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Abstract. We study unique range sets of meromorphic functions over an angular domain
in the light of weighted sharing. One of our main results generalizes and improves a result
of Xu et al. (2014). Most importantly, we have pointed out a gap in the proofs of some
main results of Rathod (2021) and subsequently rectifying the gap we have conveniently
improved the results.
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1. Introduction

In 1929, Nevanlinna first investigated the uniqueness of meromorphic functions

in the whole complex plane by obtaining his famous five values theorem. Af-

ter this result, there was vast research work done on the uniqueness of mero-

morphic functions sharing values and sets in the whole complex plane, the unit

disc and the angular domain. In this paper we focus on uniqueness problem of

meromorphic functions sharing one set in an angular domain by using Tsuji’s

characteristic.

First we recall some basic value distribution theory on an angular domain

(see [9], [17]). Let f(z) be a meromorphic function on an angular domain Ω :=

Ω(α, β) = {z : α < arg z < β}, where 0 6 α < β 6 2π and consider ω = π/(β − α).
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Define

Mα,β(r, f) =
1

2π

∫
π−arcsin r−ω

arcsin r−ω

log+ |f(rei(α+ω−1θ) sinω
−1

θ)|
1

rω sin2 θ
dθ,

Nα,β(r, f) =
∑

1<|bn|<r(sin(ω(βn−α)))ω−1

( sinω(βn − α)

|bn|ω
−

1

rω

)
,

where bn = |bn|e
iβn are the poles of f(z) in Ξ(α, β; r) = {z = teiθ : α < θ < β, 1 <

t 6 r(sin(ω(βn −α)))ω
−1

} appearing often according to their multiplicities and then

Tsuji’s characteristic of f is

Tα,β(r, f) = Mα,β(r, f) +Nα,β(r, f).

We denote by nα,β(r, f) the number of poles of f(z) in Ξ(α, β; r). Then

Nα,β(r, f) =

∫ r

1

( 1

tω
−

1

rω

)
dnα,β(t, f) = ω

∫ r

1

nα,β(t, f)

tω+1
dt,

where pole bn is counted in the sum
∑

1<|bn|<r(sin(ω(βn−α)))ω−1

only once and we denote

it by Nα,β(r, f). For meromorphic function f in Ω, if

lim sup
r→∞

Tα,β(r, f)

log r
= ∞,

then f is called transcendental in Tsuji’s sense. For simplicity throughout the pa-

per we write M(r, f), N(r, f), T(r, f), N(r, f) instead of Mα,β(r, f), Nα,β(r, f),

Tα,β(r, f), Nα,β(r, f), respectively. Sometimes we write N(r, 1/(f − a)) as N(r, a; f).

For any complex number a, we have

T

(
r,

1

f − a

)
= T(r, f) +O(1).

Let S be a set of distinct elements in C = C ∪ {∞}, define

E(S,Ω, f) =
⋃

a∈S

{z ∈ Ω: f(z)− a = 0, counting multiplicities},

E(S,Ω, f) =
⋃

a∈S

{z ∈ Ω: f(z)− a = 0, ignoring multiplicities}.

If E(S,Ω, f) = E(S,Ω, g), then we say f and g share the set S CM (counting mul-

tiplicities) in Ω. If E(S,Ω, f) = E(S,Ω, g), then we say f and g share the set S IM

(ignoring multiplicities) in Ω. In 2001, Lahiri (see [8]) introduced the notion of

weighted sharing over C. Similarly, we can define it for angular domain.
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Definition 1.1. For k ∈ Z
+∪{∞}, the set of all a-points of f with multiplicitym

countedm times ifm 6 k and counted k+1 times ifm > k, is denoted by Ek(a,Ω, f).

For two functions f , g in Ω, if Ek(a,Ω, f) = Ek(a,Ω, g), then we say f , g share the

value a with weight k.

Inspired from the definition of weighted sharing of sets as introduced in [7], we

demonstrate the analogous definition over Ω as follows:

Definition 1.2. We say f , g share the set S with weight k if Ek(S,Ω, f) =

Ek(S,Ω, g), where

Ek(S,Ω, f) =
⋃

a∈S

Ek(a,Ω, f) and Ek(S,Ω, g) =
⋃

a∈S

Ek(a,Ω, g).

