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Abstract. We study the oscillatory behavior of the second-order quasi-linear retarded
difference equation

∆(p(n)(∆y(n))α) + η(n)yβ(n− k) = 0

under the condition
∞∑

n=n0

p−1/α(n) < ∞ (i.e., the noncanonical form). Unlike most existing

results, the oscillatory behavior of this equation is attained by transforming it into an
equation in the canonical form. Examples are provided to show the importance of our
main results.
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1. Introduction

This paper deals with the oscillatory behavior of solutions of the second-order

quasi-linear retarded difference equation of the form

(1.1) ∆(p(n)(∆y(n))α) + η(n)yβ(n− k) = 0, n > n0,

where n0 is a positive integer, and

(H1) {p(n)} and {η(n)} are positive real sequences;

(H2) k is a positive integer;

(H3) α > 1 and β are ratios of odd positive integers such that β > α− 1.

The solution of (1.1) is a real sequence {y(n)} that is defined for n > n0 − k and

satisfies (1.1) for all n > n0. A nontrivial solution of (1.1) is called oscillatory
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if it is neither eventually positive nor eventually negative; otherwise we say it is

nonoscillatory. The equation (1.1) is said to be oscillatory if all its solutions are

oscillatory. It follows from [15], that (1.1) is in the canonical form if

(1.2) A(n) =

n−1
∑

n=n0

p−1/α(n) → ∞ as n → ∞

and it is in the noncanonical form if

(1.3) B(n0) =

∞
∑

n=n0

p−1/α(n) < ∞.

It is well-known from oscillation theory that there is a significant difference in the

structure of nonoscillatory (say positive) solutions between canonical and noncanon-

ical equations. For any positive solution {y(n)} of (1.1), it is easy to see that the

first difference {∆y(n)} is eventually of one sign, while the condition (1.2) ensures

that this solution is eventually increasing (∆y(n) > 0). Most often, (1.1) has been

studied when it is in the canonical form, see for example [1], [2], [4], [7]–[11], [13], [16]

and the references cited therein. For noncanonical equations, both signs of the first

difference {∆y(n)} of any positive solutions {y(n)} are possible and have to be dealt

with. An approach most often in the literature for investigating such equations is to

extend known results for canonical equations, see for example [3], [5], [6], [12] and

the references cited therein.

Our main aim here is to study oscillatory properties of (1.1) by first transforming

the noncanonical equation (1.1) into the canonical form. This approach significantly

simplifies the investigation of the oscillatory behaviour of (1.1). To our best knowl-

edge, there are no oscillation results in the literature using this method on quasi-linear

difference equations. We provide some examples to demonstrate the importance of

our main results. As a convenience and without loss of generality, we only deal in our

proofs with positive solutions of (1.1). All functional inequalities are assumed to hold

eventually, that is, for n large enough.

2. Oscillation results

Throughout the rest of the paper assume that the condition (1.3) holds. For

convenience we use the following notations without further mention:

E(n) = p1/α(n)B(n)B(n + 1), F (n) =
n−1
∑

s=n1

1/E(s),

γ = 1 + β − α, Q(n) = B(n+ 1)Bα−1(n)Bγ(n− k)η(n)/α

for every integer n1 > n0.
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To prove our main results, we use the following lemmas.

Lemma 2.1. Let {y(n)} be an eventually positive solution of (1.1). Then one of

the following two cases holds for all sufficiently large n:

(I) y(n) > 0, p(n)(∆y(n))α > 0, and ∆(p(n)(∆y(n))α) < 0;

(II) y(n) > 0, p(n)(∆y(n))α < 0, and ∆(p(n)(∆y(n))α) < 0.

P r o o f. The proof is similar to that of Lemma 2.1 in [6] and so the details are

omitted. �

The next lemma play a key role in the proof of our main results.

Lemma 2.2. Assume that {y(n)} is an eventually positive solution of (1.1). Then

(2.1)
(p1/α(n)∆y(n)

y(n− k)

)α−1

6 B1−α(n).

P r o o f. Let {y(n)} be an eventually positive solution of (1.1). Then by

Lemma 2.1, we see that ∆y(n) > 0 or ∆y(n) < 0, say for n > n1 > n0.

First assume that ∆y(n) < 0 for all n > n1. Since p1/α(n)∆y(n) is decreasing

(see (1.1))

(2.2) y(n− k) > y(n) >

∞
∑

s=n

1

p1/α(s)
(−p1/α(s)∆y(s)) > −B(n)p1/α(n)∆y(n) > 0.

