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Abstract. Let k > 2 and let (P,(lk))n>2_k be the k-generalized Pell sequence defined by

P =2P® 4 PW, 1 4 PW
for n > 2 with initial conditions
(k) _ p(k) _ (k) (k) _ (k) _
P,(k,2) =P (k—3) = =P/ =P, 0,P;" =1
In this study, we handle the equation P( ) — = y"™ in positive integers n, m, y, k such that

k,y > 2, and give an upper bound on n. Also, we will show that the equation P( ) — =qy™
with 2 < y < 1000 has only one solution given by P7( ) = 132.

Keywords: Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms
in logarithms; Baker’s method
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1. INTRODUCTION

Let k, r be integers with k£ > 2 and r # 0. Let (G%k))ngg,k be the linear recurrence
sequence of order k defined by

G =rg® +cP, +.. . +c%,
for n > 2 with the initial conditions G( ()k 9 = va()k—3) = G(k) G(k)

and G(lk) = 1. For r =1, the sequence (G%k))ngg,k is called k-generalized Fibonacci
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sequence (Fy(bk))ngg,k (see [6]). For r = 2, the sequence (G%k))nﬂ,k is called
k-generalized Pell sequence (Py(bk))ngg_k (see [13]). The terms of these sequences
are called k-generalized Fibonacci numbers and k-generalized Pell numbers, respec-
tively. When k& = 2, we have Fibonacci and Pell sequences (F},)n>0 and (Pp)n>o0,
respectively.

There has been much interest in the question, when the terms of a linear recurrence
sequence are perfect powers. For instance, in [14], Ljunggren showed that for n > 2,
P, is a perfect square precisely for P, = 132 and P, = 22 precisely for P, = 2.
In [9], Cohn solved the same equations for Fibonacci numbers. Later, these problems
were extended by Bugeaud, Mignotte and Siksek (see [8]) for Fibonacci numbers and
by Pethd (see [16]) for Pell numbers. Pethd [16] and Cohn [10] independently found
all perfect powers in the Pell sequence. They proved:

Theorem 1. The only positive integer solution (n,y, m) with m > 2 and y > 2
of the Diophantine equation P, = y™ is given by (n,m,y) = (7,2, 13).

Bugeaud, Mignotte and Siksek (see [8]) solved the Diophantine equation F;, = yP
for p > 2 using modular approach and classical linear forms in logarithms. Lastly,
Bravo and Luca handled this problem with y = 2, for k-generalized Fibonacci num-
bers. They showed in [6] that the Diophantine equation F,(lk) = 2™ in positive
integers (n,m) has the solutions (n,m) = (6,3) for k =2 and (n,m) = (t,t — 2) for
all2 <t < k+1.

In this paper, we deal with the Diophantine equation

(1) P =ym
in positive integers n, m with k,y > 2. Our main result is the following.
Theorem 2. Let 2 < y < 1000. Then Diophantine equation (1) has only the
solution (n,m, k,y) = (7,2,2,13).
2. PRELIMINARIES
The characteristic polynomial of the sequence (P,(Lk))ngg,k is
(2) Up(z) =af =221 — . —2—1.

We know from Lemma 1 of [19] that this polynomial has exactly one positive real
root located between 2 and 3. We denote the roots of the polynomial in (2) by
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a1, Qa,. .., . Particuarly, let @ = ;3 denote the positive real root of ¥y (x). The
positive real root o« = «(k) is called dominant root of Uy (z). The other roots are
strictly inside the unit circle. In [5], the Binet- like formula for k-generalized Pell
numbers is given by

k

-1 on
3) Za —1+k(a “Ba,+ 1)

J=1

It was also shown in [5] that the contribution of the roots inside the unit circle to
formula (2) is very small, more precisely the approximation

1
(4) [P — gr(a)a™| < 5
holds for all n > 2 — k, where

z—1

5) S R A T oy

From [3], we can give the inequality, which will be used in the proof of Lemma 8,

(05 —1)
6 <1
(6) af =1+ k(a? —3a; +1)

for k > 2, where a;’s for j =1,2,...,k are the roots of the polynomial in (2).
Throughout this paper, o denotes the positive real root of the polynomial given
(k)

in (2). The following relation between o and P, given in [5] is valid for all n > 1.

(7) a" 2 < PR L an
Furthermore, Kili¢ in [13] proved that

(8) P = Fyp
foralll < n< k+1.

