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Abstract. Among completely regular locales, we characterize those that have the feature
described in the title. They are, of course, localic analogues of what are called cl-isocompact
spaces. They have been considered in T.Dube, I.Naidoo, C. N.Ncube (2014), so here we
give new characterizations that do not appear in this reference.
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1. Introduction

In [6], the authors define isocompact locales in a manner that extends conserva-

tively the topological notion with the same name that was introduced by Bacon,

see [1]. To recall, Bacon defined a topological space X to be isocompact if every

closed countably compact subset of X is compact. The localic definition adopted

in [6] is a direct translation of the one of Bacon, modulo replacing “subset” with

“sublocale”. The localic definition is a conservative extension of its spatial counter-

part, in the sense that a topological space is isocompact if and only if the frame of

its open subsets is isocompact.

Requiring the closure of every countably compact complemented sublocale to be

compact defines what are called cl-isocompact locales. They are conservative ex-

tensions of Sakai’s cl-isocompact spaces (see [16]). These are spaces the closures of

whose countably compact subsets are compact. A formally stronger condition re-

quires the closure of every countably compact sublocale to be compact. Locales with

this feature are called fully cl-isocompact.
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All the three variants of isocompactness mentioned above were introduced and

studied in [6]. This paper should then be viewed as a continuation of [6] in that

it supplements the results in that paper by providing other characterizations of iso-

compact, cl-isocompact, and fully cl-isocompact locales. The characterizations given

here include extensions of some characterizations in [7]. Apart from that, we also

improve some results in [6]. One such improvement is Theorem 6.4 in which we

show that arbitrary products of fully cl-isocompact locales are fully cl-isocompact.

In [6] this was proved only for binary (and hence finite) products with a proof which

cannot be mimicked for arbitrary products.

Here is an overview of the paper. The Preliminaries (in Section 2) serve mainly

the purpose of fixing non-standard (and some standard) notation. We have thus

elected to be brief and recall only a few notions. Our thesis is that the theory of

frames and locales has by now come of age, and, furthermore, the readers of this

article are likely to be au fait with the rudiments of point-free topology.

In Section 3 we assemble some tools that we require mainly for the results in

Section 4. The characterizations of isocompact and fully cl-isocompact frames are in

Section 4. Section 5 is about some applications of the results in the preceding section.

Let us elaborate somewhat. A localic image of an isocompact (or fully cl-isocompact)

frame need not be isocompact (or fully cl-isocompact). We give an example of such

failure and then apply the characterizations in Section 4 to show that, subject to

some conditions, the image of an isocompact (or fully cl-isocompact frame) also has

the same property. Interestingly, the conditions for the weaker notion are strictly

less stringent than those for the stronger notion.

The last section deals with localic products of these types of locales, but treated

in the category Frm, so that we actually deal with coproducts of frames.

2. Preliminaries

Our references for frames and locales are [12] and [13]. As in these references, we

do will not work strictly within either Frm or Loc, but rather we will avail ourselves

tools from both categories even within the same proof in some instances. Throughout

this section, and, in fact, throughout the paper, L denotes a frame.

2.1. Frames and their homomorphisms. The asterisk will be used as a sub-

script to denote the right adjoint of a frame homomorphism, and as a superscript

to denote the pseudocomplement of an element. All frames are assumed to be com-

pletely regular. We shall view the Stone-Čech compactification of L as the frame of

strongly regular ideals of CozL, the cozero part of L. To recall, these are the lattice

ideals J ⊆ CozL such that for every u ∈ J there exists some v ∈ J with u ≺≺ v. We
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denote by jL : βL → L the dense onto frame homomorphism that takes a strongly

regular ideal of CozL to its join.

The only algebraic structures that will be considered below are frames, so the word

“homomorphism” will throughout be understood to mean a frame homomorphism.

For any a ∈ L, we write κa : L → ↑a for the homomorphism given by x 7→ a ∨ x.

The right adjoint of κa is the inclusion ↑a  L. For any homomorphism h : L → M

there is the factorization

L
κh∗0

// ↑h∗(0)
ĥ

// M,

where ĥ maps as h. The homomorphism ĥ is dense. Since the homomorphism κh∗(0)

is onto, the factorization is sometimes called the dense-onto factorization. We will

use that name.

2.2. Sublocales. We denote by S(L) the coframe of sublocales of L. The supple-

ment of a sublocale S is the sublocale

S# =
∨

{T ∈ S(L) : S ∩ T = O},

where O denotes the void sublocale, namely, O = {1}. If a sublocale S of L has a

complement in S(L), it is said to be complemented. This is the case precisely when

S ∩ S# = O. If S is complemented, then its complement is exactly S#.

The closed (or open) sublocale of L associated to x ∈ L is denoted by cL(x)

(or oL(x)). Since cL(x) = ↑x, we shall use either notation, as convenient. We write

Cld(L) (or Opn(L)) for the lattice (ordered by inclusion) of all closed (or open)

sublocales of L.

For a sublocale A of L, we denote by νA : L → A the associated frame surjection,

and recall that

νA(x) =
∧

{a ∈ A : a > x}.

With this notation, we then have

Cld(A) = {A ∩ F : F ∈ Cld(L)} = {cA(νA(x)) : x ∈ L},

Opn(A) = {A ∩ U : U ∈ Opn(L)} = {oA(νA(x)) : x ∈ L}.

