ON PERFECT POWERS IN k-GENERALIZED PELL SEQUENCE

Zafer Şiar, Bingöl, Refík Keskin, Sakarya, Elif Segah Öztaş, Karaman

Received March 6, 2022. Published online September 29, 2022.
Communicated by Clemens Fuchs

Abstract. Let $k \geqslant 2$ and let $\left(P_{n}^{(k)}\right)_{n \geqslant 2-k}$ be the k-generalized Pell sequence defined by

$$
P_{n}^{(k)}=2 P_{n-1}^{(k)}+P_{n-2}^{(k)}+\ldots+P_{n-k}^{(k)}
$$

for $n \geqslant 2$ with initial conditions

$$
P_{-(k-2)}^{(k)}=P_{-(k-3)}^{(k)}=\ldots=P_{-1}^{(k)}=P_{0}^{(k)}=0, P_{1}^{(k)}=1
$$

In this study, we handle the equation $P_{n}^{(k)}=y^{m}$ in positive integers n, m, y, k such that $k, y \geqslant 2$, and give an upper bound on n. Also, we will show that the equation $P_{n}^{(k)}=y^{m}$ with $2 \leqslant y \leqslant 1000$ has only one solution given by $P_{7}^{(2)}=13^{2}$.

Keywords: Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms in logarithms; Baker's method

MSC 2020: 11B39, 11D61, 11J86

1. INTRODUCTION

Let k, r be integers with $k \geqslant 2$ and $r \neq 0$. Let $\left(G_{n}^{(k)}\right)_{n \geqslant 2-k}$ be the linear recurrence sequence of order k defined by

$$
G_{n}^{(k)}=r G_{n-1}^{(k)}+G_{n-2}^{(k)}+\ldots+G_{n-k}^{(k)}
$$

for $n \geqslant 2$ with the initial conditions $G_{-(k-2)}^{(k)}=G_{-(k-3)}^{(k)}=\ldots=G_{-1}^{(k)}=G_{0}^{(k)}=0$ and $G_{1}^{(k)}=1$. For $r=1$, the sequence $\left(G_{n}^{(k)}\right)_{n \geqslant 2-k}$ is called k-generalized Fibonacci
sequence $\left(F_{n}^{(k)}\right)_{n \geqslant 2-k}$ (see [6]). For $r=2$, the sequence $\left(G_{n}^{(k)}\right)_{n \geqslant 2-k}$ is called k-generalized Pell sequence $\left(P_{n}^{(k)}\right)_{n \geqslant 2-k}$ (see [13]). The terms of these sequences are called k-generalized Fibonacci numbers and k-generalized Pell numbers, respectively. When $k=2$, we have Fibonacci and Pell sequences $\left(F_{n}\right)_{n \geqslant 0}$ and $\left(P_{n}\right)_{n \geqslant 0}$, respectively.

There has been much interest in the question, when the terms of a linear recurrence sequence are perfect powers. For instance, in [14], Ljunggren showed that for $n \geqslant 2$, P_{n} is a perfect square precisely for $P_{7}=13^{2}$ and $P_{n}=2 x^{2}$ precisely for $P_{2}=2$. In [9], Cohn solved the same equations for Fibonacci numbers. Later, these problems were extended by Bugeaud, Mignotte and Siksek (see [8]) for Fibonacci numbers and by Pethő (see [16]) for Pell numbers. Pethő [16] and Cohn [10] independently found all perfect powers in the Pell sequence. They proved:

Theorem 1. The only positive integer solution (n, y, m) with $m \geqslant 2$ and $y \geqslant 2$ of the Diophantine equation $P_{n}=y^{m}$ is given by $(n, m, y)=(7,2,13)$.

Bugeaud, Mignotte and Siksek (see [8]) solved the Diophantine equation $F_{n}=y^{p}$ for $p \geqslant 2$ using modular approach and classical linear forms in logarithms. Lastly, Bravo and Luca handled this problem with $y=2$, for k-generalized Fibonacci numbers. They showed in [6] that the Diophantine equation $F_{n}^{(k)}=2^{m}$ in positive integers (n, m) has the solutions $(n, m)=(6,3)$ for $k=2$ and $(n, m)=(t, t-2)$ for all $2 \leqslant t \leqslant k+1$.

In this paper, we deal with the Diophantine equation

$$
\begin{equation*}
P_{n}^{(k)}=y^{m} \tag{1}
\end{equation*}
$$

in positive integers n, m with $k, y \geqslant 2$. Our main result is the following.

Theorem 2. Let $2 \leqslant y \leqslant 1000$. Then Diophantine equation (1) has only the solution $(n, m, k, y)=(7,2,2,13)$.

