta \int_{Q_{T}} \frac{\left|\nabla u_{n}^{-}\right|^{p}}{\left(a(t, x)+\left|T_{n}\left(u_{n}\right)\right|\right)^{\varrho}} \mathrm{d} x \mathrm{~d} t \tag{2.3}\\
& +B \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(\left|u_{n}\right|+1 / n\right)^{\theta+1}} u_{n}^{-} \mathrm{d} x \mathrm{~d} t \leqslant \int_{Q_{T}}\left|u_{n}\right|^{r} u_{n}^{-} \mathrm{d} x \mathrm{~d} t
\end{align*}
$$

Since $u_{0} \geqslant 0$, we have

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{0}^{T}\left(u_{n}^{-}\right)^{2} \mathrm{~d} t=\frac{1}{2} \int_{\Omega}\left(u_{n}^{-}(T, x)\right)^{2} \mathrm{~d} x-\frac{1}{2} \int_{\Omega}\left(u_{n}^{-}(0, x)\right)^{2} \mathrm{~d} x \geqslant 0 .
$$

The lower-order term has the same sign of the solution and dropping nonnegative terms, we get

$$
\beta \int_{Q_{T}} \frac{\left|\nabla u_{n}^{-}\right|^{p}}{\left(a(t, x)+\left|T_{n}\left(u_{n}\right)\right|\right)^{\varrho}} \mathrm{d} x \mathrm{~d} t \leqslant \int_{Q_{T}}\left|u_{n}\right|^{r} u_{n}^{-} \mathrm{d} x \mathrm{~d} t \leqslant 0 .
$$

Thus, $u_{n}^{-}=0$ and so $u_{n} \geqslant 0$. Therefore, u_{n} solves
$\left(\mathrm{P}_{n}\right) \quad \begin{cases}\partial_{t} u_{n}-\operatorname{div}\left(A\left(t, x, T_{n}\left(u_{n}\right)\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\right) & \\ \quad+B \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}}=T_{n}\left(u_{n}^{r}\right) & \text { in } Q_{T}, \\ u_{n}(0, x)=u_{0}(x) & \text { in } \Omega, \\ u_{n}=0 & \text { on } \Gamma_{T} .\end{cases}$
Lemma 2.4. Let $p \geqslant 2$ and u_{n} be the solutions to problems $\left(\mathrm{P}_{n}\right)$. Then we have for all $k>0$

$$
\begin{equation*}
\int_{Q_{T}}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} \mathrm{~d} x \mathrm{~d} t \leqslant \frac{k(\delta+k)^{\varrho}}{\beta}\left(\int_{Q_{T}} u_{n}^{r} \mathrm{~d} x \mathrm{~d} t+\left\|u_{0}\right\|_{L^{1}(\Omega)}\right) . \tag{2.4}
\end{equation*}
$$

Proof. Choosing $T_{k}\left(u_{n}\right)$ as test function in $\left(\mathrm{P}_{n}\right)$ and the fact that $T_{n}\left(u_{n}^{r}\right) \leqslant u_{n}^{r}$, we obtain

$$
\begin{align*}
\int_{\Omega} \Theta_{k}\left(u_{n}\right)(T) \mathrm{d} x & +\int_{Q_{T}} A\left(t, x, T_{n}\left(u_{n}\right)\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla T_{k}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \tag{2.5}\\
& +B \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} T_{k}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
\leqslant & \int_{Q_{T}} u_{n}^{r} T_{k}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t+\int_{\Omega} \Theta_{k}\left(u_{n}\right)(0) \mathrm{d} x .
\end{align*}
$$

The first term is positive since we have $\Theta_{k} \geqslant 0$, so after dropping nonnegative terms and using (2.2), we obtain
$\int_{Q_{T}} A\left(t, x, T_{n}\left(u_{n}\right)\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla T_{k}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \leqslant \int_{Q_{T}} u_{n}^{r}\left|T_{k}\left(u_{n}\right)\right| \mathrm{d} x \mathrm{~d} t+k\left\|u_{0}\right\|_{L^{1}(\Omega)}$.
According to conditions (1.1) and for $n>k>0$, we get

$$
\begin{equation*}
\frac{\beta}{(\delta+k)^{\varrho}} \int_{Q_{T}}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} \mathrm{~d} x \mathrm{~d} t \leqslant k \int_{Q_{T}} u_{n}^{r} \mathrm{~d} x \mathrm{~d} t+k\left\|u_{0}\right\|_{L^{1}(\Omega)} . \tag{2.7}
\end{equation*}
$$

Therefore (2.4) is established.

Lemma 2.5. Let u_{n} be the solutions to problems $\left(\mathrm{P}_{n}\right)$. Then

$$
\begin{equation*}
B \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t \leqslant \int_{Q_{T}} u_{n}^{r} \mathrm{~d} x \mathrm{~d} t+\left\|u_{0}\right\|_{L^{1}(\Omega)} . \tag{2.8}
\end{equation*}
$$

Proof. Choosing $T_{h}\left(u_{n}\right) / h$ as a test function in $\left(\mathrm{P}_{n}\right)$, dropping the nonnegative terms, we obtain

$$
B \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \frac{T_{h}\left(u_{n}\right)}{h} \mathrm{~d} x \mathrm{~d} t \leqslant \int_{Q_{T}} u_{n}^{r}\left|\frac{T_{h}\left(u_{n}\right)}{h}\right| \mathrm{d} x \mathrm{~d} t+\frac{1}{h} \int_{\Omega}\left|\Theta_{h}\left(u_{n}\right)(0)\right| \mathrm{d} x .
$$

Using the fact that $\left|T_{h}\left(u_{n}\right) / h\right| \leqslant 1$ and (2.2), we have

$$
B \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \frac{T_{h}\left(u_{n}\right)}{h} \mathrm{~d} x \mathrm{~d} t \leqslant \int_{Q_{T}} u_{n}^{r} \mathrm{~d} x \mathrm{~d} t+\left\|u_{0}\right\|_{L^{1}(\Omega)} .
$$

Letting h tend to 0 and by Fatou's Lemma, we deduce (2.8).
We shall denote by C or C_{j} various constants depending only on the structure of $A, p, \theta, r, T, u_{0},|\Omega|$ for $j \in \mathbb{N}$.

Lemma 2.6. Let u_{n} be the solutions to problems $\left(\mathrm{P}_{n}\right)$. Then there exists a positive constant C such that

$$
\left\|u_{n}\right\|_{L^{\infty}\left(Q_{T}\right)} \leqslant C, \quad\left\|u_{n}\right\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)} \leqslant C \quad \forall n \in \mathbb{N} .
$$

Proof. Choosing $\varphi=\left(u_{n}+\delta\right)^{\nu}-\delta^{\nu}$ as a test function in $\left(\mathrm{P}_{n}\right)$, where $\nu>0$, using (1.1), we obtain

$$
\begin{aligned}
\int_{0}^{T}\left\langle\partial_{t} u_{n},\left(u_{n}+\delta\right)^{\nu}-\delta^{\nu}\right\rangle \mathrm{d} t & +\beta \nu \int_{Q_{T}} \frac{\left|\nabla u_{n}\right|^{p}}{\left(\delta+u_{n}\right)^{\varrho}}\left(u_{n}+\delta\right)^{\nu-1} \mathrm{~d} x \mathrm{~d} t \\
& +B \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}}\left(u_{n}+\delta\right)^{\nu} \mathrm{d} x \mathrm{~d} t \\
\leqslant & B \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \delta^{\nu} \mathrm{d} x \mathrm{~d} t \\
& +\int_{Q_{T}} u_{n}^{r}\left(u_{n}+\delta\right)^{\nu}-\int_{Q_{T}} u_{n}^{r} \delta^{\nu} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

dropping the nonpositive term on the right-hand side and putting $\nu=1$, we get

$$
\begin{gathered}
\int_{0}^{T}\left\langle\partial_{t} u_{n}, u_{n}\right\rangle \mathrm{d} t+\int_{Q_{T}}\left|\nabla u_{n}\right|^{p}\left(u_{n}+\delta\right)^{1-\theta}\left(\frac{\beta}{\left(\delta+u_{n}\right)^{\varrho-\theta+1}}+\frac{B u_{n}\left(u_{n}+\delta\right)^{\theta}}{\left(u_{n}+1 / n\right)^{\theta+1}}\right) \mathrm{d} x \mathrm{~d} t \\
\leqslant B \delta \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t+\int_{Q_{T}} u_{n}^{r}\left(u_{n}+\delta\right) \mathrm{d} x \mathrm{~d} t
\end{gathered}
$$