Let us recall the identities
⋂

i∈I

cL(ai) = cL

(∨

i∈I

ai

)
, cL(a) ∨ cL(b) = cL(a ∧ b),

∨

i∈I

oL(ai) = oL

(∨

i∈I

ai

)
, oL(a) ∩ oL(b) = oL(a ∧ b).

For an arbitrary subset S of L, not necessarily a sublocale, we write

cL[S] = {cL(x) : x ∈ S} and oL[S] = {oL(x) : x ∈ S}.
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2.3. Localic maps. A localic map f : L → M gives rise to two mappings

f [-] : S(L) → S(M) and f−1[-] : S(M) → S(L)

defined by

f [A] = {f(x) : x ∈ A} and f−1[B] =
∨

{S ∈ S(L) : S ⊆ f−1[B]},

where f−1[-] is the set-theoretic inverse-image mapping. For any S ∈ S(L) and

T ∈ S(M), we always have the equivalence

f [S] ⊆ T ⇔ S ⊆ f−1[T ].

The mapping f [-] preserves joins. The mapping f−1[-] preserves meets (recall that

they are intersections) and finite joins. Also, f−1[-] preserves arbitrary joins of open

sublocales, that is, if {Vi : i ∈ I} is a collection of open sublocales of M , then

f−1

[∨

i∈I

Vi

]
=

∨

i∈I

f−1[Vi].

If f [U ] is an open sublocale of M for every open sublocale U of L, then f is said

to be an open map. If f [A] is a closed sublocale of M for every closed sublocale A

of L, then f is said to be a closed map. For the latter, we will recall some useful

characterizations where they will be needed. A closed homomorphism is one whose

right adjoint is a closed map.

2.4. Covers and coverings. A cover of L is a set C ⊆ L such that
∨
C = 1.

To avoid ambiguity, we say a collection A of sublocales of L is a covering of L

if
∨
{A : A ∈ A } = L, where the join is calculated in S(L). This terminology

is not standard. A cover consists of elements of L, whereas a covering consists of

sublocales of L. If every sublocale in a covering A of L is open, then A is an open

covering of L. There is a bijection between covers and open coverings, given by

C 7→ oL[C] and A 7→ o
−1
L [A ] = {x ∈ L : oL(x) ∈ A }.

3. Assembling some tools

As the heading suggests, in this section we assemble some tools that will be used

in the next section, where the main theorem is proved. Let us recall the following

terminology from [3]. If A is a sublattice of L, an ideal J in A is said to be σ-proper

if
∨
S 6= 1 for any countable S ⊆ J , and completely proper if

∨
J 6= 1.

On the other hand, as in spaces, let us say a filter F in a sublattice of Cld(L)

is fixed in the case when
⋂
{F : F ∈ F} 6= O, and has the countable intersection

property if
⋂
{C : C ∈ C} 6= O for every countable C ⊆ F .
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Next, for a lattice M , let us write Sub(M) for the set of sublattices of M . Note

that if L is a frame, then the map cL[-] : Sub(L) → Sub(Cld(L)) is a bijection. Let

us record the following results which are easy to verify using the properties of the

map cL : L → S(L).

Lemma 3.1. Let L be a frame.

(1) If A is a sublattice of L and J is an ideal in A, then cL[J ] is a filter in the

lattice cL[A]. Furthermore:

(a) J is σ-proper if and only if cL[J ] has the countable intersection property.

(b) J is completely proper if and only if cL[J ] is fixed.

(2) If A is a sublattice of Cld(L) and F is a filter in A, then c
−1
L [F ] is an ideal in

the lattice c−1
L [A]. Furthermore:

(a) F has the countable intersection property if and only if c−1
L [F ] is σ-proper.

(b) F is fixed if and only if c−1
L [F ] is completely proper.

The following lemma leads to a result (Corollary 3.3 below) that will be used in

the proof of the main theorem in this section.

Lemma 3.2. Let L be a frame and A be a sublattice of L. Then the following

statements are equivalent.

(1) Every σ-proper ideal of A is completely proper.

(2) Every cover of L by elements of A admits a countable subcover.

(3) Every covering of L by sublocales belonging to oL[A] admits a countable sub-

covering.

P r o o f. The equivalence of statements (2) and (3) follows easily from the fact

that oL(a) = L if and only if a = 1.

(1) ⇒ (2): Suppose, by way of contradiction, that L has a cover C consisting of

elements of A which has no countable subcover. Then the set

J =
{
a ∈ A : a 6

∨
S for some countable S ⊆ C

}

is an ideal of A because if for i ∈ {1, 2}, ai 6 Si for a countable Si ⊆ C, then S1∪S2

is a countable subset of C with a1 ∨ a2 6
∨
(S1 ∪ S2). Since a countable union of

countable sets is countable, reasoning as in the previous sentence, one sees that J is

σ-proper because any countable subset of C has join unequal to 1, by supposition.

Therefore
∨
J 6= 1, which then implies that

∨
C 6= 1 because C ⊆ J . This is a

contradiction.

(2) ⇒ (1): Let J be a σ-proper ideal of A. Therefore
∨
J 6= 1, otherwise J would

be a cover of L consisting of elements of A but admitting no countable subcover. �
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As remarked earlier, ifA is a sublattice ofCld(L), thenA = cL[A] for a sublattice A

of L. Furthermore, if F is a filter in A, then the set c−1
L [F ] is an ideal in A such

that F has the countable intersection property if and only if c−1
L [F ] is σ-proper. We

therefore have the following corollary.