We write f , g share (S, k) to mean that f , g share the set S with weight k. In

particular, if S = {a}, then we write f , g share (a, k).

R em a r k 1.3. In [15] and [12], the authors denoted

E1(S,Ω, f) =
⋃

a∈S

{z ∈ Ω: all the simple zeros of f(z)− a},

and called f , g share the set S with weight 1 if E1(S,Ω, f) = E1(S,Ω, g). However,

this definition does not conform with the definition of actual weighted sharing (see

Definition 1.2) as the features of multiple a points are not considered here. In fact,

the basic criterion of finite weighted sharing is that two functions have to share

the value IM first. So it will be appropriate to say the definition of [15], [12] as

truncated sharing up to multiplicity 1, rather to say weighted 1 sharing and to

justify the definition it will be reasonable to use the notation E1)(S,Ω, f) instead of

E1(S,Ω, f). From onward, for weighted sharing we follow Definition 1.2.

Definition 1.4. For any two meromorphic functions f , g in Ω if Ek(S,Ω, f) =

Ek(S,Ω, g) implies f ≡ g, then we say the set S is a unique range set for meromorphic

functions with weight k in Ω, in brief we write URSMk. In particular, for k = 0 and∞

we write URSM-IM and URSM, respectively.

Fujimoto in [6] introduced the following definition and called it “Property H”,

which was later well known as “Critical Injection Property”.

Definition 1.5 ([2]). Let P (z) be a polynomial such that P ′(z) has l distinct

zeros, namely z1, z2, . . . , zl. If P (zi) 6= P (zj) for i 6= j, i, j ∈ {1, 2, . . . , l}, then P (z)

is said to satisfy the critical injection property.
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In 2004, Zheng in [16] studied the uniqueness problem under the condition that

five values are shared in some angular domain in C. During the last few years, many

authors obtained results on uniqueness of meromorphic function sharing values and

sets over angular domain (see [11], [13], [14]). In 2006 and 2011, Lin et al. (see [10])

and Chen-Lin (see [4]), respectively, dealt with the uniqueness problem on mero-

morphic functions sharing three finite sets in an angular domain. In 2010, by using

Tsuji’s characteristic, Zheng in [17] proved the following theorem to extend the five

IM values theorem of Nevanlinnas to an angular domain.

Theorem A ([17]). Let f(z) and g(z) be both meromorphic functions in an

angular domain Ω = {z : α < arg z < β} with 0 6 α < β 6 2π and let f(z) be

transcendental in Tsuji’s sense. Assume that aj (j = 1, 2, . . . , 5) are five distinct

complex numbers. If E(aj ,Ω, f) = E(aj ,Ω, g) for j = 1, 2, . . . , 5, then f(z) ≡ g(z).

Recently in 2014, Xu et al. in [15] considered the set which contains all zeros of

famous Frank-Reinders (see [5]) polynomial PFR(z), where

(1.1) PFR(z) =
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − c,

and c is a complex number such that c 6= 0, 1. They obtained the following results:

Theorem B (Theorem 5 of [15]). Let f(z) and g(z) be two meromorphic functions

in an angular domain Ω = {z : α < arg z < β} with 0 6 α < β 6 2π and f(z) be

transcendental in Tsuji’s sense. Consider S = {z ∈ Ω: PFR(z) = 0}, where PFR(z) is

defined in (1.1). If n is an integer> 11 and E(S,Ω, f) = E(S,Ω, g), then f(z) ≡ g(z).

Theorem C (Theorem 9 of [15]). Under the same situation as in Theorem B,

if n is an integer > 15 and E1)(S,Ω, f) = E1)(S,Ω, g), then f(z) ≡ g(z).

Now the following question comes if one tries to improve Theorem B.

Q u e s t i o n 1.6. In Theorem B, can it be possible to relax the CM sharing up

to weight 2 sharing?