2. Preliminaries

The characteristic polynomial of the sequence $\left(P_{n}^{(k)}\right)_{n \geqslant 2-k}$ is

$$
\begin{equation*}
\Psi_{k}(x)=x^{k}-2 x^{k-1}-\ldots-x-1 . \tag{2}
\end{equation*}
$$

We know from Lemma 1 of [19] that this polynomial has exactly one positive real root located between 2 and 3 . We denote the roots of the polynomial in (2) by
$\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$. Particuarly, let $\alpha=\alpha_{1}$ denote the positive real root of $\Psi_{k}(x)$. The positive real root $\alpha=\alpha(k)$ is called dominant root of $\Psi_{k}(x)$. The other roots are strictly inside the unit circle. In [5], the Binet- like formula for k-generalized Pell numbers is given by

$$
\begin{equation*}
P_{n}^{(k)}=\sum_{j=1}^{k} \frac{\left(\alpha_{j}-1\right)}{\alpha_{j}^{2}-1+k\left(\alpha_{j}^{2}-3 \alpha_{j}+1\right)} \alpha_{j}^{n} . \tag{3}
\end{equation*}
$$

It was also shown in [5] that the contribution of the roots inside the unit circle to formula (2) is very small, more precisely the approximation

$$
\begin{equation*}
\left|P_{n}^{(k)}-g_{k}(\alpha) \alpha^{n}\right|<\frac{1}{2} \tag{4}
\end{equation*}
$$

holds for all $n \geqslant 2-k$, where

$$
\begin{equation*}
g_{k}(z)=\frac{z-1}{(k+1) z^{2}-3 k z+k-1} . \tag{5}
\end{equation*}
$$

From [3], we can give the inequality, which will be used in the proof of Lemma 8,

$$
\begin{equation*}
\left|\frac{\left(\alpha_{j}-1\right)}{\alpha_{j}^{2}-1+k\left(\alpha_{j}^{2}-3 \alpha_{j}+1\right)}\right|<1 \tag{6}
\end{equation*}
$$

for $k \geqslant 2$, where α_{j} 's for $j=1,2, \ldots, k$ are the roots of the polynomial in (2).
Throughout this paper, α denotes the positive real root of the polynomial given in (2). The following relation between α and $P_{n}^{(k)}$ given in [5] is valid for all $n \geqslant 1$.

$$
\begin{equation*}
\alpha^{n-2} \leqslant P_{n}^{(k)} \leqslant \alpha^{n-1} . \tag{7}
\end{equation*}
$$

Furthermore, Kılıç in [13] proved that

$$
\begin{equation*}
P_{n}^{(k)}=F_{2 n-1} \tag{8}
\end{equation*}
$$

for all $1 \leqslant n \leqslant k+1$.

Lemma 3 ([5], Lemma 3.2). Let $k, l \geqslant 2$ be integers. Then:
(a) If $k>l$, then $\alpha(k)>\alpha(l)$, where $\alpha(k)$ and $\alpha(l)$ are the values of α relative to k and l, respectively.
(b) $\varphi^{2}\left(1-\varphi^{-k}\right)<\alpha<\varphi^{2}$, where $\varphi=\frac{1}{2}(1+\sqrt{5})$ is the golden section.
(c) $g_{k}\left(\varphi^{2}\right)=1 /(\varphi+2)$.
(d) $0.276<g_{k}(\alpha)<\frac{1}{2}$.

For solving equation (1), we use linear forms in logarithms and Baker's theory. For this, we give some notations, lemmas and a theorem.

Let η be an algebraic number of degree d with minimal polynomial

$$
a_{0} x^{d}+a_{1} x^{d-1}+\ldots+a_{d}=a_{0} \prod_{i=1}^{d}\left(x-\eta^{(i)}\right) \in \mathbb{Z}[x],
$$

where the a_{i} 's are integers with $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$ and $a_{0}>0$ and the $\eta^{(i)}$'s are conjugates of η. Then

$$
\begin{equation*}
h(\eta)=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \left(\max \left\{\left|\eta^{(i)}\right|, 1\right\}\right)\right) \tag{9}
\end{equation*}
$$

is called the logarithmic height of η. In particular, if $\eta=a / b$ is a rational number with $\operatorname{gcd}(a, b)=1$ and $b \geqslant 1$, then $h(\eta)=\log (\max \{|a|, b\})$.