Corollary 3.3. Let L be a frame and let L be a sublattice of Cld(L). Then the

following statements are equivalent.

(a) Every filter in L with the countable intersection property is fixed.

(b) Every covering of L by sublocales which are complements of members of L has

a countable subcovering.

4. Isocompactness and its stronger variants

We start by recalling that a frame is countably compact if every countable cover

has a finite subcover. Equivalently, every countable open covering has a finite sub-

covering. We must remark that, unlike compact regular frames, countably compact

regular frames need not be spatial (see [5]).

The following characterization of countably compact sublocales in terms of open

coverings of the ambient frame will be useful. Of course, to say a sublocale is count-

ably compact means that it is countably compact as a frame in its own right. Call

a sequence (Un)n∈N of sublocales of L increasing in the case when Un ⊆ Un+1 for

every n. Using the fact (proved by Isbell in [10]) that families of open sublocales are

distributive, meaning that if {Ui : i ∈ I} is a family of open sublocales of L, then,

for any sublocale A of L,

A ∩
∨

i∈I

Ui =
∨

i∈I

(A ∩ Ui),

it is easy to prove the following.

Lemma 4.1. The following statements are equivalent for a sublocale A of L.

(1) A is countably compact.

(2) If (Un)n∈N is a sequence of open sublocales of L with A ⊆
∨
n∈N

Un, then there

are finitely many indices n1, . . . , nk such that A ⊆ Un1
∨ . . . ∨ Unk

.

(3) If (Un)n∈N is an increasing sequence of open sublocales of L with A ⊆
∨

n∈N

Un,

then A ⊆ Un0
for some n0 ∈ N.

Now here are the definitions of the frames that will form the main subject of study

in this article. The definitions come from [6].

486



Definition 4.2. A frame L is said to be isocompact if every closed countably

compact sublocale of L is compact, closure-isocompact (abbreviated cl-isocompact) if

the closure of every countably compact complemented sublocale of L is compact, fully

closure-isocompact (abbreviated fully cl-isocompact) if the closure of every countably

compact sublocale of L is compact.

As observed in [6], the implications

fully cl-isocompact⇒ cl-isocompact⇒ isocompact

hold, with the latter non-reversible. We do not know if the first is reversible.

Before we plough ahead with the main purpose of this article, let us take this

opportunity to record some observations which are not recorded in [6]. We start

with one which casts some light on the question of reversibility of the first implication

above. We record it as a proposition which suggests that to settle the question, it

suffices to determine whether in cl-isocompact frames countably compact sublocales

have countably compact closures.

Proposition 4.3. The following statements are equivalent for a frame L.

(1) L is fully cl-isocompact.

(2) L is cl-isocompact and for every countably compact sublocale A of L, there is

a complemented countably compact sublocale A′ of L with A = A′.

(3) L is cl-isocompact and every countably compact sublocale of L has a countably

compact closure.

P r o o f. (1) ⇒ (2): Let A be a countably compact sublocale of L. Since L is

fully cl-isocompact, it is cl-isocompact, and so A is compact, and hence countably

compact. Therefore A is a complemented countably compact sublocale of L, whose

closure coincides with that of A.

(2) ⇒ (3): Let A be a countably compact sublocale of L. By hypothesis, there

is a complemented countably compact sublocale A′ of L with A′ = A. Since L is

cl-isocompact, by hypothesis, A′ is compact, and hence countably compact. There-

fore A is countably compact.

(3) ⇒ (1): Let A be a countably compact sublocale of L. By hypothesis, A is

countably compact, and so A is a complemented countably compact sublocale of

the cl-isocompact frame L, which implies that A is compact. Therefore L is fully

cl-isocompact. �

The next observation adds to a list of examples of fully cl-isocompact frames.

Among the examples of fully cl-isocompact frames mentioned in [6] are paracompact

487



frames. Here we point out that every realcompact frame is fully cl-isocompact. The

definition of realcompact frames can be found in [3]. See also [4] for some properties of

these frames. For the definition and properties of pseudocompact frames that we shall

refer to [2]. On more than one occasion below we shall use the fact that a frame which

has a dense pseudocompact sublocale is itself pseudocompact, see [6], Lemma 4.3.

E x am p l e 4.4. Every realcompact frame is fully cl-isocompact. To see this,

let A be a countably compact sublocale of a realcompact frame L. Then A is pseu-

docompact because it has a dense countably compact (and hence pseudocompact)

sublocale. As shown in [4], Lemma 4.8, closed sublocales of a realcompact frame

are realcompact. Therefore A is both realcompact and pseudocompact, so, by [3],

Corollary to Proposition 4, A is compact, showing that L is fully cl-isocompact.

Our final observation is about fully cl-isocompact and cl-isocompact frames that

have no points. In this regard, recall that a nontrivial (meaning one in which 0 6= 1)

compact frame has at least one point (see [12], Lemma III 1.9).