Since $\varrho-\theta+1>0$, there exists a positive constant C_{0} such that

$$
\frac{\beta}{(\delta+t)^{\varrho-\theta+1}}+\frac{B t(t+\delta)^{\theta}}{(t+1 / n)^{\theta+1}} \geqslant C_{0}>0 \quad \forall t \geqslant 0
$$

So, after dropping nonnegative terms, we obtain

$$
\begin{aligned}
C_{0} \int_{Q_{T}}\left|\nabla u_{n}\right|^{p}\left(u_{n}+\delta\right)^{1-\theta} \mathrm{d} x \mathrm{~d} t \leqslant & B \delta \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t \\
& +\int_{Q_{T}} u_{n}^{r}\left(u_{n}+\delta\right) \mathrm{d} x \mathrm{~d} t+\frac{1}{2} \int_{\Omega} u_{0}^{2} \mathrm{~d} x
\end{aligned}
$$

Using (2.8) and the fact that $u_{n}^{r} \leqslant\left(u_{n}+\delta\right)^{r}, u_{0} \in L^{\infty}(\Omega)$, we get

$$
\begin{aligned}
C_{0} \int_{Q_{T}}\left|\nabla u_{n}\right|^{p}\left(u_{n}+\delta\right)^{1-\theta} \mathrm{d} x \mathrm{~d} t & \leqslant B \delta \int_{Q_{T}}\left(u_{n}+\delta\right)^{r} \mathrm{~d} x \mathrm{~d} t+\int_{Q_{T}}\left(u_{n}+\delta\right)^{r+1} \mathrm{~d} x \mathrm{~d} t+C \\
& \leqslant C \int_{Q_{T}}\left(u_{n}+\delta\right)^{r+1} \mathrm{~d} x \mathrm{~d} t+C,
\end{aligned}
$$

which implies

$$
\int_{Q_{T}}\left|\nabla\left(u_{n}+\delta\right)^{(p+1-\theta) / p}\right|^{p} \mathrm{~d} x \mathrm{~d} t \leqslant C \int_{Q_{T}}\left(u_{n}+\delta\right)^{r+1} \mathrm{~d} x \mathrm{~d} t+C .
$$

Using Poincaré inequality, we have

$$
\int_{Q_{T}}\left(u_{n}+\delta\right)^{p+1-\theta} \mathrm{d} x \mathrm{~d} t \leqslant C \int_{Q_{T}}\left(u_{n}+\delta\right)^{r+1} \mathrm{~d} x \mathrm{~d} t+C
$$

since $r+1<p+1-\theta$, Young inequality yields

$$
\int_{Q_{T}}\left(u_{n}+\delta\right)^{p+1-\theta} \mathrm{d} x \mathrm{~d} t \leqslant \frac{1}{2} \int_{Q_{T}}\left(u_{n}+\delta\right)^{p+1-\theta} \mathrm{d} x \mathrm{~d} t+C
$$

which implies that $\left(u_{n}+\delta\right)_{n}$ is bounded in $L^{p+1-\theta}\left(Q_{T}\right)$, so $\left(u_{n}\right)_{n}$ is bounded in $L^{p+1-\theta}\left(Q_{T}\right)$. Now, we prove that the sequence $\left(u_{n}^{r}\right)_{n}$ is bounded in $L^{m}\left(Q_{T}\right)$ for some $m>\frac{1}{2} N+1$. We choose u_{n}^{η} as a test function in $\left(\mathrm{P}_{n}\right)$, where $\eta>1$, we find $\int_{Q_{T}} \frac{\beta \eta}{\left(u_{n}+\delta\right)^{\varrho}}\left|\nabla u_{n}\right|^{p} u_{n}^{\eta-1} \mathrm{~d} x \mathrm{~d} t+B \int_{Q_{T}} \frac{u_{n}^{\eta+1}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t \leqslant \int_{Q_{T}} u_{n}^{r+\eta} \mathrm{d} x \mathrm{~d} t+C$.
With the same previous calculations, we find

$$
\begin{aligned}
\int_{Q_{T}}\left|\nabla u_{n}\right|^{p} u_{n}^{\eta-\theta}\left(\frac{\beta \eta}{u_{n}^{1-\theta}\left(\delta+u_{n}\right)^{\varrho}}\right. & \left.+\frac{B u_{n}^{1+\theta}}{\left(u_{n}+1 / n\right)^{\theta+1}}\right) \mathrm{d} x \mathrm{~d} t \\
& \leqslant \int_{Q_{T}} u_{n}^{r+\eta} \mathrm{d} x \mathrm{~d} t+\frac{1}{\eta+1} \int_{\Omega} u_{0}^{\eta+1} \mathrm{~d} x
\end{aligned}
$$

Since $1-\theta>0$, there exists a positive constant C_{1} such that

$$
\frac{\beta \eta}{t^{1-\theta}(\delta+t)^{\varrho}}+\frac{B t^{1+\theta}}{(t+1 / n)^{\theta+1}} \geqslant C_{1}>0 \quad \forall t>0
$$

So,

$$
\begin{equation*}
\int_{Q_{T}} u_{n}^{p+\eta-\theta} \mathrm{d} x \mathrm{~d} t \leqslant C \int_{Q_{T}} u_{n}^{r+\eta} \mathrm{d} x \mathrm{~d} t+C . \tag{2.9}
\end{equation*}
$$

We now choose $\eta+r=p+1-\theta$ (observe that $\eta>1$), so $p+\eta-\theta=2(p+1-\theta)-(r+1)$. Then by (1.3) and (2.9), we obtain that u_{n} is bounded in $L^{2(p+1-\theta)-(r+1)}\left(Q_{T}\right)$. Consequently, an iterating procedure gives us that $\left(u_{n}\right)$ is bounded in $L^{\mu}\left(Q_{T}\right)$ for all $\mu<\infty$. Indeed, if we consider $\eta_{1}>1$ such that $r+\eta_{1}=2(p+1-\theta)-(r+1),(2.9)$ and the fact that $\left(u_{n}\right)$ is bounded in $L^{2(p+1-\theta)-(r+1)}\left(Q_{T}\right)$, then it is bounded in $L^{3(p+1-\theta)-2(r+1)}$. Now consider $\eta_{2}>1$ such that $r+\eta_{2}=3(p+1-\theta)-2(r+1)$ and deduce that $\left(u_{n}\right)$ is bounded in $L^{4(p+1-\theta)-3(r+1)}\left(Q_{T}\right)$. Hence, we can obtain that $\left(u_{n}\right)$ is bounded in $L^{(q+1)(p+1-\theta)-q(r+1)}\left(Q_{T}\right)$ for all $q \in \mathbb{N}$. Since

$$
(q+1)(p+1-\theta)-q(r+1)=q(p-r-\theta)+p+1-\theta \rightarrow \infty \quad \text { as } q \rightarrow \infty
$$

we deduce that $\left(u_{n}\right)$ is bounded in $L^{\mu}\left(Q_{T}\right)$ for all $\mu<\infty$. Because there is $n^{\prime}>0$ such that $\left(n^{\prime}(p-r-\theta)+p+1-\theta\right) / r>(N / p)+1$,

$$
\left(u_{n}^{r}\right) \text { is bounded in } L^{m}\left(Q_{T}\right) \text { for some } m>\frac{N}{p}+1
$$

Standard parabolic estimates, performed using only the principal part of the operator (see for example [5]), and taking advantage of the nonnegativity of the lower order gradient term, then imply that $\left(u_{n}\right)_{n}$ is bounded in $L^{\infty}\left(Q_{T}\right)$. Therefore by (2.7), we have

$$
\left\|u_{n}\right\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)} \leqslant C .
$$

Taking n large enough, we get $T_{n}\left(u_{n}^{r}\right)=u_{n}^{r}$ and $T_{n}\left(u_{n}\right)=u_{n}$, so we conclude that u_{n} is a weak solution of

$$
\begin{cases}\partial_{t} u_{n}-\operatorname{div}\left(A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\right)+B \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}}=u_{n}^{r} & \text { in } Q_{T} \tag{2.10}\\ u_{n}(0, x)=u_{0}(x) & \text { in } \Omega \\ u_{n}=0 & \text { on } \Gamma_{T}\end{cases}
$$

Now, we are going to prove the strict positivity of the sequence of approximated solutions u_{n}.