Now (2.1) immediately follows from (2.2) and the fact that α > 1 is the quotient of

odd positive integers.

Next assume that ∆y(n) > 0. First note that A(n − k) + B(n− k) = B(n0) > 0.

This, together with (1.3), implies A(n − k) > B(n) for large n, say for n > n1 for

some n1 > n0. Then

y(n−k)>

n−k−1
∑

s=n0

1

p1/α(s)
p1/α(s)∆y(s)>A(n−k)p1/α(n)∆y(n)>B(n)p1/α(n)∆y(n),

which is clearly equivalent to (2.1). The proof of the lemma is complete. �

Theorem 2.3. Assume that the difference equation

(2.3) ∆(E(n)∆u(n)) +Q(n)uγ(n− k) = 0

is oscillatory. Then (1.1) is oscillatory.
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P r o o f. Assume that {y(n)} is an eventually positive solution of (1.1). By the

mean-value theorem (see [9]), it is easy to see that

∆(p(n)(∆y(n))α) > α(p1/α(n)∆y(n))α−1∆(p1/α(n)∆y(n))

or

−η(n)yβ(n− k) > α(p1/α(n)∆y(n))α−1∆(p1/α(n)∆y(n)).

This implies

(2.4) ∆(p1/α(n)∆y(n)) +
1

α
(p1/α(n)∆y(n))α−1η(n)yβ(n− k) 6 0.

Combining (2.1) and (2.4), we obtain

(2.5) ∆(p1/α(n)∆y(n)) +
1

α
Bα−1(n)η(n)y1+β−x(n− k) 6 0, n > n1 > n0.

Using a method similar to the one used in the proof of Lemma 2.1 in [5], the inequal-

ity (2.5) can be rewritten in the equivalent canonical form as

(2.6)
1

B(n+ 1)
∆
(

p1/α(n)B(n)B(n+ 1)∆
( y(n)

B(n)

))

+
1

α
Bα−1(n)η(n)y1+β−x(n− k) 6 0.

The oscillation preserving transformation y(n) = B(n)u(n) reduces (2.6) to

(2.7) ∆(E(n)∆u(n)) +Q(n)uγ(n− k) 6 0.

But by Lemma 1 of [14], the corresponding equation (2.3) also has a positive solution.

This contradiction proves the theorem. �

Lemma 2.4. Let {u(n)} be a positive solution of (2.3). Then

(i) {u(n)} is eventually increasing and E(n)∆u(n) is eventually decreasing;

(ii) {u(n)/F (n)} is eventually decreasing;

(iii) u(n) > F (n)E(n)∆u(n), n > n1.

P r o o f. The proof is similar to that of Lemma 2.1 of [9] and hence omitted. �

Theorem 2.5. Let γ > 1. If

(2.8)

∞
∑

n=n0

F γ(n− k)

F γ−1(n+ 1)
Q(n) = ∞

then (1.1) is oscillatory.
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P r o o f. Assume that (1.1) is not oscillatory. Then by Theorem 2.3, we see

that (2.3) is also not oscillatory. Let {u(n)} be an eventually positive solution of (2.3);

then there exists an integer n1 > n0 such that u(n) > 0 and u(n − k) > 0 for all

n > n1. By Lemma 2.4, one can see that {u(n)} is increasing and {E(n)∆u(n)} is

positive and decreasing for all n > n2 for some n2 > n1. Put

(2.9) w(n) =
F (n)E(n)∆u(n)

uγ(n)
, n > n2.

Clearly, w(n) > 0 and

(2.10) ∆w(n) =
F (n+ 1)∆(E(n)∆u(n))

uγ(n+ 1)
+

∆u(n)

uγ(n+ 1)
−

F (n)E(n)∆u(n)

uγ(n)uγ(n+ 1)
∆uγ(n).

Since u(n) is positive and increasing, we have

∆uγ(n) = uγ(n+ 1)− uγ(n) > 0

and using this in (2.10) implies

(2.11) ∆w(n) 6 −
F (n+ 1)Q(n)uγ(n− k)

uγ(n+ 1)
+

∆u(n)

uγ(n+ 1)
, n > n2.

From Lemma 2.4, we know that u(n)/F (n) is eventually decreasing and hence for

n > n3 > n2

(2.12)
u(n+ 1)

F (n+ 1)
6

u(n− k)

F (n− k)
.

Combining (2.12) with (2.11) yields

(2.13) ∆w(n) 6 −
F γ(n− k)

F γ−1(n+ 1)
Q(n) +

∆u(n)

uγ(n+ 1)
, n > n3.