O b s e r v a t i o n 4.5. A frame with no points is fully cl-isocompact (or cl-

isocompact) if and only if its void sublocale is the only one that is countably

compact (or complemented and countably compact). Indeed, if O is the only sublo-

cale of L that is countably compact, then L is fully cl-isocompact. On the other

hand, suppose L has no points and is fully cl-isocompact. Suppose, on the contrary,

that A is a non-void countably compact sublocale of L. Then A is a nontrivial

compact sublocale of L, and hence has a point. But points of a sublocale are points

of the frame that reside inside the sublocale. This yields a contradiction. The other

assertion is verified similarly.

Now, reverting to the main theme, we are aiming for characterizations of fully

cl-isocompact frames motivated by [7], Theorems 1.9 and 1.10. Towards that end,

let us define a collection K(L) ⊆ S(L) by setting

K(L) = {L} ∪ {A ∈ S(L) : A = A1 ∩ . . . ∩An for a countably compact Ai ∈ S(L)}.

Observe that K(L) is a sublattice of Cld(L). Indeed, O and L belong to K(L), and

the meet of any two members is clearly also a member. Regarding the join of two

members, say, A = A1 ∩ . . .∩An and B = B1 ∩ . . .∩Bm, with Ai and Bj countably

compact,

A ∨B =
⋂

i,j

(
Ai ∨Bj

)
=

⋂

i,j

Ai ∨Bj ,

which belongs to K(L) because, as follows easily from Lemma 4.1, the join of finitely

many countably compact sublocales is countably compact.
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R em a r k 4.6. This remark is due to the referee. When L is fully cl-isocompact,

then K(L) is simply the system of compact sublocales of L, plus L itself.

As commented in the previous section, there is a sublattice of L, which we denote

by K(L), such that K(L) = cL[K(L)]. In fact, K(L) = c
−1
L [K(L)], so explicitly,

K(L) = {0}∪
{
a ∈ L : a=

∧
A1∨. . .∨

∧
An for some countably compact Ai ∈ S(L)

}
.

We need a lemma to prove the main theorem below which characterizes fully cl-

isocompact frames. Recall that a frame homomorphism h : M → L is coz-codense

if whenever h(c) = 1, with c ∈ CozM , then c = 1. It is coz-onto if for every

d ∈ CozL there exists some c ∈ CozM such that h(c) = d. Banaschewski and

Gilmour showed in [2], Corollary 5 that the homomorphism jL : βL → L is coz-onto.

Walters-Wayland showed in [17], Proposition 7.5 that L is pseudocompact if and

only if every dense onto homomorphism M → L, with M compact, is coz-codense.

Lemma 4.7. If L is pseudocompact and h : M → L is dense onto, then h is

coz-codense.

P r o o f. Let u be a cozero element of M with h(u) = 1. The composite

βM
jM

// M
h

// L

is a dense homomorphism out of a compact frame onto a pseudocompact one. There-

fore h ◦ jM is coz-codense, by the result cited from [17]. By the result cited from [2],

there is cozero element U of βL with jM (U) = u. Since h(jM (U)) = h(u) = 1, it

follows that U = 1βL, which implies that u = 1L. Therefore h is coz-codense. �

In the upcoming proof we shall use the fact that, as in the case of countable

compactness (see Lemma 4.1) a sublocale of L is compact if and only if whenever it

is contained in the join of open sublocales of L, then it is contained in the join of

finitely many of those open sublocales.

Theorem 4.8. The following statements are equivalent for a completely regular

frame L.

(1) L is fully cl-isocompact.

(2) Every filter in K(L) with the countable intersection property is fixed.

(3) Every σ-proper ideal in K(L) is completely proper.

(4) Every cover of L consisting of elements of K(L) has a countable subcover.

(5) Every covering of L consisting of complements of members of K(L) has a count-

able subcovering.
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P r o o f. The equivalence of statements (2) and (5) follows from Corollary 3.3.

It is easy to verify that an open sublocale is a complement of a sublocale in K(L) if

and only if it is of the form oL(a) for some a ∈ K(L). Therefore the equivalence of

statements (3), (4) and (5) follows from Lemma 3.2.

(1)⇒ (2): Assume that L is fully cl-isocompact, and let F be a filter in K(L) with

a countable intersection property. Note, from the outset, that F is a proper filter

because it has the countable intersection property. Since L is fully cl-isocompact,

each element of F is a closed sublocale of a compact locale, and is therefore compact.

Now, suppose, by way of contradiction, that F is not fixed. Then

L = O
# =

(⋂
{F : F ∈ F}

)#
=

∨
{F# : F ∈ F}.

Let H be any element of F . Since the supplement of each sublocale in F is open,

the compactness of H furnishes finitely many elements F1, . . . , Fn of F such that

H ⊆ F
#
1 ∨ . . . ∨ F#

n = (F1 ∩ . . . ∩ Fn)
#,

which then implies that H ∩ (F1 ∩ . . . ∩ Fn) = O because a complemented sublocale

misses its supplement. This yields a contradiction because both H and F1 ∩ . . .∩Fn

are members of F , a proper filter.

(3) ⇒ (1): Assume that L satisfies the property hypothesized in (3). Observe that

if S is a sublocale of L, then S also has the property hypothesized in (3). To see

this, note first that if a is a nonzero element in K(S), then a ∈ K(L) because any

countably compact sublocale of S is also countably compact as a sublocale of L, and

furthermore, joins in S agree with those in L because S is a closed sublocale of L.