Recently, the present authors [3] introduced a new polynomial of degree m+n+1

over a non-Archimedean field, which is the generalization of Frank-Reinders (see [5])

polynomial PFR(z). Here we consider the same polynomial over complex field as:

(1.2) P (z) =

n∑

j=0

(
n

j

)
(−1)j

m+ n+ 1− j
zm+n+1−jaj

+

m∑

i=1

n∑

j=0

(
m

i

)(
n

j

)
(−1)i+j

m+ n+ 1− i− j
zm+n+1−i−jajbi + c

= Q(z) + c,
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where a and b are distinct such that a ∈ C \ {0}, b ∈ C, c ∈ C \ {0,−Q(a),−Q(b)}.

It is easy to verify that

P ′(z) = (z − a)n(z − b)m.

N o t e 1.7. From Remark 1.10 of [3], we see that P (z) is a critically injective

polynomial.

The following theorem is one of our main results which answers Question 1.6

affirmatively for more generalized polynomial than Frank-Reinders polynomial.

Theorem 1.8. Let f , g be two non-constant meromorphic functions in an angular

domain Ω = {z : α < arg z < β} with 0 6 α < β 6 2π. Let m, n be two positive

integers such that min{m,n} > 3, m + n > 10. Consider the polynomial (1.2) such

that P (a) 6= −1 and S = {z ∈ Ω: P (z) = 0}. Now

(i) P (b) 6= 1, n > m+ 3, or

(ii) P (b) = 1.

Then for both cases, S is URSM2.

Notice that Theorem 1.8 is an improvement as well as a generalization of The-

orem B. Recently, to study the unique range set problem in an angular domain,

Rathod (see [12]) considered the following polynomial:

(1.3) P̃ (z) = zn + bzn−m + c,

where b and c are two nonzero constants such that P̃ (z) has only simple zeros. Using

similar methods as in the proofs of Theorem B and Theorem C, Rathod in [12]

obtained analogous two results for the polynomial P̃ (z).

Theorem D (Theorem 4.1 of [12]). Let f(z) and g(z) be two meromorphic

functions in an angular domain Ω = {z : α < arg z < β} with 0 6 α < β 6 2π and

f(z) be transcendental in Tsuji’s sense. Consider S̃ = {z ∈ Ω: P̃ (z) = 0}, where

P̃ (z) is defined in (1.3). Let n, m be two positive integers such that gcd(n,m) = 1,

m > 2 and n > 2m+ 8. If E(S̃,Ω, f) = E(S̃,Ω, g), then f(z) ≡ g(z).

Theorem E (Theorem 4.3 of [12]). Under the same situation as in Theorem D,

if n, m be two positive integers such that gcd(n,m) = 1, m > 2, n > 2m+ 12 and

E1)(S̃,Ω, f) = E1)(S̃,Ω, g), then f(z) ≡ g(z).

R em a r k 1.9. From Theorem D and Theorem E it can be noticed that the

cardinalities of unique range set S̃ are > 13 and > 17 for CM sharing and for

truncated 1 sharing, respectively. However, there is a gap in the proof of Theorem D
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and Theorem E. Let us consider equation number (4.4) (see [12], page 101). The

author writes

P̃ (z)− P̃ (1) = (z − 1)Q2(z),

where Q2(z) is a polynomial of degree n − 1 and Q2(1) 6= 0. But we claim that

this is not at all true. Let Φ(z) := P̃ (z) − P̃ (1) = zn + bzn−m − (1 + b). It is

clear that Φ(1) = 0 and Φ′(z) = nzn−1 + b(n −m)zn−m−1. Note that if we choose

b = −n/(n−m), then Φ′(1) = 0. Thus, for b = −n/(n−m), P̃ (z)−P̃ (1) have a zero

at 1 with multiplicity 2. Therefore equation number (4.4) (see [12], page 101) is not

correct and the same equation used in many places such as equations number (4.15)

and (4.28) (see [12], page 104 and 106) etc. So the wrong analysis has been carried

forwarded several places throughout the proofs of Theorem D and Theorem E.