Proposition 2.7. Let ω be a compactly contained open subset of Ω. Then there exists a positive constant $C_{\omega, T}$ such that $u_{n} \geqslant C_{\omega, T}$ in $(0, T) \times \omega$.

Proof. Following the ideas in [11], we define for $s \geqslant 0$,

$$
H_{n}(s)=\int_{0}^{s} \frac{(\delta+\tau)^{\varrho}}{(\tau+1 / n)^{\theta}} \mathrm{d} \tau, \quad \Phi_{n}(s)=\mathrm{e}^{-B H_{n}(s) / \beta}
$$

where $0<\theta<1$ and $B>0$. Taking $\Phi_{n}\left(u_{n}\right) v$, with $v \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}\left(Q_{T}\right)$, $v \geqslant 0$, as test function in (2.10) and using (1.1)-(1.2) and that

$$
\Phi_{n}^{\prime}(s)=\frac{-B}{\beta} \frac{(\delta+s)^{\varrho}}{(s+1 / n)^{\theta}} \Phi_{n}(s)
$$

we obtain

$$
\begin{aligned}
\int_{0}^{T}\left\langle\partial_{t} u_{n}, \Phi_{n}\left(u_{n}\right) v\right\rangle \mathrm{d} t & +\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla v \Phi_{n}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
\geqslant & \int_{Q_{T}} \frac{B}{\left(u_{n}+1 / n\right)^{\theta}}\left|\nabla u_{n}\right|^{p} \Phi_{n}\left(u_{n}\right) v \mathrm{~d} x \mathrm{~d} t \\
& -B \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \Phi_{n}\left(u_{n}\right) v \mathrm{~d} x \mathrm{~d} t+\int_{Q_{T}} u_{n}^{r} \Phi_{n}\left(u_{n}\right) v \mathrm{~d} x \mathrm{~d} t \\
\geqslant & 0 .
\end{aligned}
$$

After dropping the nonnegative term, we derive

$$
\begin{align*}
\int_{0}^{t}\left\langle\partial_{t} u_{n}, \Phi_{n}\left(u_{n}\right) v\right\rangle \mathrm{d} t & +\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla v \Phi_{n}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \tag{2.11}\\
& \geqslant \int_{Q_{T}} u_{n}^{r} \Phi_{n}\left(u_{n}\right) v \mathrm{~d} x \mathrm{~d} t
\end{align*}
$$

Now, we consider the nonincreasing function ψ :

$$
\psi(s)=\int_{s}^{1} \Phi_{n}(t) \mathrm{d} t=\int_{s}^{1} \mathrm{e}^{-B H_{n}(t) / \beta} \mathrm{d} t
$$

Then, inequality (2.11) implies that

$$
\begin{align*}
& -\int_{0}^{T}\left\langle\partial_{t}\left(\psi\left(u_{n}\right)\right), v\right\rangle \mathrm{d} t-\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla \psi\left(u_{n}\right) \nabla v \mathrm{~d} x \mathrm{~d} t \tag{2.12}\\
& \quad \geqslant \int_{\left\{0 \leqslant u_{n} \leqslant 1\right\}} \Phi_{n}\left(u_{n}\right) u_{n}^{r} v \mathrm{~d} x \mathrm{~d} t \geqslant \int_{\left\{0 \leqslant u_{n} \leqslant 1\right\}}\left(\Phi_{n}\left(u_{n}\right)-1\right) u_{n}^{r} v \mathrm{~d} x \mathrm{~d} t
\end{align*}
$$

We call

$$
\widetilde{A}(t, x, s)=A\left(t, x, \psi^{-1}(s)\right)\left|\nabla \psi^{-1}(s)\right|^{p-2}
$$

and

$$
H(s)=\left(1-\Phi_{n}\left(\psi^{-1}(s)\right)\right) u_{n}^{r} \chi_{\left\{0 \leqslant u_{n} \leqslant 1\right\}} .
$$

Thus, see [2] for instance, we deduce that $\psi\left(u_{n}\right)$ is a sub-solution of

$$
\partial_{t} z-\operatorname{div}(\widetilde{A}(t, x, z) \nabla z)=H(z) \quad \text { in } Q_{T}
$$

Since H is a nonnegative term and $u_{0}>0$ in Ω, we can apply Lemma 3.12 in [6] to the previous equation to obtain the existence of $c_{\omega, T}>0$ such that

$$
\psi\left(u_{n}\right) \leqslant c_{\omega, T} \quad \forall(t, x) \in(0, T) \times \omega \text { and } \forall n>1
$$

By the definition of ψ, there exists $C_{\omega, T}>0$ (independent of n) such that

$$
u_{n} \geqslant \psi^{-1}\left(c_{\omega, T}\right)=C_{\omega, T} \quad \text { in }(0, T) \times \omega
$$

2.1.1. Passage to the limit.

Lemma 2.8. Let A be a function satisfying (1.1) and let $u_{n} \in L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right)$ be a sequence of weak solutions to (2.10). Then there exists a subsequence of u_{n} (still denoted by u_{n}) converging to a measurable function u a.e. in Q_{T}, and

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } Q_{T} \tag{2.13}
\end{equation*}
$$

Proof. Going back again to (2.10), the sequence $\left(\partial_{t} u_{n}\right)$ remains in a bounded set of the space

$$
L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)+L^{1}\left(Q_{T}\right), \quad p^{\prime}=\frac{p}{p-1}
$$

Therefore, $\left(\partial_{t} u_{n}\right)$ is bounded in $L^{1}\left(0, T ; W^{-1, s}(\Omega)\right)$, for all $s<N /(N-1)$. So, we can use Corollary 4 of [10] to see that

$$
u_{n} \text { is relatively compact in } L^{1}\left(Q_{T}\right)
$$

Summing up, there exists a function $u \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ and a subsequence, still denoted by $\left(u_{n}\right)$, such that

$$
\begin{gather*}
u_{n} \rightharpoonup u \text { weakly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \tag{2.14}\\
u_{n} \rightarrow u \text { strongly in } L^{p}\left(Q_{T}\right) \text { and a.e. in } Q_{T} . \tag{2.15}
\end{gather*}
$$

Now, we prove that

$$
\begin{equation*}
\nabla T_{k}\left(u_{n}\right) \rightarrow \nabla T_{k}(u) \text { strongly in }\left(L^{p}\left(Q_{T}\right)\right)^{N} \forall k \in \mathbb{N} . \tag{2.16}
\end{equation*}
$$