Now let I be a σ-proper ideal in K(S). The set

Î = {x ∈ K(L) : x 6 u for some u ∈ I}

is easily checked to be a σ-proper ideal in K(L), containing all nonzero elements

of I. Consequently Î is completely proper, by hypothesis, and hence I is com-

pletely proper.

To prove that L is fully cl-isocompact, let S be a countably compact sublocale

of L. We must show that S is compact. Since every sublocale is dense in its closure,

by what we have demonstrated in the foregoing paragraph we may assume that S

is dense in L and then argue that L is compact. Since L has a dense countably

compact (and therefore a dense pseudocompact) sublocale, L is pseudocompact.

By [3], Corollary to Proposition 4, it suffices to show that L is realcompact. If L
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is not realcompact, then there is a σ-proper maximal ideal U of CozL such that∨
U = 1. Define the set J ⊆ K(L) by

J =
{
x ∈ K(L) : x 6

∧
(cL(u) ∩ S) for some u in U

}
,

and note that J is an ideal in K(L) containing each
∧
(cL(u)∩S), for u ∈ U , because

each cL(u) ∩ S is countably compact, being a closed sublocale of the countably

compact sublocale S. We show that J is σ-proper. Let νS : L → S be the frame

surjection witnessing that S is a sublocale of L, so for any a ∈ L,

νS(a) =
∧

{s ∈ S : a 6 s} =
∧

(cL(a) ∩ S).

Since S is a dense sublocale of L, νS is dense. For any sequence (xn) in J , choose,

for each n, an element un ∈ U such that xn 6
∧
(cL(un) ∩ S). Since U is σ-proper,∨

n

un < 1. Since νS is a dense onto frame homomorphism and S is pseudocompact,

νS is coz-codense by Lemma 4.7. Since
∨
n

un ∈ CozL, we therefore have

∨

n

xn 6
∨

n

(∧
(cL(un) ∩ S)

)
=

∨

n

νS(un) 6 νS

(∨

n

un

)
< 1,

which shows that J is σ-proper. Therefore, by (3), J is completely proper. But now

this is a contradiction because for each u ∈ U ,

u =
∧

cL(u) 6
∧

(cL(u) ∩ S) ∈ J,

and
∨
U = 1. We conclude therefore that L is realcompact, and hence compact as it

is pseudocompact. �

The characterization in item (4) in this theorem can be expressed in terms of the

subset

E(L) =
{∧

A : A is a countably compact sublocale of L
}

of L. Note that:

(a) E(L) ⊆ K(L), and

(b) every element of K(L) is a join of a finite subset of E(L), including the empty

set (so as to cater for 0).

These two properties yield the following corollary.

Corollary 4.9. A frame L is fully cl-isocompact if and only if every cover of L

by elements of E(L) has a countable subcover.
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P r o o f. If L is fully cl-isocompact, then every cover of L by elements of K(L)

has a countable subcover by Theorem 4.8. Since E(L) is a subset of K(L), it follows

that every cover of L by elements of E(L) has a countable subcover.

Conversely, suppose that
∨
T = 1 for some T ⊆ K(L). For each t ∈ T pick a set

Et ⊆ E(L) such that t =
∨
Et, and put E =

⋃
t∈T

Et. Clearly,
∨
E = 1, and so, by the

present hypothesis, there is a countable S ⊆ E such that
∨
S = 1. If s ∈ S, then

s ∈ Et for some t ∈ T , so s 6 t. Thus, each element of S is below an element T , and

so T has a countable subset whose join is the top element of L. Therefore L is fully

cl-isocompact. �

There are characterizations of cl-isocompact frames similar to those in Theo-

rem 4.8. To obtain them one simply inserts the descriptor “complemented”. To

be more precise, define the collection Kc(L) ⊆ S(L) by decreeing that a sublocale A

of L belongs to Kc(L) if and only if A = L or A = A1 ∩ . . . ∩ An, for some finitely

many complemented countably compact sublocales Ai of L. Then let Kc(L) be

defined analogously to K(L).

Using properties of complemented sublocales, a proof along the lines of the proof

of Theorem 4.8 yields the following. To mimic this proof, in showing the implica-

tion (3) ⇒ (1) you need to observe that if S is a complemented sublocale of L, then S

is also complemented as a sublocale of S, that is, S has a complement in S(S).

Theorem 4.10. The following statements are equivalent for a completely regular

frame L.

(1) L is cl-isocompact.

(2) Every filter in Kc(L) with the countable intersection property is fixed.

(3) Every σ-proper ideal in Kc(L) is completely proper.

(4) Every cover of L consisting of elements of Kc(L) has a countable subcover.

(5) Every covering of L consisting of complements of members of Kc(L) has a

countable subcovering.

Regarding isocompact frames, there are similar characterizations. Since the proofs

are also exactly along the same lines, we only set up the tools for stating the char-

acterizations, just as we did for the cl-isocompact case.

Define the sets

C(L) = {L} ∪ {S ∈ S(L) : S is closed and countably compact}

and

C(L) = {0} ∪ {a ∈ L : cL(a) is countably compact},

and note that they are, respectively, sublattices of Cld(L) and L, related by the

equalities C(L) = cL[C(L)] and C(L) = c
−1
L [C(L)].
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Theorem 4.11. The following statements are equivalent for a completely regular

frame L.

(1) L is isocompact.