We give some properties of the logarithmic height whose proofs can be found in [7]:

$$
\begin{gather*}
h(\eta \pm \gamma) \leqslant h(\eta)+h(\gamma)+\log 2 \tag{10}\\
h\left(\eta \gamma^{ \pm 1}\right) \leqslant h(\eta)+h(\gamma), \tag{11}\\
h\left(\eta^{m}\right)=|m| h(\eta) . \tag{12}
\end{gather*}
$$

Now, from Lemma 6 given in [4], we can deduce the estimation

$$
\begin{equation*}
h\left(g_{k}(\alpha)\right)<5 \log k \quad \text { for } k \geqslant 2, \tag{13}
\end{equation*}
$$

which will be used in the proof of Lemma 8.
We give a theorem deduced from Corollary 2.3 of Matveev [15], which provides a large upper bound for the subscript n in equation (1) (also see Theorem 9.4 in [8]).

Theorem 4. Assume that $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t}$ are positive real algebraic numbers in a real algebraic number field \mathbb{K} of degree $D, b_{1}, b_{2}, \ldots, b_{t}$ are rational integers, and $\Lambda:=\gamma_{1}^{b_{1}} \ldots \gamma_{t}^{b_{t}}-1$ is not zero. Then

$$
|\Lambda|>\exp \left(-1.4 \cdot 30^{t+3} t^{9 / 2} D^{2}(1+\log D)(1+\log B) A_{1} A_{2} \ldots A_{t}\right)
$$

where $B \geqslant \max \left\{\left|b_{1}\right|, \ldots,\left|b_{t}\right|\right\}$, and $A_{i} \geqslant \max \left\{D h\left(\gamma_{i}\right),\left|\log \gamma_{i}\right|, 0.16\right\}$ for all $i=$ $1, \ldots, t$.

In [12], Dujella and Pethő gave a version of the reduction method based on the Baker and Davenport (see [1]). Then, in [2], the authors proved the following lemma, which is an immediate variation of the result due to Dujella and Pethő from [12]. This lemma is based on the theory of continued fractions and will be used to lower the upper bound obtained by Theorem 4 for the subscript n in (1).

Lemma 5. Let M be a positive integer, let p / q be a convergent of the continued fraction expansion of the irrational number γ such that $q>6 M$, and let A, B, μ be some real numbers with $A>0$ and $B>1$. Let $\varepsilon:=\|\mu q\|-M\|\gamma q\|$, where $\|\cdot\|$ denotes the distance from x to the nearest integer. If $\varepsilon>0$, then there exists no solution to the inequality

$$
0<|u \gamma-v+\mu|<A B^{-w}
$$

in positive integers u, v, and w with

$$
u \leqslant M \quad \text { and } \quad w \geqslant \frac{\log (A q / \varepsilon)}{\log B}
$$

The following lemma can be found in [11].
Lemma 6. Let $a, x \in \mathbb{R}$. If $0<a<1$ and $|x|<a$, then

$$
|\log (1+x)|<\frac{-\log (1-a)}{a}|x| \quad \text { and } \quad|x|<\frac{a}{1-\mathrm{e}^{-a}}\left|\mathrm{e}^{x}-1\right|
$$

Finally, we give the following lemma, which can be found in [17].
Lemma 7. If $m \geqslant 1, T \geqslant\left(4 m^{2}\right)^{m}$ and $x /(\log x)^{m}<T$, then $x<2^{m} T(\log T)^{m}$.
Before proving our result, we prove the following lemma, which gives an estimate on n in terms of k and y.

Lemma 8. All solutions (n, m, k, y) of equation (1) satisfy the inequality

$$
\begin{equation*}
n<6.81 \cdot 10^{12} k^{4}(\log k)^{2} \log n \cdot \log y \tag{14}
\end{equation*}
$$

Proof. Assume that $P_{n}^{(k)}=y^{m}$ with $m, k, y \geqslant 2$. If $1 \leqslant n \leqslant k+1$, then we have $P_{n}^{(k)}=F_{2 n-1}=y^{m}$ by (8). $F_{2 n-1}=y^{m}$ is not satisfied for any $n \geqslant 1$ by Theorem 1 given in [8]. Then we suppose that $n \geqslant k+2$, which implies that $n \geqslant 4$. Let α be the positive real root of $\Psi_{k}(x)$ given in (2). Then $2<\alpha<\varphi^{2}<3$ by Lemma 3 (b). Using (7), we get $\alpha^{n-2}<y^{m}<\alpha^{n-1}$. Making necessary calculations, we obtain

$$
\begin{equation*}
m<(n-1) \frac{\log \alpha}{\log y} \leqslant(n-1) \frac{\log \varphi^{2}}{\log 2}<1.4 n \tag{15}
\end{equation*}
$$

for $n \geqslant 4$. Now, let us rearrange (1) using inequality (4). Thus, we have

$$
\begin{equation*}
\left|y^{m}-g_{k}(\alpha) \alpha^{n}\right|<\frac{1}{2} \tag{16}
\end{equation*}
$$