In our next result we deal with the unique range set corresponding to the zeros of

the polynomial P̃ (z) under weighted sharing hypothesis.

Theorem 1.10. Let f(z) and g(z) be two non-constant meromorphic functions

in an angular domain Ω = {z : α < arg z < β} with 0 6 α < β 6 2π. Consider

S̃ = {z ∈ Ω: P̃ (z) = 0}, where P̃ (z) is defined in (1.3). Let n, m be two positive

integers such that gcd(n,m) = 1, m > 2 and n > 2m+ 9. Then S̃ is URSM2.

Note that Theorem 1.10 is a significant improvement of Theorem D since CM

sharing is relaxed to weight 2 sharing with the cardinality of the set S̃ remaining> 13.

On the other hand, as in our proof of Theorem 1.10, we use some technique different

from the proof of Theorem D, the gap as mentioned in Remark 1.9 has automatically

been rectified.

2. Lemmas

Lemma 2.1 (Remark 14 of [15]). Let f(z) be a meromorphic function in an

angular domain Ω. Then for any l (> 2) distinct points a1, a2, . . . , al ∈ C,

(l − 2)T(r, f) 6

l∑

j=1

N(r, aj ; f)−N
0(r, 0; f ′) +Q(r, f),

where Q(r, f) = O(log+ T(r, f)+ log r), r 6∈ E, E denotes a set of r with finite linear

measure and N0(r, 0; f ′) denotes the counting function of those zeros of f ′ which are

not zeros of f − aj for all j ∈ {1, 2, . . . , l}.
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Lemma 2.2 ([17]). Let f(z) be a meromorphic function in an angular domain Ω.

Then for 0 < r < R one has

M

(
r,
f (p)

f

)
6 K

(
log+ T(R, f) + log

R

R− r
+ 1

)
,

where K is a constant independent of r and R.

Consider the polynomial P̃ (z) as defined in (1.3). Let

(2.1) F =
fn−m(fm + b)

−c
and G =

gn−m(gm + b)

−c
.

Then

(2.2) F ′ =
fn−m−1(nfm + b(n−m))f ′

−c
and G′ =

gn−m−1(ngm + b(n−m))g′

−c
.

Define

(2.3) H ≡
(F ′′

F ′
−

2F ′

F − 1

)
−
(G′′

G′
−

2G′

G− 1

)
.

Then M(r,H) = Q(r), where Q(r) = o(T(r)) and T(r) = max{T(r, F ),T(r,G)}.

Lemma 2.3. Let H 6≡ 0 and F , G share (1, 1). Then

N(r, 1;F |= 1) = N(r, 1;G |= 1) 6 N(r,H) +Q(r),

where N(r, 1;F |= 1) denotes the counting function of 1-points of F with multiplic-

ity 1 and similarly for N(r, 1;G |= 1).

P r o o f. As F and G share (1, 1), each simple 1-point of F is also a simple

1-point of G and vice versa. Now each simple 1-point of F (i.e., simple 1-point of G)

is a zero of H . Note that M(r,H) = Q(r). Hence

N(r, 1;F |= 1) = N(r, 1;G |= 1) 6 N(r, 0;H) 6 T(r,H) 6 N(r,H) +Q(r).

�

Lemma 2.4. Let S̃ = {z ∈ Ω: P̃ (z) = 0}, where P̃ (z) is defined as in (1.3).

Let H 6≡ 0 and f , g be two meromorphic functions on Ω such that E2(S̃,Ω, f) =

E2(S̃,Ω, g). Then

N(r,H) 6 N(r, 0; f) +N(r, 0;nfm + b(n−m)) +N(r, f) +N
0
(r, 0; f ′) +N(r, 0; g)

+N(r, 0;ngm + b(n−m)) +N(r, g) +N
0
(r, 0; g′) +N

∗
(r, 1;F,G),

where N
0
(r, 0; f ′) denotes reduced counting function of those zeros of f ′ which are

not zeros of (F − 1)f(nfm + b(n − m)) and N
0
(r, 0; g′) denotes similar counting

function. N
∗
(r, 1;F,G) denotes the reduced counting function of those 1-points of F

whose multiplicities differ from the multiplicities of the corresponding 1-points of G.
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P r o o f. Recall the values of F ′ and G′ from (2.2). As E2(S̃,Ω, f) = E2(S̃,Ω, g),

the lemma directly follows by calculating all the possible poles of H . �

Lemma 2.5. Let F , G share (1, k), where 1 6 k < ∞. Then

N(r, 1;F ) +N(r, 1;G)−N(r, 1;F |= 1) +
(
k −

1

2

)
N

∗
(r, 1;F,G)

6
1

2
(N(r, 1;F ) +N(r, 1;G)).