Lemma 3 ([5], Lemma 3.2). Let k,l > 2 be integers. Then:
(a) Ifk > 1, then a(k) > a(l), where a(k) and a(l) are the values of « relative to k
and [, respectively.
(b) ©?(1 — %) < a < ¢?, where p = %(1 + \/5) is the golden section.
() gr(e®) = 1/(s0+2)
(d) 0.276 < gi(a) <
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For solving equation (1), we use linear forms in logarithms and Baker’s theory.
For this, we give some notations, lemmas and a theorem.
Let n be an algebraic number of degree d with minimal polynomial

d
agr! + a1z’ + .. 4 a4 = ag H(J? —n¥) € 7[a),
i=1
where the a;’s are integers with ged(ag,...,a,) = 1 and ag > 0 and the n®’s are

conjugates of 1. Then

d
©) b = 7 (togan + 3 logunax{ 15917

i=1
is called the logarithmic height of 5. In particular, if 7 = a/b is a rational number
with ged(a,b) =1 and b > 1, then h(n) = log(max{]a|,b}).
We give some properties of the logarithmic height whose proofs can be found in [7]:

(10) h(n=+~) < h(n) + h(y) +log2,
(11) h(ny=') < h(n) + h(v),
(12) h(n™) = [m|h(n).

Now, from Lemma 6 given in [4], we can deduce the estimation
(13) h(gr(a)) < 5logk for k > 2,

which will be used in the proof of Lemma 8.
We give a theorem deduced from Corollary 2.3 of Matveev [15], which provides a
large upper bound for the subscript n in equation (1) (also see Theorem 9.4 in [8]).

Theorem 4. Assume that 71,79, ...,7: are positive real algebraic numbers in a
real algebraic number field K of degree D, b1,bs,...,b; are rational integers, and
A= ’yfl .. .’ytbt — 1 is not zero. Then

|A| > exp(—1.4-30"3t°/2D%(1 4+ log D)(1 + log B) A, Ay ... Ay),

where B > max{|bi|,...,|b:|}, and A; = max{Dh(v;),|log~i|,0.16} for all i =
1,...,t.

In [12], Dujella and Pethé gave a version of the reduction method based on the
Baker and Davenport (see [1]). Then, in [2], the authors proved the following lemma,
which is an immediate variation of the result due to Dujella and Pethd from [12].
This lemma is based on the theory of continued fractions and will be used to lower
the upper bound obtained by Theorem 4 for the subscript n in (1).
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Lemma 5. Let M be a positive integer, let p/q be a convergent of the continued
fraction expansion of the irrational number « such that ¢ > 6M, and let A, B, p
be some real numbers with A > 0 and B > 1. Let ¢ := ||uq|| — M||~vql|, where ||-||
denotes the distance from x to the nearest integer. If ¢ > 0, then there exists no
solution to the inequality

0<|uy—v+pul<AB™Y

in positive integers u, v, and w with

W< M and w3 2849/
log B
The following lemma can be found in [11].

Lemma 6. Let a,z € R. If 0 < a < 1 and |z| < a, then
log( a)

|log(1+ 2)| < |x| and |x|<1 _a|e””—1|.

Finally, we give the following lemma, which can be found in [17].

Lemma 7. If m > 1, T > (4m?)™ and z/(logx)™ < T, then x < 2™T (logT)™

Before proving our result, we prove the following lemma, which gives an estimate
on n in terms of k and y.

Lemma 8. All solutions (n,m, k,y) of equation (1) satisfy the inequality

(14) n < 6.81-10"2k*(log k)? logn - log y.

Proof. Assume that P(k) =y™ with m,k,y > 2. If 1 <n < k+1, then we have
PY(L ) — Fon—1 =y™ by (8). Fy,—1 = y™ is not satisfied for any n > 1 by Theorem 1
given in [8]. Then we suppose that n > k + 2, which 1mphes that n > 4. Let a be
the positive real root of W (x) given in (2). Then 2 < o < ¢? < 3 by Lemma 3 (b).
Using (7), we get a"~2 < y™ < o~ 1. Making necessary calculations, we obtain

log o log ©?
1 —1 <(n—1 1.4
(15) m < (n )1ogy (n—1) Tog 2 < 1l.4n
for n > 4. Now, let us rearrange (1) using inequality (4). Thus, we have
1
(16) "~ grla)a’| < 3
If we divide both sides of inequality (16) by gx(a)a™, from Lemma 3, we get
Y™ 1 1 1.82
17 — -1 < < < —.
(17) a”gr (@) 2gx(c)a™  0.552a™  an
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In order to use Theorem 4, we take

(71,01) == (y,m), (72,b2) := (o, =n), (73,3) := (gr(x), —1).