We also introduce another time-regularization of truncations, we will use the sequence $\left(T_{k}(u)\right)_{\nu}$ as approximation of $T_{k}(u)$. For $\nu>0$, we define the regularization in time of the function $T_{k}(u)$ given by

$$
\begin{equation*}
\left(T_{k}(u)\right)_{\nu}(t, x):=\nu \int_{-\infty}^{t} \mathrm{e}^{\nu(s-t)} T_{k}(u(s, x)) \mathrm{d} s+\mathrm{e}^{-\nu t} T_{k}\left(u_{0}\right) \tag{2.17}
\end{equation*}
$$

where $T_{k}(u(s, x))$ is the zero extension of u for $s<0$ (see [14]). Applying this regularization to the truncatures $T_{k}\left(u_{m}\right)$, we have the following properties:
$\triangleright\left(\left(T_{k}\left(u_{m}\right)\right)_{\nu}\right)_{t}=\nu\left(T_{k}\left(u_{m}\right)-\left(T_{k}\left(u_{m}\right)\right)_{\nu}\right)$,
$\triangleright\left(\left(T_{k}\left(u_{m}\right)\right)_{\nu}\right)(0, x)=T_{k}\left(u_{0}\right)$,
$\triangleright\left|\left(\left(T_{k}\left(u_{m}\right)\right)_{\nu}\right)\right| \leqslant k$,
$\triangleright\left(T_{k}\left(u_{m}\right)\right)_{\nu} \rightarrow T_{k}\left(u_{m}\right)$ strongly in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ as $\nu \rightarrow \infty$.
Considering the function $\varphi_{\lambda}(s)$ defined by

$$
\varphi_{\lambda}(s)=s \mathrm{e}^{\lambda s^{2}}, \quad \lambda>0,
$$

in what follows we use that for every $a, b>0$ we have

$$
\begin{equation*}
a \varphi_{\lambda}^{\prime}(s)-b\left|\varphi_{\lambda}(s)\right| \geqslant \frac{a}{2} \quad \text { if } \lambda>\frac{b^{2}}{4 a^{2}} \tag{2.18}
\end{equation*}
$$

We also denote by $\tau(m, n, \nu)$ any quantity I such that

$$
\lim _{\nu \rightarrow \infty} \lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} I=0
$$

likewise $\tau(n, \nu)$ denotes a quantity I such that $\lim _{\nu \rightarrow \infty} \lim _{n \rightarrow \infty} I=0$. Let ϕ be a function in $C_{c}^{\infty}(\Omega)$ such that $\phi \geqslant 0$. By the same technique as in [1] we have that

$$
\begin{equation*}
\int_{0}^{T}\left\langle\partial_{t} u_{n}, \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-\left(T_{k}\left(u_{m}\right)\right)_{\nu}\right) \phi\right\rangle \mathrm{d} t \geqslant \tau(m, n, \nu) . \tag{2.19}
\end{equation*}
$$

Using (2.19) and taking $\psi_{\lambda}=\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-\left(T_{k}\left(u_{m}\right)\right)_{\nu}\right) \phi$ as a test function in (2.10), we obtain

$$
\begin{align*}
\tau(m, n, \nu) & +\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \tag{2.20}\\
& \times \nabla\left(T_{k}\left(u_{n}\right)-\left(T_{k}\left(u_{m}\right)\right)_{\nu}\right) \varphi_{\lambda}^{\prime}\left(T_{k}\left(u_{n}\right)-\left(T_{k}\left(u_{m}\right)\right)_{\nu}\right) \phi \mathrm{d} x \mathrm{~d} t \\
& +B \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \psi_{\lambda} \mathrm{d} x \mathrm{~d} t \\
\leqslant & \int_{Q_{T}} u_{n}^{r} \psi_{\lambda} \mathrm{d} x \mathrm{~d} t \\
& -\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \phi \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-\left(T_{k}\left(u_{m}\right)\right)_{\nu}\right) \mathrm{d} x \mathrm{~d} t
\end{align*}
$$

By (2.15), $\left(T_{k}\left(u_{m}\right)\right)_{\nu} \rightarrow\left(T_{k}(u)\right)_{\nu}$ a.e. in Q_{T} and we have

$$
\left|u_{n}^{r} \psi_{\lambda}\right| \leqslant\left\|u_{n}^{r}\right\|_{L^{\infty}\left(Q_{T}\right)} \varphi_{\lambda}(2 k) \in L^{1}\left(Q_{T}\right)
$$

by the Lebesgue dominated convergence theorem,

$$
\lim _{\nu \rightarrow \infty}\left(\lim _{n \rightarrow \infty}\left(\lim _{m \rightarrow \infty} \int_{Q_{T}} u_{n}^{r} \psi_{\lambda}\right)\right)=0
$$

By writing $Q_{T}=\left\{u_{n} \leqslant k\right\} \cup\left\{u_{n}>k\right\}$ and adopting the technique used in [1], we have

$$
\lim _{\nu \rightarrow \infty} \lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \phi \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-\left(T_{k}\left(u_{m}\right)\right)_{\nu}\right)=0
$$

Therefore
(2.21)

$$
\int_{Q_{T}} u_{n}^{r} \psi_{\lambda}-\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \phi \varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-\left(T_{k}\left(u_{m}\right)\right)_{\nu}\right)=\tau(m, n, \nu)
$$

We next turn to consider the last term on the left-hand side of (2.20). Choosing $\omega \subset \subset \Omega$ with $\operatorname{supp} \phi \subset \omega$, by the nonnegativity of $\varphi_{\lambda}\left(k-\left(T_{k}(u)\right)_{\nu}\right)$, we have that
(2.22) $\lim _{m \rightarrow \infty} \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \psi_{\lambda} \mathrm{d} x \mathrm{~d} t \geqslant \int_{\left\{C_{\omega, T} \leqslant u_{n} \leqslant k\right\}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \psi_{\lambda} \mathrm{d} x \mathrm{~d} t$

$$
\geqslant-C_{k, T}(\omega) \int_{Q_{T}}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p}\left|\psi_{\lambda}\right| \mathrm{d} x \mathrm{~d} t
$$

where $C_{k, T}(\omega)$ is a positive constant such that

$$
\begin{equation*}
\frac{u_{n}}{\left(u_{n}+1 / n\right)^{\theta+1}} \leqslant \max _{u_{n} \in\left[C_{\omega, T}, k\right]} \frac{1}{u_{n}^{\theta}}=C_{k, T}(\omega) \quad \forall n \gg 1 . \tag{2.23}
\end{equation*}
$$

From the convergence

$$
\nabla\left(T_{k}\left(u_{m}\right)\right)_{\nu} \rightharpoonup \nabla\left(T_{k}(u)\right)_{\nu} \text { weakly in }\left(L^{p}\left(Q_{T}\right)\right)^{N} \text { as } m \rightarrow \infty
$$

we get, by using (2.20)-(2.21) and (2.22), that

$$
\begin{gather*}
\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right) \varphi_{\lambda}^{\prime}\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right) \phi \mathrm{d} x \mathrm{~d} t \tag{2.24}\\
-B C_{k, T}(\omega) \int_{Q_{T}}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p}\left|\psi_{\lambda}\right| \mathrm{d} x \mathrm{~d} t \leqslant \tau(\nu, n)
\end{gather*}
$$

Note that

$$
\begin{aligned}
& \int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \\
& \times \nabla\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right) \varphi_{\lambda}^{\prime}\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right) \phi \chi_{\left\{u_{n} \geqslant k\right\}} \mathrm{d} x \mathrm{~d} t \\
&=-\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla\left(T_{k}(u)\right)_{\nu} \varphi_{\lambda}^{\prime}\left(k-\left(T_{k}(u)\right)_{\nu}\right) \phi \chi_{\left\{u_{n} \geqslant k\right\}} \mathrm{d} x \mathrm{~d} t \\
&= \tau(\nu, n),
\end{aligned}
$$

so adding

$$
\begin{array}{rl}
-\int_{Q_{T}} A & A\left(t, x, u_{n}\right)\left|\nabla\left(T_{k}(u)\right)_{\nu}\right|^{p-2} \nabla\left(T_{k}(u)\right)_{\nu} \\
& \times \nabla\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right) \varphi_{\lambda}^{\prime}\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right) \phi \mathrm{d} x \mathrm{~d} t=\tau(\nu, n)
\end{array}
$$