If we divide both sides of inequality (16) by $g_{k}(\alpha) \alpha^{n}$, from Lemma 3 , we get

$$
\begin{equation*}
\left|\frac{y^{m}}{\alpha^{n} g_{k}(\alpha)}-1\right|<\frac{1}{2 g_{k}(\alpha) \alpha^{n}}<\frac{1}{0.552 \alpha^{n}}<\frac{1.82}{\alpha^{n}} \tag{17}
\end{equation*}
$$

In order to use Theorem 4, we take

$$
\left(\gamma_{1}, b_{1}\right):=(y, m), \quad\left(\gamma_{2}, b_{2}\right):=(\alpha,-n), \quad\left(\gamma_{3}, b_{3}\right):=\left(g_{k}(\alpha),-1\right) .
$$

The number field containing γ_{1}, γ_{2}, and γ_{3} is $\mathbb{K}=\mathbb{Q}(\alpha)$, which has degree $D=k$. We show that the number

$$
\Lambda_{1}:=\frac{y^{m}}{\alpha^{n} g_{k}(\alpha)}-1
$$

is nonzero. In contrast to this, assume that $\Lambda_{1}=0$. Then

$$
y^{m}=\alpha^{n} g_{k}(\alpha)=\frac{\alpha-1}{(k+1) \alpha^{2}-3 k \alpha+k-1} \alpha^{n} .
$$

Conjugating the above equality by some automorphism belonging to the Galois group of the splitting field of $\Psi_{k}(x)$ over \mathbb{Q} and taking absolute values, we get

$$
y^{m}=\left|\frac{\alpha_{i}-1}{(k+1) \alpha_{i}^{2}-3 k \alpha_{i}+k-1} \alpha_{i}^{n}\right|
$$

for some $i>1$. Using (6) and that $\left|\alpha_{i}\right|<1$, we obtain from the last equality that

$$
y^{m}=\left|\frac{\alpha_{i}-1}{(k+1) \alpha_{i}^{2}-3 k \alpha_{i}+k-1}\right|\left|\alpha_{i}\right|^{n}<1,
$$

which is impossible since $y \geqslant 2$. Therefore $\Lambda_{1} \neq 0$.
Moreover, since $h(y)=\log y, h\left(\gamma_{2}\right)=(\log \alpha) / k<(\log 3) / k$ by (9) and $h\left(g_{k}(\alpha)\right)<$ $5 \log k$ by (13), we can take $A_{1}:=k \log y, A_{2}:=\log 3$ and $A_{3}:=5 k \log k$. Also, since $m \leqslant 1.4 n$, it follows that $B:=1.4 n$. Thus, taking into account inequality (17) and using Theorem 4, we obtain

$$
\frac{1.82}{\alpha^{n}}>\left|\Lambda_{1}\right|>\exp \left(-C k^{2}(1+\log k)(1+\log 1.4 n) k \log y \cdot \log 3 \cdot 5 k \log k\right)
$$

and so

$$
n \log \alpha-\log 1.82<C k^{2} \cdot 3 \log k \cdot 2 \log n \cdot k \log y \cdot \log 3 \cdot 5 k \log k,
$$

where $C=1.4 \cdot 30^{6} \cdot 3^{9 / 2}$ and we have used the fact that $1+\log k<3 \log k$ for all $k \geqslant 2$ and $1+\log 1.4 n<2 \log n$ for $n \geqslant 4$. From the last inequality, a quick computation with Mathematica yields

$$
n \log \alpha<4.72 \cdot 10^{12} k^{4}(\log k)^{2} \cdot \log n \cdot \log y
$$

or

$$
n<6.81 \cdot 10^{12} k^{4}(\log k)^{2} \cdot \log n \cdot \log y
$$

Thus, the proof is completed.

3. The proof of Theorem 2

Assume that Diophantine equation (1) is satisfied for $2 \leqslant y \leqslant 1000$. If $1 \leqslant n \leqslant$ $k+1$, then we have $P_{n}^{(k)}=F_{2 n-1}=y^{m}$ by (8). The equation $F_{2 n-1}=y^{m}$ has no solutions by Theorem 1 given in [8]. Then we suppose that $n \geqslant k+2$. If $k=2$, then we have $P_{n}^{(2)}=P_{n}=y^{m}$, which implies that $(n, m, k, y)=(7,2,2,13)$ by Theorem 1. Now, assume that $k \geqslant 3$. So, $n \geqslant 5$. On the other hand, since $y \leqslant 1000$, it follows that

$$
\begin{equation*}
\frac{n}{\log n}<4.71 \cdot 10^{13} k^{4}(\log k)^{2} \tag{18}
\end{equation*}
$$