(2) Every filter in C(L) with the countable intersection property is fixed.

(3) Every σ-proper ideal in C(L) is completely proper.

(4) Every cover of L consisting of elements of C(L) has a countable subcover.

(5) Every covering of L consisting of complements of members of C(L) has a count-

able subcovering.

5. Some applications

A localic image of a fully cl-isocompact frame need not be fully cl-isocompact. In

fact, it need not even be isocompact. Here is an example. As mentioned earlier, it

is shown in [6], Example 4.6 that every paracompact frame is fully cl-isocompact.

E x am p l e 5.1. Let L be a frame which is not isocompact, and consider the

dissolution map S(L)op → L, which is the right adjoint of the frame embedding

a 7→ cL(a) : L → S(L)op. Since S(L)op is paracompact—in fact, ultraparacompact

(see [15], Theorem 17)—and paracompact frames are fully cl-isocompact, we have

an example because the dissolution map is onto.

We apply Theorem 4.8 to show that the localic image of a fully cl-isocompact

frame under an open localic map which pulls back countably compact sublocales

to countably compact sublocales is fully cl-isocompact. For this we need to recall

from [14], Corollary 5.2 that if f : L → M is an open localic map, then

f−1[T ] = f−1[T ]

for all sublocales T of M .

The following quick lemma will be useful.

Lemma 5.2. For any localic map f : L → M , f [f−1[T ]
#] ⊆ T# for every sublo-

cale T of M .

P r o o f. Recall that if g : A → B is a frame homomorphism, then g(a∗) 6 g(a)∗

for every a ∈ A, and so

a∗ 6 g∗(g(a
∗)) 6 g∗(g(a)

∗).

Applying this to the frame homomorphism f−1[-] : S(M)op → S(L)op and keeping

in mind that the partial order is now ⊇ yields the result. �
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In the proof that follows we invoke condition (5) in Theorem 4.8.

Corollary 5.3. Suppose that f : L → M is an onto open localic map which pulls

back countably compact sublocales to countably compact sublocales. Then M is

fully cl-isocompact if L is fully cl-isocompact.

P r o o f. We start by showing that f pulls back sublocales in K(M) to sublocales

in K(L). So let A ∈ K(M), and find countably compact sublocales A1, . . . , An of M

such that

A = A1 ∩ . . . ∩ An.

Since f is an open map, we have the equalities

f−1[A] = f−1[A1] ∩ . . . ∩ f−1[An] = f−1[A1] ∩ . . . ∩ f−1[An],

whence we deduce that f−1[A] belongs to K(L). Now, suppose that {Ai : i ∈ I} is a

collection of members of K(M) such that {A#
i : i ∈ I} is a covering of M . Then

M =
∨

i∈I

A
#
i =

(⋂

i∈I

Ai

)#
.

Since each Ai is a closed sublocale,
( ⋂

i∈I

Ai

)#
is the complement of the closed sublo-

cale
⋂
i∈I

Ai, and so, since f−1[-] preserves complements, we have the equalities

L = f−1[M ] = f−1

[(⋂

i∈I

Ai

)#]
=

(
f−1

[⋂

i∈I

Ai

])#
=

(⋂

i∈I

f−1[Ai]
)#

=
∨

i∈I

f−1[Ai]
#.

Thus, {f−1[Ai]
# : i ∈ I} is a covering of L by complements of members of K(L), and

so there is a countable K ⊆ I such that L =
∨

k∈K

f−1[Ak]
#. Consequently, since f is

onto, and taking into account Lemma 5.2, we see that

M = f [L] = f
[ ∨

k∈K

f−1[Ak]
#
]
=

∨

k∈K

f [f−1[Ak]
#] ⊆

∨

k∈K

A
#
k ,

whence we deduce that the covering {A#
i : i ∈ I} of M admits a countable subcov-

ering, and therefore M is fully cl-isocompact. �

The referee has added the following result, together with the proof. It is with

his/her (implied) consent that we include it. The reader should note that the con-

dition on the localic map is weakened in that we do not require openness. This

should perhaps not be a surprise because cl-isocompactness is formally weaker than

full cl-isocompactness.
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Proposition 5.4. Let f : L → M be an onto localic map which pulls back count-

ably compact sublocales to countably compact sublocales. If L is cl-isocompact, then

so is M .

P r o o f. Let S be a complemented countably compact sublocale of M . Then

f−1[S] is a complemented countably compact sublocale of L. Since L is cl-isocompact,

f−1[S] is compact. Then f [f−1[S]] is compact too. Now, because S is complemented

and surjections are stable under pullback along complemented inclusions, one has S =

f [f−1[S]] ⊆ f [f−1[S]]. Taking closures and using that f [f−1[S]] is closed (because it

is compact), it follows that S ⊆ f [f−1[S]]. Hence, S is compact (as a closed sublocale

of the compact f [f−1[S]]). �

Finally, we consider the (even weaker) isocompact case. In this instance it is

condition (c) in Theorem 4.11 that we shall use.

Corollary 5.5. The localic image of an isocompact frame under a localic map

which pulls back closed countably compact sublocales to countably compact sublo-

cales is isocompact.

P r o o f. Let L be isocompact and f : L → M be an onto localic map such that

f−1[A] is countably compact whenever A is a closed countably compact sublocale

of M . Denote by h : M → L the left adjoint of f . We show that h[C(M)] ⊆ C(L).