Lemma 2.5 can be considered as angular domain analogue of Lemma 2.10

from [1]. Proof of the lemma is omitted as it can be done proceeding similarly as

in [1], Lemma 2.10.

R em a r k 2.6. In particular, for k = 2, from Lemma 2.5 we get

N(r, 1;F ) +N(r, 1;G)−N(r, 1;F |= 1) +
3

2
N

∗
(r, 1;F,G)

6
1

2
(N(r, 1;F ) +N(r, 1;G)).

Lemma 2.7. Let P (z) be any polynomial of degree n > 5 without multiple zeros,

whose derivative is of the form (z− d1)
n1(z− d2)

n2 . . . (z− dl)
nl , where d1, d2, . . . , dl

are distinct and n1 +n2 + . . .+nl = n− 1. Also assume P (z) is a critically injective

polynomial and there are two distinct meromorphic functions f and g in Ω such that

1

P (f)
=

c0
P (g)

+ c1

for some constants c0 6= 0 and c1. If l > 3 or if l = 2 and min{n1, n2} > 2, then

c1 = 0.

We omit the proof of Lemma 2.7 as the same can be done in a similar fashion as

adopted in Proposition 7.1 of [6].

3. Proofs of the theorems

P r o o f of Theorem 1.8. We omit the proof as this can be carried out in the line of

proof of Theorem 1.13 of [3]. Note that the bounds min{m,n} > 2, m+ n > 9 and

n > m+2 in Theorem 1.13 of [3] will be replaced in this theorem by min{m,n} > 3,

m + n > 10 and n > m + 3, respectively. In our present theorem the bounds

have been increased by 1 just because of the absent of the term − log r in the second

fundamental theorem but which is present for the case of non-Archimedean field. �
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P r o o f of Theorem 1.10. We have

P̃ (z) = zn + bzn−m + c,

where b and c are two nonzero constants such that P̃ (z) has only simple zeros. Now

P̃ ′(z) = zn−m−1(nzm + b(n−m)).

Denote ξ(z) := nzm + b(n − m). Now ξ′(z) = 0 implies z = 0 is a zero of ξ′(z) of

multiplicity m − 1. But ξ(0) 6= 0. Thus, ξ(z) has m distinct simple zeros, say δj ,

j = 1, 2, . . . ,m. So we can write

(3.1) P̃ ′(z) = zn−m−1(z − δ1)(z − δ2) . . . (z − δm).

Next, we claim that P̃ (z) is critically injective polynomial. Choose any two distinct

zeros δi, δj of ξ(z). Hence, δ
m
i = −b(n−m)/n and δmj = −b(n−m)/n, which

implies (δi/δj)
m = 1. We will show that P̃ (δi) 6= P̃ (δj). On the contrary, let us

assume P̃ (δi) = P̃ (δj). This implies

δn−m
i (δmi + b) = δn−m

j (δmj + b) ⇒ δn−m
i

(
−
b(n−m)

n
+ b

)
= δn−m

j

(
−
b(n−m)

n
+ b

)

⇒
( δi
δj

)n

=
( δi
δj

)m

= 1,

since (δi/δj)
m = 1. As gcd(n,m) = 1, δi/δj = 1. This implies δi = δj , a contradic-

tion. Therefore P̃ (δi) 6= P̃ (δj).