by (14). By Lemma 7, inequality (18) yields that

$$
n<2 T \log T
$$

where $T:=4.71 \cdot 10^{13} k^{4}(\log k)^{2}$. Making necessary calculations, we get

$$
\begin{equation*}
n<3.3 \cdot 10^{15} k^{4}(\log k)^{3} \tag{19}
\end{equation*}
$$

for all $k \geqslant 3$.
Let $k \in[3,555]$. Then, we obtain $n<7.9 \cdot 10^{28}$ from (19). Now, let us try to reduce this upper bound on n by applying Lemma 5 . Let

$$
z_{1}:=m \log y-n \log \alpha+\log \frac{1}{g_{k}(\alpha)}
$$

and $x:=\mathrm{e}^{z_{1}}-1$. Then from (17), it is seen that

$$
|x|=\left|\mathrm{e}^{z_{1}}-1\right|<\frac{1.82}{\alpha^{n}}<0.12
$$

for $n \geqslant 5$. Choosing $a:=0.12$, we get the inequality

$$
\left|z_{1}\right|=|\log (x+1)|<\frac{\log \frac{100}{88}}{0.12} \frac{1.82}{\alpha^{n}}<\frac{1.94}{\alpha^{n}}
$$

by Lemma 6. Thus, it follows that

$$
0<\left|m \log y-n \log \alpha+\log \frac{1}{g_{k}(\alpha)}\right|<\frac{1.94}{\alpha^{n}}
$$

Dividing this inequality by $\log \alpha$, we get

$$
\begin{equation*}
0<|m \gamma-n+\mu|<A B^{-w} \tag{20}
\end{equation*}
$$

where

$$
\gamma:=\frac{\log y}{\log \alpha}, \quad \mu:=\frac{1}{\log \alpha} \log \frac{1}{g_{k}(\alpha)}, \quad A:=2.8, \quad B:=\alpha, \quad \text { and } \quad w:=n
$$

It can be easily seen that $\log y / \log \alpha$ is irrational. If it were not, then we could write $\log y / \log \alpha=b / a$ for some positive integers a and b. This implies that $y^{a}=\alpha^{b}$. Conjugating this equality by an automorphism belonging to the Galois group of the splitting field of $\Psi_{k}(x)$ over \mathbb{Q} and taking absolute values, we get $y^{a}=\left|\alpha_{i}\right|^{b}$ for some $i>1$. This is impossible since $\left|\alpha_{i}\right|<1$ and $y \geqslant 2$. Put

$$
M:=1.106 \cdot 10^{29}
$$

which is an upper bound on m since $m<1.4 n<1.106 \cdot 10^{29}$. Thus, we find that q_{91}, the denominator of the 91 th convergent of γ, exceeds $6 M$. Furthermore, a quick computation with Mathematica gives us that the value

$$
\frac{\log \left(A q_{91} / \varepsilon\right)}{\log B}
$$

is less than 164.9 for all $k \in[3,555]$. So, if (20) has a solution, then

$$
n<\frac{\log \left(A q_{91} / \varepsilon\right)}{\log B} \leqslant 164.9
$$

that is, $n \leqslant 164$. In this case, $m<229$ by (15). A quick computation with Mathematica gives us that the equation $P_{n}^{(k)}=y^{m}$ has no solutions for $n \in[5,164], m \in[2,229)$ and $k \in[3,555]$. Thus, this completes the analysis in the case $k \in[3,555]$.

From now on, we can assume that $k>555$. Then we can see from (19) that the inequality

$$
\begin{equation*}
n<3.3 \cdot 10^{15} k^{4}(\log k)^{3}<\varphi^{k / 2-2}<\varphi^{k / 2} \tag{21}
\end{equation*}
$$

holds for $k>555$.
Now, let $\lambda>0$ be such that $\alpha+\lambda=\varphi^{2}$. By Lemma 3 (b), we obtain

$$
\lambda=\varphi^{2}-\alpha<\varphi^{2}-\varphi^{2}\left(1-\varphi^{-k}\right)=\varphi^{2-k}
$$

i.e.,

$$
\begin{equation*}
\lambda<\frac{1}{\varphi^{k-2}} \tag{22}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\alpha^{n} & =\left(\varphi^{2}-\lambda\right)^{n}=\varphi^{2 n}\left(1-\frac{\lambda}{\varphi^{2}}\right)^{n}=\varphi^{2 n} \mathrm{e}^{n \log \left(1-\lambda / \varphi^{2}\right)} \\
& \geqslant \varphi^{2 n} \mathrm{e}^{-n \lambda} \geqslant \varphi^{2 n}(1-n \lambda)>\varphi^{2 n}\left(1-\frac{n}{\varphi^{k-2}}\right)
\end{aligned}
$$