The number field containing 71, 72, and 73 is K = Q(«), which has degree D = k.
We show that the number m
A1 = 7y -1
angg(a)

is nonzero. In contrast to this, assume that A; = 0. Then
a—1 n
a”.
kE+1)a? —3ka+k—1

y" =a"gr(a) = (

Conjugating the above equality by some automorphism belonging to the Galois group
of the splitting field of ¥ (x) over @ and taking absolute values, we get

} a; — 1 o
(k+1)a? —3ka; +k—1 "

m

y =

for some ¢ > 1. Using (6) and that |a;| < 1, we obtain from the last equality that

‘ ai—l
(k+1)a? — 3ka; + k

m

y =

_1‘|ai|”<1,

which is impossible since y > 2. Therefore Ay # 0.

Moreover, since h(y) = logy, h(y2) = (loga)/k < (log 3)/k by (9) and h(gr(e)) <
5logk by (13), we can take A; := klogy, As :=log3 and Az := 5klogk. Also, since
m < 1.4n, it follows that B := 1.4n. Thus, taking into account inequality (17) and
using Theorem 4, we obtain

1.82
—i > |Ay] > exp(—Ck?*(1 +logk)(1 + log 1.4n)klogy - log 3 - 5k log k)
a

and so
nloga —log1.82 < Ck?-3logk - 2logn - klogy -log 3 - 5klogk,

where C' = 1.4 -30°% - 3%/2 and we have used the fact that 1 + logk < 3logk for
all k > 2 and 1 4+ logl.dn < 2logn for n > 4. From the last inequality, a quick
computation with Mathematica yields

nloga < 4.72-10"k*(log k)? - logn - logy

or
n < 6.81-10"2k*(logk)? - logn - logy.

Thus, the proof is completed. O
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3. THE PROOF OF THEOREM 2

Assume that Diophantine equation (1) is satisfied for 2 < y < 1000. If 1 < n <
k + 1, then we have P,(Lk) = F5,—1 = y™ by (8). The equation Fy,_; = y™ has no
solutions by Theorem 1 given in [8]. Then we suppose that n > k+ 2. If k = 2, then
we have P2 = P, = y™, which implies that (n,m, k,y) = (7,2,2,13) by Theorem 1.
Now, assume that & > 3. So, n > 5. On the other hand, since y < 1000, it follows

that

(18) é < 4.71-103%*(log k)?

by (14). By Lemma 7, inequality (18) yields that

n < 2T logT,

where T := 4.71 - 1013k*(log k)?. Making necessary calculations, we get

(19) n < 3.3-10%k*(log k)3

for all £ > 3.

Let k € [3,555]. Then, we obtain n < 7.9 - 10%® from (19). Now, let us try to

reduce this upper bound on n by applying Lemma 5. Let

1
z1 :=mlogy —nloga + log ——

gr(a)

and x := e** — 1. Then from (17), it is seen that

1.82
|z] = |e** — 1| < — < 0.12
an

for n > 5. Choosing a := 0.12, we get the inequality

log 12 1.82

0.12 an

|z1] = |log(z + 1)| <

by Lemma 6. Thus, it follows that

0 < |mlogy — nloga + log
gr(a)
Dividing this inequality by log o, we get
(20) 0<|my—n+p <AB™Y,

where

logy . 1 1

— = log——
K loga’ a log Oggk(a)

1.94

an

1.94

an

, A: =28, B:=aq,

and w:=n.
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It can be easily seen that logy/ log « is irrational. If it were not, then we could write
logy/loga = b/a for some positive integers a and b. This implies that y* = ab.
Conjugating this equality by an automorphism belonging to the Galois group of the
splitting field of ¥}, (z) over Q and taking absolute values, we get y* = |a;|® for some

i > 1. This is impossible since |a;| < 1 and y > 2. Put
M :=1.106 - 10%,

which is an upper bound on m since m < 1.4n < 1.106-102%°. Thus, we find that go;,
the denominator of the 91th convergent of -, exceeds 6M. Furthermore, a quick
computation with Mathematica gives us that the value
10g(AQ91 /6)
log B
is less than 164.9 for all k € [3, 555]. So, if (20) has a solution, then
- log(Ago1/¢)
log B

that is, n < 164. In this case, m < 229 by (15). A quick computation with Mathemat-
ica gives us that the equation P,(Lk) = y™ has no solutions for n € [5,164], m € [2,229)
and k € [3,555]. Thus, this completes the analysis in the case k € [3,555].