On the other hand, we know that δi 6= 0 for all i = 1, 2, . . . ,m. Now we claim

P̃ (δi) 6= P̃ (0). On the contrary, let us assume P̃ (δi) = P̃ (0), which implies

δn−m
i (δmi + b) = 0 ⇒ −

b(n−m)

n
+ b = 0 ⇒

bm

n
= 0,

a contradiction. Thus P̃ (δi) 6= P̃ (0). Therefore P̃ (z) is a critically injective polyno-

mial. Note that if f , g share (S̃, 2), then F , G share (1, 2).

Now we discuss the following two cases:

Case 1: First assume H 6≡ 0, where H is defined in (2.3). In view of Lemma 2.1

we get

(3.2) (n+m)T(r, f) 6 N(r, 0; f) +N(r, f) +

m∑

j=1

N(r, δj ; f)

+N(r, 1;F )−N
0(r, 0; f ′) +Q(r, f).

Similarly for g:

(3.3)

(n+m)T(r, g) 6 N(r, 0; g)+N(r, g)+

m∑

j=1

N(r, δj ; g)+N(r, 1;G)−N
0(r, 0; g′)+Q(r, g).
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Adding (3.2) and (3.3),

(n+m)(T(r, f) + T(r, g)) 6 N(r, 0; f) +N(r, f) +
m∑

j=1

N(r, δj ; f) +N(r, 1;F )

+N(r, 0; g) +N(r, g) +
m∑

j=1

N(r, δj ; g) +N(r, 1;G)

−N
0(r, 0; f ′)−N

0(r, 0; g′) +Q(r),

which implies

(3.4)

(n− 2)(T(r, f)+T(r, g)) 6 N(r, 1;F )+N(r, 1;G)−N
0(r, 0; f ′)−N

0(r, 0; g′)+Q(r).

Now using Remark 2.6 and Lemma 2.3, 2.4 from (3.4) we get

(3.5) (n− 2)(T(r, f) + T(r, g))

6 N(r, 1;F |= 1)−
3

2
N

∗
(r, 1;F,G) +

1

2
N(r, 1;F ) +

1

2
N(r, 1;G)

−N
0(r, 0; f ′)−N

0(r, 0; g′) +Q(r)

6 N(r,H)−
3

2
N

∗
(r, 1;F,G) +

1

2
N(r, 1;F ) +

1

2
N(r, 1;G)

−N
0(r, 0; f ′)−N

0(r, 0; g′) +Q(r)

6 N(r, 0; f) +

m∑

j=1

N(r, δj ; f) +N(r, f) +N(r, 0; g) +

m∑

j=1

N(r, δj ; g)

+N(r, g)−
1

2
N

∗
(r, 1;F,G) +

n

2
T(r, f) +

n

2
T(r, g) +Q(r)

6

(n
2
+m+ 2

)
(T(r, f) + T(r, g)) +Q(r).

Hence, (12n − m − 4)(T(r, f) + T(r, g)) 6 Q(r) is a contradiction as we assume

n > 2m+ 9, m > 2.

Case 2: Next assume H ≡ 0. Integrating (2.3) we get

(3.6)
1

F − 1
≡

A

G− 1
+B ⇒

1

P̃ (f)
≡

A

P̃ (g)
−

B

c
,

where A, B are integrating constants with A 6= 0. Recall that as n > 2m+9, m > 2,

degree of P̃ (z) > 13 and we have already proved P̃ (z) is critically injective. Also

from (3.1) and m > 2 we can say the number of distinct zeros of P̃ ′(z) is > 3.

Now from (3.6) and Lemma 2.7 we get B/c = 0. Let 1/A = A1, then from (3.6),

(3.7) P̃ (f) ≡ A1P̃ (g).
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Sub-case 2.1: Assume A1 6= 1. Notice that

P̃ (z)− P̃ (0) = zn−mR1(z),

where R1(z) is an m degree polynomial, R1(0) 6= 0 and all zeros of R1(z) are simple,

namely αj (j = 1, 2, . . . ,m). From (3.7) we can write

(3.8) P̃ (f)−A1P̃ (0) ≡ A1(P̃ (g)− P̃ (0)) ⇒ P̃ (f)−A1P̃ (0) ≡ A1g
n−m

m∏

j=1

(g−αj).

