
148 (2023) MATHEMATICA BOHEMICA No. 4, 555–560

ON THE DOMINATION OF TRIANGULATED DISCS

Noor A’lawiah Abd Aziz, Penang, Nader Jafari Rad, Tehran,

Hailiza Kamarulhaili, Penang

Received August 10, 2021. Published online December 5, 2022.
Communicated by Jean-Sébastien Sereni

Abstract. Let G be a 3-connected triangulated disc of order n with the boundary cycle C
of the outer face of G. Tokunaga (2013) conjectured that G has a dominating set of
cardinality at most 1

4
(n+2). This conjecture is proved in Tokunaga (2020) for G−C being

a tree. In this paper we prove the above conjecture for G−C being a unicyclic graph. We
also deduce some bounds for the double domination number, total domination number and
double total domination number in triangulated discs.
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1. Introduction

For a simple graph G with vertex set V = V (G), the number of vertices of G

is called the order of G and is denoted by n = n(G). The open neighborhood of

a vertex v ∈ V is N(v) = NG(v) = {u ∈ V : uv ∈ E} and the closed neigh-

borhood of v is N [v] = NG[v] = N(v) ∪ {v}. The degree of a vertex v, denoted

by deg(v) (or degG(v) to refer to G), is the cardinality of its open neighborhood.

For an integer k > 2, a graph G is called k-connected if it has more than k ver-

tices and remains connected whenever fewer than k vertices are removed. The

contraction of an edge is an operation that removes the edge while simultane-

ously merging the two vertices that it previously joined. A plane graph G is said

to be a triangulated disc if it is 2-connected and all its faces are triangles ex-

cept for the outer (infinite) face. The boundary cycle of the outer face of G is

called the outer cycle of G and is denoted C(G). The graph G − C(G) is denoted

by In(G).
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A subset S ⊆ V is a dominating set of G if every vertex in V − S has a neighbor

in S. Note that by this definition any vertex of G dominates itself and its neighbors.

The domination number γ(G) is the minimum cardinality of a dominating set of G.

A subset S ⊆ V in a graph with no isolated vertex is a total dominating set of G if

every vertex in V has a neighbor in S. The total domination number γt(G) is the

minimum cardinality of a total dominating set of G. For a comprehensive survey on

the subject of domination parameters in graphs the reader can refer to [9].

Harary and Haynes in [8] defined a generalization of domination, namely k-tuple

domination, which is called double domination if k = 2. A subset S of vertices of

a graphG is a double dominating set ofG if for every vertex v ∈ V (G), |N [v] ∩ S| > 2.

The double domination number γ×2(G) is the minimum cardinality of a double dom-

inating set of G. The concept of double domination in graph was studied in, for

example, [2], [3], [4], [7]. A subset S of V in a graph with no isolated vertex is

a double total dominating set of G if for every vertex v ∈ V , |N(v) ∩ S| > 2. The

double total domination number γ×2,t(G) is the minimum cardinality of a double

total dominating set of G. The concept of double total domination was introduced

in [11] and further studied in, for example, [10], [12], [16]. This concept was also

studied under the name total 2-domination, see for example, [1], [6].

Matheson and Tarjan in [15] proved that any triangulated disc G of order n has

a dominating set of cardinality at most 1

3
n, and conjectured that γ(G) 6 1

4
n for ev-

ery n-vertex triangulation G with sufficiently large n. King and Pelsmajer (see [13])

proved this conjecture for graphs of maximum degree 6. Campos and Wakabayashi

in [5] and Tokunaga in [17] independently proved that γ(G) 6 1

4
(n + t) for each

n-vertex outerplanar graph G of order n having t vertices of degree two. An im-

provement of the 1

4
(n + t)-bound is given by Li et al. in [14]. Tokunaga (see [17])

also posed the following conjecture.

C o n j e c t u r e 1 (Tokunaga, [17]). If G is a 3-connected n-vertex triangulated

disc, then γ(G) 6 1

4
(n+ 2).

Recently, Tokunaga in [18] proved Conjecture 1 for triangulated discs G such that

In(G) is a tree.

Theorem 2 (Tokunaga, [18]). If G is an n-vertex triangulated disc such that

In(G) is a tree and C(G) is an induced cycle of G, then γ(G) 6 1

4
(n+ 2).

In this paper we proved a stronger version of Conjecture 1 for triangulated discs G

such that In(G) is a unicyclic graph. We show that if G is an n-vertex triangulated

disc such that In(G) is a unicyclic graph and C(G) is an induced cycle of G, then

γ(G) 6 1

4
(n+1). We also apply the methods for double domination, total domination

and double total domination numbers in triangulated discs.
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We use the same method given in [18] using proper colorings. For a given integer

k > 1, a function f : V (G) → {1, . . . , k} is called a proper k-coloring if f(u) 6= f(v)

for every edge uv of G. If f is proper k-coloring and a vertex v is dominated by

a vertex of color i for some i ∈ {1, . . . , k}, then we say that v is dominated by color i.

We use the following key lemma of [18].

Lemma 3 (Tokunaga, [18]). Let G be an n-vertex triangulated disc such that

In(G) is a tree and C(G) is an induced cycle of G, and let v be a vertex of C(G) with

degG(v) = 3. Then G − v has a proper 4-coloring such that each vertex of G − v is

dominated by all the four colors except the vertices of NG(v).

2. Bounds

We first present a bound for the domination number.

Theorem 4. If G is an n-vertex triangulated disc such that In(G) is a unicyclic

graph and C(G) is an induced cycle of G, then γ(G) 6 1

4
(n+1). This bound is sharp.