On both sides of (2.24) and since
(2.25)

$$
\begin{aligned}
\int_{Q_{T}}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p}\left|\psi_{\lambda}\right| \mathrm{d} x \mathrm{~d} t \leqslant & 2^{p-1} \int_{Q_{T}}\left|\nabla\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right)\right|^{p}\left|\psi_{\lambda}\right| \mathrm{d} x \mathrm{~d} t \\
& +2^{p-1} \int_{Q_{T}}\left|\nabla\left(T_{k}(u)\right)_{\nu}\right|^{p}\left|\psi_{\lambda}\right| \mathrm{d} x \mathrm{~d} t \\
= & 2^{p-1} \int_{Q_{T}}\left|\nabla\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right)\right|^{p}\left|\psi_{\lambda}\right| \mathrm{d} x \mathrm{~d} t+\tau(\nu, n)
\end{aligned}
$$

and using the following well-known inequalities that hold for any two real vectors ξ, η and a real $p \geqslant 2$,

$$
\begin{equation*}
\left(|\xi|^{p-2} \xi-|\eta|^{p-2} \eta\right)(\xi-\eta) \geqslant 2^{2-p}|\xi-\eta|^{p} \tag{2.26}
\end{equation*}
$$

we find, by using also (1.1) and (2.25), for all $n>k>0$,

$$
\begin{aligned}
2^{2-p} & \frac{\beta}{(\delta+k)^{\varrho}} \int_{Q_{T}}\left|\nabla\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right)\right|^{p} \varphi_{\lambda}^{\prime}\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right) \phi \mathrm{d} x \mathrm{~d} t \\
& -2^{p-1} B C_{k, T}(\omega) \int_{Q_{T}}\left|\nabla\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right)\right|^{p}\left|\varphi_{\lambda}\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\nu}\right)\right| \phi \mathrm{d} x \mathrm{~d} t \\
\leqslant & \tau(\nu, n) .
\end{aligned}
$$

Choosing λ such that (2.18) holds with $a=2^{2-p} \beta /(\delta+k)^{\varrho}$ and $b=2^{p-1} B C_{k, T}(\omega)$, we obtain (2.16) by setting $\nu \rightarrow \infty$. From this result we also deduce that (up to subsequences)

$$
\nabla u_{n} \rightarrow \nabla u \text { almost everywhere in } Q_{T} .
$$

Lemma 2.9. We have

$$
\begin{equation*}
\frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \rightarrow \frac{|\nabla u|^{p}}{u^{\theta}} \text { strongly in } L^{1}\left(Q_{T}\right) . \tag{2.27}
\end{equation*}
$$

Proof. In view of (2.13) and (2.15), we have

$$
\frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \rightarrow \frac{|\nabla u|^{p}}{u^{\theta}} \text { a.e. in } Q_{T} .
$$

Now, we shall obtain local equi-integrability of $u_{n}\left|\nabla u_{n}\right|^{p} /\left(u_{n}+1 / n\right)^{\theta+1}$ on Q_{T}. Observe that

$$
\int_{0}^{T} \int_{u_{n} \geqslant k} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t=\frac{1}{k} \int_{0}^{T} \int_{u_{n} \geqslant k} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} T_{k}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t
$$

We choose $\varphi=T_{k}\left(u_{n}\right)$ as a test function in problems (2.10), we find

$$
\begin{aligned}
\int_{\Omega} \mathrm{d} x \int_{0}^{u_{n}(T, x)} T_{k}(\sigma) \mathrm{d} \sigma & +\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla T_{k}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
& +\int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} T_{k}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \\
= & \int_{Q_{T}} u_{n}^{r} T_{k}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t+\int_{\Omega} \mathrm{d} x \int_{0}^{u_{n}(0, x)} T_{k}(\sigma) \mathrm{d} \sigma .
\end{aligned}
$$

So, after dropping the nonnegative terms, we derive
$\int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} T_{k}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \leqslant \int_{Q_{T}} u_{n}^{r}\left|T_{k}\left(u_{n}\right)\right| \mathrm{d} x \mathrm{~d} t+\int_{\Omega} \mathrm{d} x \int_{0}^{u_{n}(0, x)}\left|T_{k}(\sigma)\right| \mathrm{d} \sigma$.
Taking into account that for any $M>0,0 \leqslant\left|T_{k}(s)\right| \leqslant M+k \mathbf{1}_{s>M}, s \in \mathbb{R}^{+}$, we have

$$
\int_{Q_{T}} u_{n}^{r}\left|T_{k}\left(u_{n}\right)\right| \mathrm{d} x \mathrm{~d} t \leqslant M C\left\|u_{n}\right\|_{L^{p}\left(Q_{T}\right)}^{r}+k \int_{0}^{T} \int_{u_{n}>M} u_{n}^{r} \mathrm{~d} x \mathrm{~d} t
$$

and

$$
\int_{\Omega} \mathrm{d} x \int_{0}^{u_{n}(0, x)}\left|T_{k}(\sigma)\right| \mathrm{d} \sigma \leqslant M\left\|u_{0}\right\|_{L^{1}(\Omega)}+k \int_{0}^{T} \int_{u_{n}>M} u_{0 n} \mathrm{~d} x \mathrm{~d} t
$$

Consequently, we have

$$
\begin{aligned}
& \int_{0}^{T} \int_{u_{n} \geqslant k} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t \\
& \quad \leqslant \frac{1}{k}\left(M C+k \int_{0}^{T} \int_{u_{n}>M} u_{n}^{r} \mathrm{~d} x \mathrm{~d} t+M\left\|u_{0}\right\|_{L^{1}(\Omega)}+k \int_{0}^{T} \int_{u_{n}>M} u_{0 n} \mathrm{~d} x \mathrm{~d} t\right) \\
& \quad \leqslant C \frac{M}{k}+\int_{0}^{T} \int_{\Omega} \chi_{\left\{u_{n}>M\right\}} u_{n}^{r} \mathrm{~d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} \chi_{\left\{u_{n}>M\right\}} u_{0 n} \mathrm{~d} x \mathrm{~d} t
\end{aligned}
$$

We take $M=\sqrt{k}$, we obtain

$$
\begin{equation*}
\int_{0}^{T} \int_{u_{n} \geqslant k} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t \rightarrow^{k \rightarrow \infty} 0 \text { uniformly with respect to } n \tag{2.28}
\end{equation*}
$$ then, there exists $k_{0}>1$ such that

$$
\begin{equation*}
\int_{0}^{T} \int_{u_{n} \geqslant k} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t \leqslant \frac{\varepsilon}{2} \quad \forall k \geqslant k_{0} \text { and } \forall n \in \mathbb{N} . \tag{2.29}
\end{equation*}
$$

Consequently, if $E \subset \subset \omega$, we have

$$
\begin{align*}
& \int_{0}^{T} \int_{E} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t \tag{2.30}\\
& =\int_{0}^{T} \int_{E \cap\left\{u_{n} \geqslant k\right\}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t+\int_{0}^{T} \int_{E \cap\left\{u_{n} \leqslant k\right\}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t \\
& \leqslant \int_{0}^{T} \int_{E \cap\left\{u_{n} \geqslant k\right\}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t+C_{k, T}(\omega) \int_{0}^{T} \int_{E \cap\left\{u_{n} \leqslant k\right\}}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} \mathrm{~d} x \mathrm{~d} t .
\end{align*}
$$

From (2.14) there exist n_{ε} and δ_{ε} such that for every $E \subset \subset \Omega$ with meas $(E)<\delta_{\varepsilon}$ we have

$$
\int_{0}^{T} \int_{E \cap\left\{u_{n} \leqslant k\right\}}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} \mathrm{~d} x \mathrm{~d} t<\frac{\varepsilon}{2 C_{k, T}(\omega)} \quad \forall n \geqslant n_{\varepsilon} .
$$

By (2.29), (2.30), and taking $n \geqslant n_{\varepsilon}, k \geqslant k_{0}$, we see that meas $(E)<\delta_{\varepsilon}$ implies

$$
\int_{0}^{T} \int_{E} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \mathrm{~d} x \mathrm{~d} t<\varepsilon .
$$

We deduce that $u_{n}\left|\nabla u_{n}\right|^{p} /\left(u_{n}+1 / n\right)^{\theta+1}$ is equi-integrable in Q_{T}, then by Vitali's theorem convergence, we have (2.27) and $|\nabla u|^{p} / u^{\theta} \in L^{1}\left(Q_{T}\right)$.

Lemma 2.10. The sequence $\left(u_{n}\right)$ is a Cauchy sequence in $C\left([0, T] ; L^{1}(\Omega)\right)$, hence u_{n} converges to $u \in C\left([0, T] ; L^{1}(\Omega)\right)$.