where we have used the facts that $\log (1-x) \geqslant-\varphi^{2} x$ for $0<x<0.907$ and $\mathrm{e}^{-x}>1-x$ for all $x \in \mathbb{R} \backslash\{0\}$. Thus,

$$
\alpha^{n}>\varphi^{2 n}-\frac{n \varphi^{2 n}}{\varphi^{k-2}}>\varphi^{2 n}-\frac{\varphi^{2 n}}{\varphi^{k / 2}}
$$

by (21). Since $\alpha<\varphi^{2}$, it follows that

$$
\alpha^{n}<\varphi^{2 n}+\frac{\varphi^{2 n}}{\varphi^{k / 2}}
$$

and so we have

$$
\begin{equation*}
\left|\alpha^{n}-\varphi^{2 n}\right|<\frac{\varphi^{2 n}}{\varphi^{k / 2}} \tag{23}
\end{equation*}
$$

Thus, we can write $\alpha^{n}=\varphi^{2 n}+\delta$ with $|\delta|<\varphi^{2 n} / \varphi^{k / 2}$. Also, the equality

$$
\begin{equation*}
g_{k}(\alpha)=g_{k}\left(\varphi^{2}\right)+\eta, \quad|\eta|<\frac{4 k}{\varphi^{k}} \tag{24}
\end{equation*}
$$

is given in Lemma 13 of [18]. Since $g_{k}\left(\varphi^{2}\right)=1 /(\varphi+2)$ by Lemma 3 (c), it follows that

$$
g_{k}(\alpha)=\frac{1}{\varphi+2}+\eta
$$

Now we can give the following result.
Lemma 9. Let $k>555$ and let α be the dominant root of the polynomial $\Psi_{k}(x)$. Let us consider $g_{k}(x)$ defined in (5) as a function of a real variable. Then

$$
\begin{equation*}
g_{k}(\alpha) \alpha^{n}=\frac{\varphi^{2 n}}{\varphi+2}+\frac{\delta}{\varphi+2}+\eta \varphi^{2 n}+\eta \delta, \tag{25}
\end{equation*}
$$

where δ and η are real numbers such that

$$
\begin{equation*}
|\delta|<\frac{\varphi^{2 n}}{\varphi^{k / 2}} \quad \text { and } \quad|\eta|<\frac{4 k}{\varphi^{k}} \tag{26}
\end{equation*}
$$

So, using (16), (25) and (26), we obtain

$$
\begin{align*}
\left|y^{m}-\frac{\varphi^{2 n}}{\varphi+2}\right| & =\left|\left(y^{m}-g_{k}(\alpha) \alpha^{n}\right)+\frac{\delta}{\varphi+2}+\eta \varphi^{2 n}+\eta \delta\right| \tag{27}\\
& \leqslant\left|y^{m}-g_{k}(\alpha) \alpha^{n}\right|+\frac{|\delta|}{\varphi+2}+|\eta| \varphi^{2 n}+|\eta||\delta| \\
& <\frac{1}{2}+\frac{\varphi^{2 n}}{\varphi^{k / 2}(\varphi+2)}+\frac{4 k \varphi^{2 n}}{\varphi^{k}}+\frac{4 k \varphi^{2 n}}{\varphi^{3 k / 2}} .
\end{align*}
$$

Dividing both sides of the above inequality by $\varphi^{2 n} /(\varphi+2)$, we get

$$
\begin{align*}
\left|y^{m} \varphi^{-2 n}(\varphi+2)-1\right| & <\frac{\varphi+2}{2 \varphi^{2 n}}+\frac{1}{\varphi^{k / 2}}+\frac{4 k(\varphi+2)}{\varphi^{k}}+\frac{4 k(\varphi+2)}{\varphi^{3 k / 2}} \tag{28}\\
& <\frac{0.05}{\varphi^{k / 2}}+\frac{1}{\varphi^{k / 2}}+\frac{0.005}{\varphi^{k / 2}}+\frac{0.005}{\varphi^{k / 2}}=\frac{1.06}{\varphi^{k / 2}}
\end{align*}
$$

where we have used the facts that $n \geqslant k+2$ and

$$
\frac{4 k(\varphi+2)}{\varphi^{k}}<\frac{0.005}{\varphi^{k / 2}} \quad \text { and } \quad \frac{4 k(\varphi+2)}{\varphi^{3 k / 2}}<\frac{0.005}{\varphi^{k / 2}} \quad \text { for } k>555
$$

In order to use the result of Theorem 4, we take

$$
\left(\gamma_{1}, b_{1}\right):=(y, m), \quad\left(\gamma_{2}, b_{2}\right):=(\varphi,-2 n), \quad\left(\gamma_{3}, b_{3}\right):=(\varphi+2,1) .
$$