Let a ∈ C(M). Then cM (a) is countably compact, so, by hypothesis, f−1[cM (a)] is

countably compact, that is, cL(h(a)) is countably compact, and hence h(a) ∈ C(L).

Now suppose that B is a cover of M consisting of elements of C(M). Then h[B] is a

cover of L consisting of elements of C(L), hence, there is a countable subset S of B

such that h[S] is a cover of L because L is isocompact. Since h is one-one (as f is

onto), S is a cover of M , and therefore M is isocompact. �

R em a r k 5.6. Localic maps which pull back closed countably compact sublo-

cales to countably compact sublocales include the proper ones. Recall that a lo-

calic map is called proper if it is closed and it preserves directed joins. In fact,

as was shown in the course of the proof of [6], Proposition 4.9, proper maps pull

back arbitrary complemented countably compact sublocales to countably compact

sublocales.

R em a r k 5.7. (a) In the course of the proof of Corollary 5.5 we saw that if

f : L → M is a localic map which pulls back closed countably compact sublocales to

countably compact sublocales, then h[C(M)] ⊆ C(L) for the left adjoint h of f . In

fact, the two conditions are equivalent, as one checks easily.

(b) In a similar vein, one shows that f−1[A] ∈ K(L) for every A ∈ K(M) if and

only if h[K(M)] ⊆ K(L).
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6. A bit on coproducts

In this section we prove that an arbitrary coproduct of fully cl-isocompact frames

is fully cl-isocompact. As mentioned in Introduction, this improves [6], Proposi-

tion 4.11, where it is shown that the coproduct of two fully cl-isocompact frames is

fully cl-isocompact. We refer to [13], Chapter IV for the construction and properties

of coproducts. As in our reference, given a collection {Li : i ∈ J} of frames, we write

ια : Lα →
⊕

i∈J

Li and pα :
⊕

i∈J

Li → Lα

for the αth coproduct injection and projection, respectively. Recall that pα is the

right adjoint of ια.

We recall from [11], 1.6.3 that if J is an index set and, for each i ∈ J , hi : Li → Mi

is a closed homomorphism, then the induced homomorphism
⊕
J

hi :
⊕
J

Li →
⊕
J

Mi is

closed. Next, let us observe the following about localic images of countably compact

sublocales. Recall that if f : L → M is a localic map, then f−1[-] preserves joins of

open sublocales.

Lemma 6.1. If f : L → M is a localic map and S is a countably compact sublo-

cale of L, then f [S] is countably compact.

P r o o f. Let (Un)n∈N be an increasing sequence of open sublocales of M such

that f [S] ⊆
∨
n

Un. Then

S ⊆ f−1

[∨

n

Un

]
=

∨

n

f−1[Un].

Since (f−1[Un])n∈N is an increasing sequence of open sublocales of L, there is an

index k such that S ⊆ f−1[Uk]. Therefore f [S] ⊆ Uk, and so f [S] is countably

compact. �

The following lemma is possibly folklore, but we furnish a proof because we do

not have reference. Note that any dense closed frame homomorphism g : A → B is

one-one because for any a ∈ A,

g∗(g(a) ∨ 0) = a ∨ g∗(0) = a,

so if g(a1) = g(a2), then a1 = a2.

Lemma 6.2. If h : L → M is a closed onto frame homomorphism, then M ∼=

cL(h∗(0)).
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P r o o f. In the dense-onto factorization

L
κh∗0

// cL(h∗(0))
ĥ

// M

it is easy to show that ĥ is also a closed map because from the equality h = ĥ◦κh∗(0)

we deduce that ĥ∗ maps as h∗ because the right adjoint of κh∗(0) is the inclusion map

cL(h∗(0))  L. But any dense closed homomorphism is one-one, so ĥ is one-one.

Since h is onto, ĥ is also onto, and hence ĥ is an isomorphism. �

We need yet another lemma. Recall that if A is a sublocale of L, then the right

adjoint of the frame surjection υA : L → A is the inclusion map A  L. Hence, in

the dense-onto factorization, the frame cL((νA)∗(0A)) is exactly cL(0A).

Lemma 6.3. Let {Li : i ∈ J} be a family of frames and let A be a sublocale

of
⊕
J

Li. For each i, put ai = pi(0A). For brevity, write

κ =
⊕

J

κai
:
⊕

J

Li →
⊕

J

cLi
(ai) and M =

⊕

J

cLi
(ai).

Then κ∗(0M ) 6 0A.

P r o o f. Let L =
⊕
J

Li and consider any basic element ⊕ixi ∈ L that is below

κ∗(0M ). Then

0M = κ(⊕ixi) = ⊕iκi(xi) = ⊕i(ai ∨ xi).

This implies that there is an index k ∈ J such that

ak ∨ xk = 0
cL

k
(ak) = ak,

whence xk 6 ak. Since ak = pk(0A), applying the frame homomorphism ιk :

Lk →
⊕
J

Li, we obtain

⊕ixi =
∧

i

ιi(xi) 6 ιk(xk) 6 ιk(ak) = ιk(pk(0A)) 6 0A,

which proves the lemma because the basic elements generate the coproduct. �

Now here is the result that we have been building towards.