Proof. To do this, fix $t \in[0, T]$. Taking $T_{k}\left(u_{n}-u_{m}\right)$ as a test function in (2.10) for u_{n} and u_{m}, subtracting up both identities, we deduce that

$$
\begin{aligned}
& \int_{\Omega} \Theta_{k}\left(u_{n}(t)-u_{m}(t)\right) \mathrm{d} x \\
& \quad+\int_{Q_{t}}\left(A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-A\left(t, x, u_{m}\right)\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}\right) \nabla T_{k}\left(u_{n}-u_{m}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad+B \int_{Q_{t}}\left(\frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}}-\frac{u_{m}\left|\nabla u_{m}\right|^{p}}{\left(u_{m}+1 / m\right)^{\theta+1}}\right) T_{k}\left(u_{n}-u_{m}\right) \mathrm{d} x \mathrm{~d} t \\
& \leqslant \\
& \quad \int_{Q_{t}}\left|u_{n}^{r}-u_{m}^{r}\right|\left|T_{k}\left(u_{n}-u_{m}\right)\right| \mathrm{d} x \mathrm{~d} t+\int_{\Omega}\left|\Theta_{k}\left(u_{n}(0)-u_{m}(0)\right)\right| \mathrm{d} x .
\end{aligned}
$$

So, by (2.2) we obtain

$$
\begin{aligned}
& \int_{\Omega} \Theta_{k}\left(u_{n}(t)-u_{m}(t)\right) \mathrm{d} x \\
& \leqslant \\
& \left.\quad \int_{Q_{t}}\left|A\left(t, x, u_{m}\right)\right| \nabla u_{m}\right|^{p-2} \nabla u_{m}-A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}| | \nabla T_{k}\left(u_{n}-u_{m}\right) \mid \mathrm{d} x \mathrm{~d} t \\
& \quad+B k \int_{Q_{t}}\left|\frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}}-\frac{u_{m}\left|\nabla u_{m}\right|^{p}}{\left(u_{m}+1 / m\right)^{\theta+1}}\right| \mathrm{d} x \mathrm{~d} t \\
& \\
& \quad+k \int_{Q_{t}}\left|u_{n}^{r}-u_{m}^{r}\right| \mathrm{d} x \mathrm{~d} t+k \int_{\Omega}\left|u_{n}(0)-u_{m}(0)\right| \mathrm{d} x .
\end{aligned}
$$

Using (2.2) and dividing this inequality by k, we obtain

$$
\begin{aligned}
& \sup _{t \in[0, T]} \int_{\Omega}\left|u_{n}(t)-u_{m}(t)\right| \mathrm{d} x \\
& \leqslant \\
& \left.\left.\frac{1}{k} \int_{Q_{T}}\left|A\left(t, x, u_{m}\right)\right| \nabla u_{m}\right|^{p-2} \nabla u_{m}-A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}| | \nabla T_{k}\left(u_{n}-u_{m}\right) \right\rvert\, \mathrm{d} x \mathrm{~d} t \\
& \quad+B \int_{Q_{T}}\left|\frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}}-\frac{u_{m}\left|\nabla u_{m}\right|^{p}}{\left(u_{m}+1 / m\right)^{\theta+1}}\right| \mathrm{d} x \mathrm{~d} t \\
& \quad+\int_{Q_{T}}\left|u_{n}^{r}-u_{m}^{r}\right| \mathrm{d} x \mathrm{~d} t+\int_{\Omega}\left|u_{n}(0)-u_{m}(0)\right| \mathrm{d} x+\frac{k}{2} .
\end{aligned}
$$

By (1.1), (2.13), (2.14) and (2.15), we have

$$
\begin{equation*}
\left.\left|A\left(t, x, u_{m}\right)\right| \nabla u_{m}\right|^{p-2} \nabla u_{m}-A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \mid \rightharpoonup 0 \quad \text { in } L^{p^{\prime}}\left(Q_{T}\right) \tag{2.31}
\end{equation*}
$$

Taking into account (2.27) and letting $k \rightarrow 0$, we deduce that $\left(u_{n}\right)$ is a Cauchy sequence in $C\left([0, T] ; L^{1}(\Omega)\right)$. Consequently, $u_{n} \rightarrow u$ in $C\left([0, T], L^{1}(\Omega)\right)$. This ends the proof of Lemma 2.10.
2.2. The end of the proof of Theorem 2.3. Let $\varphi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap$ $L^{\infty}\left(Q_{T}\right)$. We have

$$
\begin{align*}
-\int_{\Omega} u_{n}(0) \varphi(0) \mathrm{d} x & +\int_{Q_{T}} u_{n} \partial_{t} \varphi \mathrm{~d} x \mathrm{~d} t+\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \varphi \mathrm{~d} x \mathrm{~d} t \tag{2.32}\\
& +B \int_{Q_{T}} \frac{u_{n}\left|\nabla u_{n}\right|^{p}}{\left(u_{n}+1 / n\right)^{\theta+1}} \varphi \mathrm{~d} x \mathrm{~d} t=\int_{Q_{T}} u_{n}^{r} \varphi \mathrm{~d} x \mathrm{~d} t
\end{align*}
$$

Arguing as in (2.31), we have

$$
\lim _{n \rightarrow \infty} \int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \varphi \mathrm{~d} x \mathrm{~d} t=\int_{Q_{T}} A(t, x, u)|\nabla u|^{p-2} \nabla u \nabla \varphi \mathrm{~d} x \mathrm{~d} t .
$$

Therefore by (2.27), we can easily pass to the limit in (2.32). Theorem 2.3 is proved.

3. L^{1} Initial data

Theorem 3.1. Given $u_{0} \in L^{1}(\Omega)$, suppose that (1.3) holds true. Then problem (P) has at least a weak solution u, i.e., a function u belonging to $L^{q}\left(0, T ; W_{0}^{1, q}(\Omega)\right) \cap$ $C\left([0, T] ; L^{1}(\Omega)\right), u>0,|\nabla u|^{p} / u^{\theta} \in L^{1}\left(Q_{T}\right)$, such that

$$
\begin{align*}
-\int_{\Omega} u(0) \varphi(0) \mathrm{d} x & +\int_{Q_{T}} u \partial_{t} \varphi \mathrm{~d} x \mathrm{~d} t+\int_{Q_{T}} A(t, x, u)|\nabla u|^{p-2} \nabla u \nabla \varphi \mathrm{~d} x \mathrm{~d} t \tag{3.1}\\
& +B \int_{Q_{T}} \frac{|\nabla u|^{p}}{u^{\theta}} \varphi \mathrm{d} x \mathrm{~d} t=\int_{Q_{T}} u^{r} \varphi \mathrm{~d} x \mathrm{~d} t, \quad q=p-\frac{\theta N}{N+1}
\end{align*}
$$

for every $\varphi \in W^{1, \infty}\left(0, T ; L^{\infty}(\Omega)\right)$ and such that $\varphi(T)=0$ in Ω.
3.1. Proof of Theorem 3.1. Let $\left(u_{0 n}\right), u_{0 n}=T_{n}\left(u_{0}\right) \geqslant 0$ be a sequence of bounded functions defined in Ω, which converges to u_{0} in $L^{1}(\Omega)$, such that

$$
\left\{\begin{array}{l}
\left\|u_{0 n}\right\|_{L^{1}(\Omega)} \leqslant\left\|u_{0}\right\|_{L^{1}(\Omega)}, \\
u_{0 n} \leqslant n .
\end{array}\right.
$$