The number field containing γ_{1}, γ_{2}, and γ_{3} is $\mathbb{K}=\mathbb{Q}(\sqrt{5})$, which has degree $D=2$. We show that the number

$$
\Lambda_{1}:=y^{m} \varphi^{-2 n}(\varphi+2)-1
$$

is nonzero. In contrast to this, assume that $\Lambda_{1}=0$. Then $y^{m}(\varphi+2)=\varphi^{2 n}$ and conjugating this relation in $\mathbb{Q}(\sqrt{5})$, we get $y^{m}(\beta+2)=\beta^{2 n}$, where $\beta=\frac{1}{2}(1-\sqrt{5})=\bar{\varphi}$. The left-hand side of the last equality is always greater than 1 , while the right-hand side is smaller than 1 because $n \geqslant k+2>512$. This is a contradiction. Therefore $\Lambda_{1} \neq 0$. Moreover, since

$$
h\left(\gamma_{1}\right)=h(y)=\log y, \quad h\left(\gamma_{2}\right)=h(\varphi) \leqslant \frac{\log \varphi}{2}
$$

and

$$
h\left(\gamma_{3}\right) \leqslant h(\varphi)+h(2)+\log 2 \leqslant \frac{\log \varphi}{2}+\log 4
$$

by (11), we can take $A_{1}:=2 \log y, A_{2}:=\log \varphi$ and $A_{3}:=\log 16 \varphi$. Also, since $m<1.4 n$ by (15), we can take $B:=2 n$. Thus, taking into account inequality (28) and using Theorem 4, we obtain

$$
(1.06) \cdot \varphi^{-k / 2}>\left|\Lambda_{1}\right|>\exp (-C(1+\log 2 n) 2 \log y \cdot \log \varphi \cdot \log 16 \varphi)
$$

where $C=1.4 \cdot 30^{6} 3^{9 / 2} 2^{2}(1+\log 2)$. This implies that

$$
\begin{equation*}
k<4.2 \cdot 10^{13} \log n \tag{29}
\end{equation*}
$$

where we have used the fact that $(1+\log 2 n)<2.1 \log n$ for $n \geqslant k+2>557$. On the other hand, from (19) we get

$$
\log n<\log \left(3.3 \cdot 10^{15} k^{4}(\log k)^{3}\right)<35.8+4 \log k+3 \log (\log k)<43 \log k
$$

for $k \geqslant 3$. So, from (29) we obtain

$$
k<4.2 \cdot 10^{13} \cdot 43 \log k
$$

which implies that

$$
\begin{equation*}
k<7.1 \cdot 10^{16} . \tag{30}
\end{equation*}
$$

Substituting this bound of k into (19), we get $n<4.9 \cdot 10^{87}$, which implies that $m<6.86 \cdot 10^{87}$ by (15).

Now, let

$$
z_{2}:=m \log y-2 n \log \varphi+\log (\varphi+2)
$$

and $x:=1-\mathrm{e}^{z_{2}}$. Then

$$
|x|=\left|1-\mathrm{e}^{z_{2}}\right|<\frac{1.06}{\varphi^{k / 2}}<0.1
$$

by (28) since $k>555$. Choosing $a:=0.1$, we obtain the inequality

$$
\left|z_{2}\right|=|\log (x+1)|<\frac{\log \frac{10}{9}}{0.1} \frac{1.06}{\varphi^{k / 2}}<\frac{1.12}{\varphi^{k / 2}}
$$

by Lemma 6. That is,

$$
0<|m \log y-2 n \log \varphi+\log (\varphi+2)|<\frac{1.12}{\varphi^{k / 2}}
$$

Dividing both sides of the above inequality by $\log \varphi$, it is seen that

$$
\begin{equation*}
0<|m \gamma-2 n+\mu|<A B^{-w} \tag{31}
\end{equation*}
$$

where

$$
\gamma:=\frac{\log y}{\log \varphi}, \quad \mu:=\frac{\log (\varphi+2)}{\log \varphi}, \quad A:=2.33, \quad B:=\varphi \quad \text { and } \quad w:=\frac{1}{2} k .
$$