Theorem 6.4. The coproduct of fully cl-isocompact frames is fully cl-isocompact.
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P r o o f. Let {Li : i ∈ J} be a family of fully cl-isocompact frames. Let A

be a countably compact sublocale of
⊕
J

Li. We must show that A is compact.

For any i ∈ J , the sublocale pi[A] of Li is countably compact, by Lemma 6.1.

Therefore pi[A] is compact because Li is fully cl-isocompact. Put ai =
∧
pi[A], so

pi[A] = cLi
(ai). Note that ai = pi(0A). Since coproducts of compact frames are

compact,
⊕
J

cLi
(ai) is compact. Write L =

⊕
J

Li, M =
⊕
J

cLi
(ai), and κ : L → M

for the homomorphism induced by the homomorphisms κai
: Li → cLi

(ai). By

Lemma 6.2, M ∼= cL(κ∗(0M )), and so cL(κ∗(0M )) is a compact sublocale of L. Since

κ∗(0M ) 6 0A, by Lemma 6.3, it follows that cL(0A) is compact. Since cL(0A) = A,

we have shown that
⊕
J

Li is fully cl-isocompact. �

For further use, let us extract some observation that has come to the fore in the

process of the foregoing proof. Let hi : Li → Mi be a frame homomorphism for

each i ∈ J , and let A be a sublocale of
⊕
J

Li. Put L =
⊕
J

Li. For each i ∈ J , put

ai = pi(0A) and M =
⊕
J

cLi
(ai). Then, for the homomorphism κ = ⊕iκai

, there

is a frame isomorphism τ :
⊕
J

cLi
(ai) → cL(κ∗(0M )). Since A = cL(0A) and since

κ∗(0M ) 6 0M , we have the composite

L
κ

// M
τ

// cL(κ∗(0M ))
α

// A
γ

// A,

where α maps as κ0M and γ is the left adjoint of the localic embedding A  A.

Since each κai
is onto, κ is onto, and hence every homomorphism in this composite

is onto. From this we deduce that if A is a sublocale (a closed sublocale) of
⊕
J

Li,

then A is isomorphic to a sublocale (a closed sublocale) of
⊕
J

pi[A]. We will write

the isomorphic copy of A simply as A.

Regarding binary coproducts (which is what we are going to be concerned with

below), suppose that A is a sublocale of L1⊕L2. Then A is a sublocale of cL(a1)⊕L2,

in light of the composite

cL1
(a1)⊕ L2

// cL1
(a1)⊕ cL2

(a2) // A,

where the first arrow is the onto homomorphism id
cL1

(a1) ⊕κa2
and the second is the

left adjoint of the localic embedding A  cL1
(a1)⊕ cL2

(a2).

Taking a cue from [7], we formulate the following definition.

Definition 6.5. A localic map f : L → M is cc-closed if f [A] is closed in M for

every closed countably compact sublocale A of L.
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Closed localic maps are cc-closed. As in spaces, a localic map with an isocompact

domain is cc-closed. Let us digress a little and present characterizations of cc-closed

maps even though we will not use them. In [8], Gutiérrez García and Picado define

several properties of localic maps by requiring that the map sends certain types of

complemented sublocales to certain types of complemented sublocales. Exactly their

method of proof (such as that of the propositions on page 289) leads to the following

characterizations of cc-closed maps. Recall from Section 4 that C(L) denotes the

set of elements a of L such that cL(a) is countably compact, together with the

bottom of L.

Proposition 6.6. The following statements are equivalent for a localic map f :

L → M .

(1) f is cc-closed.

(2) For every nonzero a ∈ C(L), f [cL(a)] = cM (f(a)).

(3) For every nonzero a ∈ C(L) and b ∈ M , f(a∨h(b)) = f(a)∨ b, where h denotes

the left adjoint of f .

The following proposition is a localic version of a result of Hasegawa, see [9]. In

its proof we are going to apply the Kuratowski-Mrówka theorem for locales ([13],

Proposition VII.3.5), which states that a frame L is compact if and only if for every

frame M , the projection map p2 : L⊕M → M is a closed map.

Proposition 6.7. The following statements are equivalent for isocompact frames

L and M .

(1) L⊕M is isocompact.

(2) The projection map p1 : L⊕M → L is cc-closed.

(3) The projection map p2 : L⊕M → M is cc-closed.

P r o o f. We prove only the equivalence of statements (1) and (2), and remark

that the equivalence of (1) and (3) can be established similarly. That (1) implies (2)

follows from the fact that any localic map with an isocompact domain is cc-closed.

Conversely, suppose (2) holds. Let A be a closed countably compact sublocale

of L ⊕ M . The sublocale p1[A] of L is countably compact, so, by the hypothesis

on p1, p1[A] is a closed sublocale of L. Since L is isocompact, p1[A] is compact.

Let π : p1[A] ⊕M → M be the projection map to M . Since p1[A] is compact, π is

a closed map. If we set a = p1(0A), then, in light of p1[A] being closed in L,

p1[A] = p1[A] = cL(a). Therefore, as we noted above, A is a closed sublocale

of p1[A] ⊕ M , and so π[A] is a closed sublocale of M . Since π[A] is also countably

compact and M is isocompact, π[A] is compact. Arguments as in the discussion

preceding Definition 6.5 show that A is a closed sublocale of p1[A]⊕ π[A], and since

the latter frame is compact, A is also compact. Therefore L⊕M is isocompact. �
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