A nonnegative weak solution $u_{n} \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}\left(Q_{T}\right)$ to problem (P) with $u_{n}(0, x)=u_{0 n}(x)$ does exist by Theorem 2.3. Therefore, u_{n} satisfies

$$
\begin{align*}
\int_{0}^{T}\left\langle\partial_{t} u_{n}, \varphi\right\rangle \mathrm{d} t & +\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \varphi \mathrm{~d} x \mathrm{~d} t \tag{3.2}\\
& +B \int_{Q_{T}} \frac{\left|\nabla u_{n}\right|^{p}}{u_{n}^{\theta}} \varphi \mathrm{d} x \mathrm{~d} t=\int_{Q_{T}} u_{n}^{r} \varphi \mathrm{~d} x \mathrm{~d} t
\end{align*}
$$

for all $\varphi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}\left(Q_{T}\right)$. Using the same technique as in Proposition 2.7, there exists a positive constant $C_{\omega, T}$ such that

$$
\begin{equation*}
u_{n} \geqslant C_{\omega, T} \quad \text { in }(0, T) \times \omega, \tag{3.3}
\end{equation*}
$$

where ω is a compactly contained open subset of Ω.
Lemma 3.2. Assume that (1.3) hold with $p \geqslant 2$ and u_{n} is the solution to problems (3.2). Then there exists a positive constant C such that

$$
\begin{align*}
& \int_{Q_{T}} u_{n}^{r} \mathrm{~d} x \mathrm{~d} t \leqslant C \tag{3.4}\\
& \int_{Q_{T}}\left|\nabla u_{n}\right|^{q} \mathrm{~d} x \mathrm{~d} t \leqslant C, \quad q=p-\frac{\theta N}{N+1} . \tag{3.5}
\end{align*}
$$

Proof. Take $\varphi=T_{1}\left(u_{n}\right)$ as a test function in the weak formulation (3.2). By (1.1), we have

$$
\begin{align*}
& \int_{\Omega} \Theta_{1}\left(u_{n}\right)(T) \mathrm{d} x+\int_{Q_{T}} \frac{\beta}{\left(\delta+u_{n}\right)^{\varrho}}\left|\nabla T_{1}\left(u_{n}\right)\right|^{p} \mathrm{~d} x \mathrm{~d} t+B \int_{Q_{T}} \frac{\left|\nabla u_{n}\right|^{p}}{u_{n}^{\theta}} T_{1}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \tag{3.6}\\
& \leqslant \int_{Q_{T}} u_{n}^{r} T_{1}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t+\int_{\Omega} \Theta_{1}\left(u_{n}\right)(0) \mathrm{d} x
\end{align*}
$$

Since

$$
\int_{Q_{T}} \frac{\left|\nabla u_{n}\right|^{p}}{u_{n}^{\theta}} T_{1}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t \geqslant \int_{\left\{u_{n}>1\right\} \cap Q_{T}} \frac{\left|\nabla u_{n}\right|^{p}}{u_{n}^{\theta}} \mathrm{d} x \mathrm{~d} t
$$

dropping nonnegative terms in (3.6), it follows that

$$
\begin{align*}
& B \int_{\left\{u_{n}>1\right\} \cap Q_{T}} \frac{\left|\nabla u_{n}\right|^{p}}{u_{n}^{\theta}} \mathrm{d} x \mathrm{~d} t \tag{3.7}\\
& \quad \leqslant \int_{Q_{T}} u_{n}^{r} T_{1}\left(u_{n}\right) \mathrm{d} x \mathrm{~d} t+\int_{\Omega} \Theta_{1}\left(u_{n}\right)(0) \mathrm{d} x \\
& \quad \leqslant \int_{\left\{u_{n} \leqslant 1\right\} \cap Q_{T}} u_{n}^{r+1} \mathrm{~d} x \mathrm{~d} t+\int_{\left\{u_{n}>1\right\} \cap Q_{T}} u_{n}^{r} \mathrm{~d} x \mathrm{~d} t+\left\|u_{0}\right\|_{L^{1}(\Omega)} \\
& \quad \leqslant\left|Q_{T}\right|+C_{1}+C \int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left(u_{n}-1\right)^{r} \mathrm{~d} x \mathrm{~d} t .
\end{align*}
$$

Consequently, denoting $G_{1}(r)=r-T_{1}(r)$, we get the inequality

$$
\int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left|\nabla u_{n}\right|^{p} u_{n}^{-\theta} \mathrm{d} x \mathrm{~d} t \leqslant C_{2}+C_{2} \int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left(G_{1}\left(u_{n}\right)\right)^{r} \mathrm{~d} x \mathrm{~d} t
$$

so

$$
\int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left|\nabla u_{n}\right|^{p}\left(G_{1}\left(u_{n}\right)+1\right)^{-\theta} \mathrm{d} x \mathrm{~d} t \leqslant C_{2}+C_{2} \int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left(G_{1}\left(u_{n}\right)\right)^{r} \mathrm{~d} x \mathrm{~d} t,
$$

which yields

$$
\begin{aligned}
\left(1-\frac{\theta}{p}\right)^{-p} \int_{\left\{u_{n}>1\right\} \cap Q_{T}} & \left|\nabla\left(G_{1}\left(u_{n}\right)+1\right)^{(1-\theta / p)}\right|^{p} \mathrm{~d} x \mathrm{~d} t \\
& \leqslant C_{2}+C_{2} \int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left(G_{1}\left(u_{n}\right)\right)^{r} \mathrm{~d} x \mathrm{~d} t .
\end{aligned}
$$

Now, the Poincaré inequality implies

$$
\int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left(G_{1}\left(u_{n}\right)+1\right)^{p-\theta} \mathrm{d} x \mathrm{~d} t \leqslant C_{3}+C_{3} \int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left(G_{1}\left(u_{n}\right)\right)^{r} \mathrm{~d} x \mathrm{~d} t .
$$

Observe that $r<p-\theta$. By Young's inequality we obtain

$$
\begin{equation*}
\int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left|G_{1}\left(u_{n}\right)\right|^{p-\theta} \mathrm{d} x \mathrm{~d} t \leqslant C_{4} . \tag{3.8}
\end{equation*}
$$

Therefore

$$
\int_{\left\{u_{n}>1\right\} \cap Q_{T}} u_{n}^{r} \mathrm{~d} x \mathrm{~d} t=\int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left(G_{1}\left(u_{n}\right)+1\right)^{r} \mathrm{~d} x \mathrm{~d} t \leqslant C_{5} .
$$

So (3.4) is proved. To prove (3.5) we have by (3.4) and (3.6)

$$
\begin{align*}
\int_{Q_{T}}\left|\nabla T_{1}\left(u_{n}\right)\right|^{p} \mathrm{~d} x \mathrm{~d} t & =\int_{\left\{u_{n} \leqslant 1\right\} \cap Q_{T}} \frac{\left|\nabla T_{1}\left(u_{n}\right)\right|^{p}}{\left(\delta+u_{n}\right)^{\varrho}}\left(\delta+u_{n}\right)^{\varrho} \mathrm{d} x \mathrm{~d} t \tag{3.9}\\
& \leqslant(1+\delta)^{\varrho} \int_{\left\{u_{n} \leqslant 1\right\} \cap Q_{T}} \frac{\left|\nabla T_{1}\left(u_{n}\right)\right|^{p}}{\left(\delta+u_{n}\right)^{\varrho}} \mathrm{d} x \mathrm{~d} t \leqslant C .
\end{align*}
$$

From (3.4), (3.7) and $q=p-\theta N /(N+1)$, we write

$$
\begin{align*}
& \int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left|\nabla u_{n}\right|^{q} \mathrm{~d} x \mathrm{~d} t \tag{3.10}\\
& \quad=\int_{\left\{u_{n}>1\right\} \cap Q_{T}} \frac{\left|\nabla u_{n}\right|^{q}}{u_{n}^{\theta / p} u_{n}^{\theta q / p} \mathrm{~d} x \mathrm{~d} t} \\
& \quad \leqslant\left(\int_{\left\{u_{n}>1\right\} \cap Q_{T}} \frac{\left|\nabla u_{n}\right|^{p}}{u_{n}^{\theta}} \mathrm{d} x \mathrm{~d} t\right)^{q / p}\left(\int_{\left\{u_{n}>1\right\} \cap Q_{T}} u_{n}^{\theta q /(p-q)} \mathrm{d} x \mathrm{~d} t\right)^{1-q / p} \\
& \quad \leqslant C\left(\int_{Q_{T}} u_{n}^{s} \mathrm{~d} x \mathrm{~d} t\right)^{1-q / p}, \quad s=\frac{q(N+1)}{N} .
\end{align*}
$$