From now on, we can assume that k > 555. Then we can see from (19) that the

< 164.9,

inequality
(21) n < 3.3-10k*(log k)® < /272 < ph/2

holds for k£ > 555.
Now, let A > 0 be such that a + A = ©?. By Lemma 3 (b), we obtain

A=¢'—a<g’ =P (1-ph) =",

ie.,
1

(22) A< oz

On the other hand,

o = (4,02 _ )\)n — (an (1 _ %)n — s02nenlog(1—)\/<p2)
®
_ n
> (ane n > gOQn(l —’I’L/\) > (an(l _ F)?

where we have used the facts that log(l — z) > —¢?z for 0 < x < 0.907 and
e ®>1—z for all z € R\ {0}. Thus,

2n 2n

2n P
> " —
SOk/Q

ne

n 2n
a” > et — —
sa’“Q
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by (21). Since a < ¢?, it follows that

2n

2 '
a < "t 4 T2
and so we have
2n
'
(23) la™ — ?"| < Py

Thus, we can write a” = > 4+ § with 5] < > /p*/2. Also, the equality

Ak
(24) gr(@) = ge(¥®) +m, Inl < o

is given in Lemma 13 of [18]. Since gx(¢?) = 1/(¢ + 2) by Lemma 3 (c), it follows

that
1

BT R

gr ()

Now we can give the following result.

Lemma 9. Let k > 555 and let a be the dominant root of the polynomial Uy (x).
Let us consider gi(x) defined in (5) as a function of a real variable. Then

2n

n ' 5 2n
25 a)a™ = 4+ +né,
( ) gk( ) otr2 ot2 ne n

where ¢ and 1 are real numbers such that
2n
%) 4k
26 0| < = and |n| < —.
( ) | | sOk/Q | | <,0k

So, using (16), (25) and (26), we obtain

2n

14 ) J 2
27 ‘m— :‘ ™ — gp(a)a”™) + —— 4+ " +nd
(27) A (y™ — gr(a)a™) pr R
|9 5
< |y™— n n 5
ly %WM|+¢+2+W¢ + [nl|
s02n 4k502n 4k<p2n

+

1
< = - .
2 + ©F/2(p + 2) ok p3k/2

Dividing both sides of the above inequality by ©?"/(¢ + 2), we get
w+2 1 dk(p+2)  4k(p+2)
22" + e + oF k)2

0.05 1 0.005 0.005 1.06
< (pk/Q + (pk/Q + gok/Q + spk/Q - (pk/Q’

(28) ly™ e (p+2) - 1| <
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where we have used the facts that n > k + 2 and

Ak(p+2) _0.005 . 4k(p+2) _ 0.005

o < 72 1 S/ o7 for k > 555.

In order to use the result of Theorem 4, we take

(71761) = (yam)a ('72762) = (507_271)7 (’737173) = (50_‘_271)'

The number field containing 71, v2, and 73 is K = @(\/5), which has degree D = 2.
We show that the number

A=y (9 +2) -1

is nonzero. In contrast to this, assume that A; = 0. Then y™(p +2) = ¢*" and con-
jugating this relation in Q(\/g), we get y"(B+2) = %", where 8 = %(1 — \/5) =7
The left-hand side of the last equality is always greater than 1, while the right-hand
side is smaller than 1 because n > k + 2 > 512. This is a contradiction. Therefore
A1 # 0. Moreover, since

h(v1) = h(y) =logy, h(y2) = h(p) < 10%

and
1
h(3s) < h(g) + h(2) +log2 < oF + log4

by (11), we can take A; := 2logy, Az := logy and Az := log16¢p. Also, since
m < 1.4n by (15), we can take B := 2n. Thus, taking into account inequality (28)
and using Theorem 4, we obtain