It is clear that $\log y / \log \varphi$ is irrational. If it were not, then $\log y / \log \varphi=a / b$ for some positive integers a and b with. Thus, we get $y^{b}=\varphi^{a}$. Conjugating this equality in $\mathbb{Q}(\sqrt{5})$, we get $y^{b}=\beta^{a}$, which is impossible since $\beta^{a}<1$, where $\beta=\frac{1}{2}(1-\sqrt{5})=\bar{\varphi}$. Besides, if we take $M:=6.86 \cdot 10^{87}$, which is an upper bound on m, we find that q_{212}, the denominator of the 212th convergent of γ, exceeds $6 M$. Furthermore, a quick computation with Mathematica gives us that the value

$$
\frac{\log \left(A q_{212} / \varepsilon\right)}{\log B}
$$

is less than 614.4. So, if (31) has a solution, then

$$
\frac{k}{2}<\frac{\log \left(A q_{212} / \varepsilon\right)}{\log B} \leqslant 614.4
$$

that is, $k \leqslant 1228$. Hence, from (19), we get $n<2.71 \cdot 10^{30}$, which implies that $m<$ $3.8 \cdot 10^{30}$ by (15). If we apply again Lemma 5 to inequality (31) with $M:=3.8 \cdot 10^{30}$, we find that q_{84}, the denominator of the 84th convergent of γ, exceeds $6 M$. After doing this, a quick computation with Mathematica shows that inequality (31) has solutions only for $k \leqslant 552$. This contradicts the fact that $k>555$. Thus, the proof is completed.

References

[1] A. Baker, H. Davenport: The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$. Q. J. Math., Oxf. II. Ser. 20 (1969), 129-137.
zbl MR doi
[2] J. J. Bravo, C. A. Gómez, F. Luca: Powers of two as sums of two k-Fibonacci numbers. Miskolc Math. Notes 17 (2016), 85-100.
zbl MR doi
[3] J. J. Bravo, J. L. Herrera: Repdigits in generalized Pell sequences. Arch. Math., Brno 56 (2020), 249-262.
zbl MR doi
[4] J. J. Bravo, J. L. Herrera, F. Luca: Common values of generalized Fibonacci and Pell sequences. J. Number Theory 226 (2021), 51-71.
[5] J. J. Bravo, J. L. Herrera, F. Luca: On a generalization of the Pell sequence. Math. Bohem. 146 (2021), 199-213.
zbl MR doi
[6] J. J. Bravo, F. Luca: Powers of two in generalized Fibonacci sequences. Rev. Colomb. Mat. 46 (2012), 67-79.
zbl MR doi
[7] Y. Bugeaud: Linear Forms in Logarithms and Applications. IRMA Lectures in Mathematics and Theoretical Physics 28. European Mathematical Society, Zürich, 2018.
zbl MR doi
[8] Y. Bugeaud, M. Mignotte, S. Siksek: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Ann. Math. (2) 163 (2006), 969-1018.
[9] J. H. E. Cohn: Square Fibonacci numbers, etc. Fibonacci Q. 2 (1964), 109-113.
[10] J. H. E. Cohn: Perfect Pell powers. Glasg. Math. J. 38 (1996), 19-20.
zbl MR doi
[11] B. M. M. de Weger: Algorithms for Diophantine Equations. CWI Tracts 65. Centrum voor Wiskunde en Informatica, Amsterdam, 1989.
[12] A. Dujella, A. Pethő: A generalization of a theorem of Baker and Davenport. Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306.
zbl MR
zbl MR doi
zbl MR

13] E. Kiliç, D. Tascci: The generalized Binet formula, representation and sums of the generalized order- k Pell numbers. Taiwanese J. Math. 10 (2006), 1661-1670.
zbl MR doi
[14] W. Ljunggren: Zur Theorie der Gleichung $x^{2}+1=D y^{4}$. Avh. Norske Vid. Akad. Oslo 5 (1942), 1-27. (In German.)
zbl MR doi

15] E. M. Matveev: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217-1269; translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 (2000), 125-180.
zbl MR
zbl MR doi
[16] A. Pethő: The Pell sequence contains only trivial perfect powers. Sets, Graphs and Numbers. Colloquia Mathematica Societatis János Bolyai 60. North Holland, Amsterdam, 1992, pp. 561-568.
[17] S. G. Sanchez, F. Luca: Linear combinations of factorials and S-units in a binary recurrence sequence. Ann. Math. Qué. 38 (2014), 169-188.
[18] Z. Şiar, R. Keskin: On perfect powers in k-generalized Pell-Lucas sequence. Available at https://arxiv.org/abs/2209. 04190 (2022), 17 pages.
[19] Z. Wu, H. Zhang: On the reciprocal sums of higher-order sequences. Adv. Difference Equ. 2013 (2013), Article ID 189, 8 pages.
zbl MR doi

Authors' addresses: Zafer Şiar (corresponding author), Bingöl University, Mathematics Department, Bingöl, Turkey, e-mail: zsiar@bingol.edu.tr; Refik Keskin, Sakarya University, Mathematics Department, Sakarya, Turkey, e-mail: rkeskin@sakarya.edu.tr; Elif Segah Öztaş, Karamanoğlu Mehmetbey University, Mathematics Department, Karaman, Turkey, e-mail: esoztas@kmu.edu.tr.