By (2.2) and (3.6), we have

$$
\begin{equation*}
\sup _{t \in[0, T]} \int_{\Omega} u_{n}(t, x) \mathrm{d} x \leqslant C . \tag{3.11}
\end{equation*}
$$

Use the following interpolation argument: $\left\|u_{n}\right\|_{L^{s}(\Omega)} \leqslant\left\|u_{n}\right\|_{L^{1}(\Omega)}^{\tau}\left\|u_{n}\right\|_{L^{q^{*}}(\Omega)}^{1-\tau}$ with $1-\tau=\left((1-s) /\left(1-q^{*}\right)\right)\left(q^{*} / s\right)$, where $q^{*}=N q /(N-q)$ if $q<N$ and $q^{*}>1$ satisfying $(1-\tau) s=q$ otherwise. Using (3.11) and the Sobolev inequality we obtain

$$
\int_{0}^{T}\left\|u_{n}\right\|_{L^{s}(\Omega)}^{s} \mathrm{~d} t \leqslant C \int_{0}^{T}\left\|\nabla u_{n}\right\|_{L^{q}(\Omega)}^{(1-\tau) s} \mathrm{~d} t
$$

By this last inequality, (3.10), $q<p$, and (3.9) we have

$$
\begin{align*}
\int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left|\nabla u_{n}\right|^{q} \mathrm{~d} x \mathrm{~d} t & \leqslant C\left(\int_{Q_{T}}\left|\nabla u_{n}\right|^{q} \mathrm{~d} x \mathrm{~d} t\right)^{1-q / p} \tag{3.12}\\
& \leqslant C+C\left(\int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left|\nabla u_{n}\right|^{q} \mathrm{~d} x \mathrm{~d} t\right)^{1-q / p}
\end{align*}
$$

which implies that

$$
\int_{\left\{u_{n}>1\right\} \cap Q_{T}}\left|\nabla u_{n}\right|^{q} \mathrm{~d} x \mathrm{~d} t \leqslant C .
$$

Furthermore, (3.9) implies estimate (3.5) and Lemma 3.2 is prooved.
3.2. Passage to the limit and finishing the proof of Theorem 3.1. Arguing as in Lemma 2.8, we obtain a subsequence $\left(u_{n}\right)$ and a mesurable function $u \in$ $L^{q}\left(0, T, W_{0}^{1, q}(\Omega)\right)$ such that

$$
\begin{gather*}
u_{n} \rightharpoonup u \text { weakly in } L^{q}\left(0, T ; W_{0}^{1, q}(\Omega)\right), \tag{3.13}\\
u_{n} \rightarrow u \text { strongly in } L^{q}\left(Q_{T}\right) \text { and a.e. in } Q_{T}, \tag{3.14}\\
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } Q_{T} . \tag{3.15}
\end{gather*}
$$

From (3.14), (3.15), (1.1), and $q /(p-1)>1$, we obtain

$$
\begin{equation*}
A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \rightharpoonup A(t, x, u)|\nabla u|^{p-2} \nabla u \text { in }\left(L^{q /(p-1)}\left(Q_{T}\right)\right)^{N} . \tag{3.16}
\end{equation*}
$$

By the technique used in the proof of Lemma 2.9,

$$
\begin{equation*}
\frac{\left|\nabla u_{n}\right|^{p}}{u_{n}^{\theta}} \rightarrow \frac{|\nabla u|^{p}}{u^{\theta}} \text { strongly in } L^{1}\left(Q_{T}\right) . \tag{3.17}
\end{equation*}
$$

We also deduce that

$$
\begin{equation*}
u_{n}^{r} \rightarrow u^{r} \text { strongly in } L^{1}\left(Q_{T}\right) \tag{3.18}
\end{equation*}
$$

Indeed, thanks to (3.14), we just have to show that the sequence $\left(u_{n}^{r}\right)$ is equiintegrable, but this is straightforward taking into account (3.4), (3.8), $r<p-\theta$, and Hölder's inequality. Finally, for $\varphi \in W^{1, \infty}\left(0, T ; L^{\infty}(\Omega)\right)$,

$$
\begin{align*}
-\int_{\Omega} u_{n}(0) \varphi(0) \mathrm{d} x & +\int_{Q_{T}} u_{n} \partial_{t} \varphi \mathrm{~d} x \mathrm{~d} t+\int_{Q_{T}} A\left(t, x, u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \varphi \mathrm{~d} x \mathrm{~d} t \tag{3.19}\\
& +B \int_{Q_{T}} \frac{\left|\nabla u_{n}\right|^{p}}{u_{n}^{\theta}} \varphi \mathrm{d} x \mathrm{~d} t=\int_{Q_{T}} u_{n}^{r} \varphi \mathrm{~d} x \mathrm{~d} t
\end{align*}
$$

Using (3.16), (3.17) and (3.18), we can easily pass to the limit in (3.19). Taking into account (3.3) and Lemma 2.10, Theorem 3.1 is proved.

References

[1] F. Andreu, S. Segura de Léon, L. Boccardo, L. Orsina: Existence results for L^{1} data of some quasi-linear parabolic problems with a quadratic gradient term and source. Math. Models Methods Appl. Sci. 12 (2002), 1-16.
[2] D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina, F. Petitta: Existence and nonexistence of solutions for singular quadratic quasilinear equations. J. Differ. Equations 246 (2009), 4006-4042.
zbl MR doi
[3] L.Boccardo, L. Orsina, M. M. Porzio: Existence results for quasilinear elliptic and parabolic problems with quadratic gradient terms and sources. Adv. Calc. Var. 4 (2011), 397-419.
[4] A. Dall'Aglio, L. Orsina, F. Petitta: Existence of solutions for degenerate parabolic equations with singular terms. Nonlinear Anal., Theory Methods Appl. 131 (2016), 273-288.
[5] M. El Ouardy, Y. El Hadfi, A. Ifzarne: Existence and regularity results for a singular parabolic equations with degenerate coercivity. Discrete Contin. Dyn. Syst., Ser. S 15 (2022), 117-141.
[6] F. Leoni, B. Pellacci: Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data. J. Evol. Equ. 6 (2006), 113-144.
zbl MR doi
[7] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969. (In French.)
[8] P. J. Martínez-Aparicio, F. Petitta: Parabolic equations with nonlinear singularities. Nonlinear Anal., Theory Methods Appl. 74 (2011), 114-131.
zbl MR
[9] J. M. Rakotoson: A compactness lemma for quasilinear problems: Application to parabolic equations. J. Funct. Anal. 106 (1992), 358-374.
zbl MR doi
[10] J. Simon: Compact sets in the space $L^{p}(0, T ; B)$. Ann. Mat. Pura Appl. (4) 146 (1987), 65-96.
zbl MR doi
zbl MR doi
[11] R. Souilah: Existence and regularity results for some elliptic equations with degenerate coercivity and singular quadratic lower-order terms. Mediterr. J. Math. 16 (2019), Article ID 87, 21 pages.
zbl MR doi
[12] L. Xia, Q. Liu, Z. Yao: Existence of the maximal weak solution for a class of singular parabolic equations. J. Math. Anal. Appl. 387 (2012), 439-446.
[13] L. Xia, Z. Yao: Existence, uniqueness and asymptotic behavior of solutions for a singular parabolic equation. J. Math. Anal. Appl. 358 (2009), 182-188.
[14] C. Zhang, S. Zhou: Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L^{1} data. J. Differ. Equations 248 (2010), 1376-1400.
[15] W. Zhou, X. Wei: Some results on a singular parabolic equation in one dimension case. Math. Methods Appl. Sci. 36 (2013), 2576-2587.

Authors' addresses: Rabah Mecheter (corresponding author), Department of Mathematics and Informatics, University of M'sila, 28000 M'sila, Algeria, e-mail: rabah.mecheter @univ-msila.dz; Fares Mokhtari, Algiers University, Faculty of Sciences, Department of Mathematics, 2 Rue Didouche Mourad, Algiers, Algeria, e-mail: f.mokhtari@univ-alger.dz.