(1.06) - o~ */2 > |A1| > exp(—C(1 4 log 2n)2logy - log ¢ - log 16¢),
where C' = 1.4 - 3093%/222(1 + log 2). This implies that
(29) k < 4.2-10"%logn,

where we have used the fact that (1 4 log2n) < 2.1logn for n > k + 2 > 557. On
the other hand, from (19) we get

logn < log(3.3 - 10*°k*(log k)?) < 35.8 4+ 4log k + 3log(log k) < 43logk
for k > 3. So, from (29) we obtain
k<4210 - 431logk,
which implies that
(30) k< 7.1-10'°,
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Substituting this bound of k into (19), we get n < 4.9 - 1087, which implies that
m < 6.86 - 1087 by (15).
Now, let
zo :=mlogy — 2nlogy + log(¢ + 2)

and z := 1 — e*2. Then
1.06

|J?| :|1—622| < W < 0.1

by (28) since k > 555. Choosing a := 0.1, we obtain the inequality

log & 1.06  1.12

|z2] = |log(z + 1)| < 01 o2 < pE

by Lemma 6. That is,

1.12

0 < |mlogy — 2nlogy + log(p + 2)| < i

Dividing both sides of the above inequality by log ¢, it is seen that
(31) 0<|my—2n+pul < AB™%,

where

vi= loﬁ, = log(e +2) 2>, A:=233, B:=¢ and w:= lk

log ¢ log 2
It is clear that logy/ log ¢ is irrational. If it were not, then logy/log v = a/b for some
positive integers a and b with. Thus, we get 4 = . Conjugating this equality in
Q(\/g), we get y® = 52, which is impossible since 3% < 1, where 3 = %(1 — \/5) =P
Besides, if we take M := 6.86-1087, which is an upper bound on m, we find that g1,
the denominator of the 212th convergent of 7, exceeds 6. Furthermore, a quick

computation with Mathematica gives us that the value

10g(AQ212/€)
log B

is less than 614.4. So, if (31) has a solution, then

k  log(A
k _ log(Agaiz/e)

< 614.4,
2 log B 0

that is, & < 1228. Hence, from (19), we get n < 2.71 - 103°, which implies that m <
3.8-10% by (15). If we apply again Lemma 5 to inequality (31) with M := 3.8-10%,
we find that gg4, the denominator of the 84th convergent of -, exceeds 6M. After
doing this, a quick computation with Mathematica shows that inequality (31) has
solutions only for k£ < 552. This contradicts the fact that & > 555. Thus, the proof
is completed. O

517



References

[1] A. Baker, H. Davenport: The equations 322 -2 = y2 and 8z2 — 7 = 22. Q. J. Math.,
Oxf. II. Ser. 20 (1969), 129-137.

[2] J.J.Bravo, C. A. Gomez, F. Luca: Powers of two as sums of two k-Fibonacci numbers.
Miskole Math. Notes 17 (2016), 85-100.

[3] J.J. Bravo, J. L. Herrera: Repdigits in generalized Pell sequences. Arch. Math., Brno 56
(2020), 249-262.

[4] J.J. Bravo, J. L. Herrera, F.Luca: Common values of generalized Fibonacci and Pell
sequences. J. Number Theory 226 (2021), 51-71.

[5] J.J.Bravo, J. L. Herrera, F. Luca: On a generalization of the Pell sequence. Math. Bo-
hem. 146 (2021), 199-213.

[6] J.J. Bravo, F.Luca: Powers of two in generalized Fibonacci sequences. Rev. Colomb.
Mat. 46 (2012), 67-79.

[7] Y. Bugeaud: Linear Forms in Logarithms and Applications. IRMA Lectures in Mathe-
matics and Theoretical Physics 28. European Mathematical Society, Ziirich, 2018.

[8] Y. Bugeaud, M. Mignotte, S. Siksek: Classical and modular approaches to exponential
Diophantine equations I. Fibonacci and Lucas perfect powers. Ann. Math. (2) 163
(2006), 969-1018.

[9] J.H. E. Cohn: Square Fibonacci numbers, etc. Fibonacci Q. 2 (1964), 109-113.

[10] J. H. E. Cohn: Perfect Pell powers. Glasg. Math. J. 38 (1996), 19-20.

[11] B. M. M. de Weger: Algorithms for Diophantine Equations. CWI Tracts 65. Centrum
voor Wiskunde en Informatica, Amsterdam, 1989.

[12] A. Dugjella, A. Pethd: A generalization of a theorem of Baker and Davenport. Q. J. Math.,
Oxf. II. Ser. 49 (1998), 291-306.