Denote Ψ(z) = P̃ (z) − A1P̃ (0). From (3.1) we get Ψ′(z) = P̃ ′(z) = zn−m−1 ×
m∏
j=1

(z − δj). Now similarly as P̃ (z) it can be shown that Ψ(z) is critically injective.

Ψ(z) has at most one multiple zero as any critically injective polynomial has at most

one multiple zero. Next we discuss the following two cases:

Sub-case 2.1.1: First assume Ψ(z) has exactly one multiple zero. As Ψ(0) 6= 0,

the only possible multiple zero is one of the δj (j = 1, 2, . . . ,m). Let us denote the

multiple zero by δ∗ and its multiplicity is equal to 2. Hence, we get

Ψ(z) = (z − δ∗)
2
n−2∏

j=1

(z − βj),

where βj (j = 1, 2, . . . , n− 2) are distinct. Thus, (3.8) can be written as

(3.9) (f − δ∗)
2
n−2∏

j=1

(f − βj) ≡ A1g
n−m

m∏

j=1

(g − αj).

From (3.7) it is clear that T(r, f) = T(r, g) +Q(r). Using Lemma 2.1 and (3.9) we

obtain

(n− 3)T(r, f) 6 N(r, δ∗; f) +

n−2∑

j=1

N(r, βj ; f) +Q(r, f)

6 N(r, 0; g) +

m∑

j=1

N(r, αj ; g) +Q(r, f)

6 (m+ 1)T(r, f) +Q(r).

Thus, we get (n−m− 4)T(r, f) 6 Q(r), this is a contradiction as n > 2m+ 9.

Sub-case 2.1.2: Next assume Ψ(z) has no multiple zero. Let us denote all simple

zeros of Ψ(z) as γj (j = 1, 2, . . . , n). From (3.8)

(3.10)

n∏

j=1

(f − γj) ≡ A1g
n−m

m∏

j=1

(g − αj).
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By Lemma 2.1 and (3.10) we deduce

(n− 2)T(r, f) 6
n∑

j=1

N(r, γj ; f) +Q(r, f) 6 N(r, 0; g) +
m∑

j=1

N(r, αj ; g) +Q(r, f)

6 (m+ 1)T(r, f) +Q(r).

Thus, we get (n−m− 3)T(r, f) 6 Q(r). This is a contradiction as n > 2m+ 9.

Sub-case 2.2: Next assume A1 = 1. Thus, from (3.7)

(3.11) P̃ (f) ≡ P̃ (g) ⇒ fn + bfn−m ≡ gn + bgn−m.

Let h ≡ f/g. From (3.11) we get

(3.12) gm(hn − 1) ≡ −b(hn−m − 1).

First we assume that h is a non-constant function. Then we can write (3.12) as

(3.13) gm ≡ −b
(h− v)(h− v2) . . . (h− vn−m−1)

(h− u)(h− u2) . . . (h− un−1)
,

where v = exp(2πi/(n − m)), u = exp(2πi/n). Since gcd(n,m) = 1, vj 6= ul for

j = 1, 2, . . . , n − m − 1, l = 1, 2, . . . , n − 1. Suppose zl be zero of h − ul for l =

1, 2, . . . , n− 1. Then from (3.13) it is easy to see that the multiplicity of zl is > m.

Thus,

(3.14) N

(
r,

1

h− ul

)
6

1

m
N

(
r,

1

h− ul

)
6

1

2
T(r, h) +Q(r).

By Lemma 2.1 and (3.14) we obtain

(n− 3)T(r, h) 6
n−1∑

l=1

N

(
r,

1

h− ul

)
+Q(r) 6

n− 1

2
T(r, h) +Q(r).

This implies 1
2 (n−5)T(r, h) 6 Q(r), a contradiction arises as n > 2m+9 and m > 2.

Thus, h is a constant function. But as g is a non-constant meromorphic function,

from (3.12) we get

hn − 1 = 0 and hn−m − 1 = 0.

Since gcd(n,m) = 1, h = 1. Therefore f ≡ g. This completes the proof. �
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