P r o o f. Let G be an n-vertex triangulated disc such that In(G) is a unicyclic

graph and C(G) is an induced cycle of G. Clearly, In(G) contains a triangle, since

all faces are triangles except for the outer (infinite) face. Let abc be a triangle

in In(G), and G∗ be the graph obtained from G by contraction of the edge ab.

Then G∗ is an (n− 1)-vertex triangulated disc such that In(G) is a tree, namely T .

Clearly, C(G∗) = C(G) and {a, b, c} ∩ V (C) = ∅. Let v be a vertex of C(G∗) with

degG∗(v) = 3. Clearly, degG∗(v) = degG(v) = 3. Let NG∗(v) = {u,w, x}, where

NC(v) = {u,w} and x is the unique vertex of T , which is adjacent to v in G∗.

Now we follow the proof of Theorem 2 given in [18]. By Lemma 3, G∗ − v has

a proper 4-coloring f such that each vertex of G∗ − v is dominated by all the four

colors except the vertices of NG∗(v). Let G′ be the (n + 1)-vertex graph such that

V (G′) = V (G∗) ∪ {p, q} and E(G′) = E(G∗) ∪ {pu, pv, pw, qu, qv, qw}.

We define a 4-coloring f ′ on G∗ as follows. Define f ′(y) = f(y) if y ∈ V (G∗)−{v},

and let f ′(v) be a color different from f ′(x), f ′(u) and f ′(w). Now assign f ′(p) and

f ′(q) such that {f ′(x), f ′(p), f ′(q), f ′(v)} = {1, 2, 3, 4}. Then each vertex of G∗ is

dominated by all the four colors. By renaming the colors, if necessary, we may

assume that |{y ∈ V (G∗) : f ′(y) = f ′(c) = f(c)}| 6 1

4
(n+ 1). Let S = {y ∈ V (G∗) :

f ′(y) = f ′(c) = f(c)}. Now, we form a set S′ defined by S′ = S if S ∩ {p, q} = ∅,

S′ = (S − {p}) ∪ {v} if p ∈ S, and S′ = (S − {q}) ∪ {v} if q ∈ S. Then S′ is

a dominating set for G∗ of cardinality at most 1

4
(n + 1). Since c ∈ S′, we deduce

that S′ is a dominating set for G, and the proof is completed.
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Figure 1. The graph H .

For the sharpness, see the graph H depicted in Figure 1. It is easy to see that the

set {u5, u8, u10, u15} is a minimum dominating set. �

Next apply the above arguments for double domination, total domination, and

double total domination. Following the proofs of Theorem 2, we can assume that

|{y : f ′(y) ∈ {1, 2}}| 6 1

2
(n + 2). Then we form a double dominating set for G of

cardinality at most 1

2
(n+ 2). Thus, we have the following.

Corollary 5. If G is an n-vertex triangulated disc such that In(G) is a tree and

C(G) is an induced cycle of G, then γ×2(G) 6 1

2
(n+ 2).

We next prove an upper bound for the double domination number for G when

In(G) is a unicyclic graph.

Theorem 6. If G is an n-vertex triangulated disc such that In(G) is a unicyclic

graph and C(G) is an induced cycle of G, then γ×2(G) 6 1

2
(n+ 1).

P r o o f. We follow the proof of Theorem 4. Let G be an n-vertex triangulated

disc such that In(G) is a unicyclic graph and C(G) is an induced cycle of G. Let

abc be a triangle in In(G), and G∗ be the graph obtained from G by contraction

of the edge ab. Then G∗ is an (n − 1)-vertex triangulated disc such that In(G) is

a tree. Clearly, a and b have a common neighbor d 6= c in G, since G is a triangulated

disc. Now, following the proof, we may assume that |{y : f ′(y) ∈ {f ′(c), f ′(d)}}| 6
1

2
(n+1). Let S = {y : f ′(y) ∈ {f ′(c), f ′(d)}}, and form S′ as described in the proof

of Theorem 4. Since c, d ∈ S′, we obtain that S′ is a dominating set for G, and the

proof is completed. �

It is evident that γt(G) 6 γ×2(G) for any graph G with no isolated vertex. Thus,

the bounds given in Corollary 5 and Theorem 6 are also valid for total domination.

We next prove upper bounds for the double total domination number.

Theorem 7. Let G be an n-vertex triangulated disc such that C(G) is an induced

cycle of G. If In(G) is a tree, then γ×2,t(G) 6 3

4
(n + 2), and if In(G) is a unicyclic

graph, then γ×2,t(G) 6 3

4
(n+ 1).
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P r o o f. We follow the proof of Theorems 2 and 4. First assume that In(G) is

a tree. Let f ′ be the given 4-coloring in the proof of Theorem 2, and assume that

|{y : f ′(y) 6= 1}| 6 3

4
(n + 2). Let S = {y : f ′(y) 6= 1} and S′ be formed from S as

described in the proof of Theorem 2. Then S′ is a double total dominating set for G

of cardinality at most 3

4
(n + 2). Next assume that In(G) is a unicyclic graph. We

follow the proof of Theorem 4. Let y∗ be the vertex formed by contraction of the

edge ab. Let f ′ be the given 4-coloring in the proof of Theorem 4, and assume that

|{y : f ′(y) 6= f ′(y∗)}| 6 3

4
(n + 1). Let S = {y : f ′(y) 6= f ′(y∗)} and S′ be formed

from S as described in the proof of Theorem 4. Then S′ is a double total dominating

set for G of cardinality at most 3

4
(n+ 1). �

We close with the following conjecture.

C o n j e c t u r e 8. If G is an n-vertex triangulated disc, then γ(G) 6 1

4
(n+2−t),

γ×2(G) 6 1

2
(n+2− t) and γ×2,t(G) 6 3

4
(n+2− t), where t is the number of vertex-

disjoint triangles in In(G).
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