[13] E. Kili¢, D. Tagci: The generalized Binet formula, representation and sums of the gen-
eralized order-k Pell numbers. Taiwanese J. Math. 10 (2006), 1661-1670.

[14] W. Ljunggren: Zur Theorie der Gleichung 22 4+ 1 = Dy*. Avh. Norske Vid. Akad. Oslo
5(1942), 1-27. (In German.)

[15] E. M. Matveev: An explicit lower bound for a homogeneous rational linear form in the
logarithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217-1269; translation from
Izv. Ross. Akad. Nauk, Ser. Mat. 64 (2000), 125-180.

[16] A. Pethd: The Pell sequence contains only trivial perfect powers. Sets, Graphs and Num-
bers. Colloquia Mathematica Societatis Janos Bolyai 60. North Holland, Amsterdam,
1992, pp. 561-568.

[17] S. G. Sanchez, F. Luca: Linear combinations of factorials and S-units in a binary recur-
rence sequence. Ann. Math. Qué. 38 (2014), 169-188.

[18] Z. Siar, R. Keskin: On perfect powers in k-generalized Pell-Lucas sequence. Available at
https://arxiv.org/abs/2209.04190 (2022), 17 pages.

[19] Z. Wu, H.Zhang: On the reciprocal sums of higher-order sequences. Adv. Difference
Equ. 2018 (2013), Article ID 189, 8 pages.

Authors’ addresses: Zafer Siar (corresponding author), Bingol University, Mathemat-
ics Department, Bingol, Turkey, e-mail: zsiar@bingol.edu.tr; Refik Keskin, Sakarya Uni-
versity, Mathematics Department, Sakarya, Turkey, e-mail: rkeskin@sakarya.edu.tr; Elif
Segah Oztas, Karamanoglu Mehmetbey University, Mathematics Department, Karaman,
Turkey, e-mail: esoztas@kmu.edu.tr.

518

zbI[MRfdoi|
zbMRfdoil
zbIMRfdoi]
zbIMRfdoi]
2l MRfdoi]
2bIMR

zbI[MRfdoi|
2l MRfdoil
ZDI[R

ZoTR]doi|
2bIMR

zblMRfdoil
zbIMRfdoi]
ZbIMR

zblMRfdoi]

2bIJMR

zblMRfdoil

zbMEJdoi


https://zbmath.org/?q=an:0177.06802
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0248079
http://dx.doi.org/10.1093/qmath/20.1.129
https://zbmath.org/?q=an:1389.11041
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3527869
http://dx.doi.org/10.18514/MMN.2016.1505
https://zbmath.org/?q=an:07285963
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4173077
http://dx.doi.org/10.5817/AM2020-4-249
https://zbmath.org/?q=an:1471.11049
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4239716
http://dx.doi.org/10.1016/j.jnt.2021.03.001
https://zbmath.org/?q=an:07361099
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4261368
http://dx.doi.org/10.21136/MB.2020.0098-19
https://zbmath.org/?q=an:1353.11020
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2945671
https://zbmath.org/?q=an:1394.11001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3791777
http://dx.doi.org/10.4171/183
https://zbmath.org/?q=an:1113.11021
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2215137
http://dx.doi.org/10.4007/annals.2006.163.969
https://zbmath.org/?q=an:0126.07201
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0161819
https://zbmath.org/?q=an:0852.11014
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1373953
http://dx.doi.org/10.1017/S0017089500031207
https://zbmath.org/?q=an:0687.10013
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1026936
https://zbmath.org/?q=an:0911.11018
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1645552
http://dx.doi.org/10.1093/qmathj/49.3.291
https://zbmath.org/?q=an:1123.11005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2275152
http://dx.doi.org/10.11650/twjm/1500404581
https://zbmath.org/?q=an:0027.01103
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0016375
https://zbmath.org/?q=an:1013.11043
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1817252
http://dx.doi.org/10.1070/IM2000v064n06ABEH000314
https://zbmath.org/?q=an:0790.11021
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1218218
https://zbmath.org/?q=an:1361.11007
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3283974
http://dx.doi.org/10.1007/s40316-014-0025-z
https://zbmath.org/?q=an:1390.11042
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3084191
http://dx.doi.org/10.1186/1687-1847-2013-189
mailto:esoztas@kmu.edu.tr
mailto:esoztas@kmu.edu.tr