Summing up (2.13) from n3 to n, we obtain

(2.14)

n
∑

s=n3

F γ(s− k)

F γ−1(s+ 1)
Q(s) 6 w(n3) +

n
∑

s=n3

∆u(s)

uγ(s+ 1)
.

Let f(x) = u(n) + ∆u(n)(x − n), n 6 x 6 n + 1, n > n3. Then f(n) = u(n),

f(n + 1) = u(n + 1) and f ′(x) = ∆u(n) > 0, n < x < n + 1, n > n3. Thus, f is

continuous and increasing for x > n3. We then have

∆u(s)

uγ(s+ 1)
=

∫ s+1

s

∆u(s)

uγ(s+ 1)
dx =

∫ s+1

s

f−γ(s+ 1)f ′(x) dx

<

∫ s+1

s

f−γ(x)f ′(x) dx =
1

1− γ
(f1−γ(s+ 1)− f1−γ(s)).
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This implies that

n
∑

s=n3

∆u(s)

uγ(s+ 1)
6

1

1− γ
(f1−γ(n+ 1)− f1−γ(n3)).

Since γ > 1 and f is an increasing function, it follows from (2.14) that

n
∑

s=n3

F γ(s− k)

F γ−1(s+ 1)
Q(s) 6 w(n3) +

F 1−γ(n3)

γ − 1
< ∞,

which contradicts (2.8) as n → ∞. The proof of the theorem is complete. �

Theorem 2.6. Let 0 < γ < 1. If

(2.15)

∞
∑

n=n0

F γ(n− k)Q(n) = ∞

then (1.1) is oscillatory.

P r o o f. Assume that (1.1) has a nonoscillatory solution; then by Theorem 2.3,

equation (2.3) also has a nonoscillatory solution. Let {u(n)} be an eventually pos-

itive solution of (2.3) and there exists an integer n1 > n0 such that u(n) > 0 and

u(n−k) > 0 for all n > n1. By Lemma 2.4, u(n) is increasing and E(n)∆u(n) is pos-

itive and decreasing for all n > n2 for some n2 > n1. From Lemma 2.4 (iii), we have

u(n− k) > F (n− k)E(n− k)∆u(n− k) > F (n− k)E(n)∆u(n)

since E(n)∆u(n) is decreasing. Using this in (2.3), dividing the resulting inequality

by (E(n)∆u(n))γ and summing up from n1 to n, we obtain

n
∑

s=n1

∆(E(s)∆u(s))

(E(s)∆u(s))γ
+

n
∑

s=n1

F γ(s− k)Q(s) 6 0, n > n1

or

n
∑

s=n1

F γ(s− k)Q(s) 6 −
n
∑

s=n1

∆(E(s)∆u(s))

(E(s)∆u(s))γ
6

n
∑

s=n1

∫ E(s)∆u(s)

E(s+1)∆u(s+1)

1

xγ
dx

<

∫ E(n1)∆u(n1)

0

1

xγ
dx =

E(n1)∆u(n1)
1−γ

1− γ
< ∞

since 0 < γ < 1, which contradicts (2.15) as n → ∞. The proof of the theorem is

complete. �
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3. Examples

In this section, we present two examples to illustrate our main results.

E x am p l e 3.1. Consider the second-order quasilinear retarded difference equa-

tion

(3.1) ∆(n3(n+ 1)3(∆yn)
3) + n4y5(n− 3) = 0, n > 4.

Here p(n) = n3(n+1)3, α = 3, β = 5, k = 3 and η(n) = n4. By a simple calculation,

we obtain B(n) = 1/n, E(n) = 1, F (n) = n, γ = 3 and Q(n) = 1
3n

2/(n+ 1)(n− 3)3.

The transformed canonical equation is

∆2u(n) +
n2

3(n+ 1)(n− 3)3
u3(n− 3) = 0, n > 4.

Now, the condition (2.8) becomes

∞
∑

n=4

(n− 3)3

3(n+ 1)2
n2

(n+ 1)(n− 3)3
=

∞
∑

n=4

n2

3(n+ 1)3
= ∞,

that is, the condition (2.8) is satisfied. Therefore by Theorem 2.5, the equation (3.1)

is oscillatory.

E x am p l e 3.2. Consider the second-order nonlinear retarded difference equa-

tion

(3.2) ∆(n3(n+ 1)3(∆y(n))3) + n(n+ 1)y7/3(n− 2) = 0, n > 3.

Here p(n) = n3(n + 1)3, α = 3, β = 7
3 , k = 2, and η(n) = n(n + 1). By a simple

computation, we see that B(n) = 1/n, E(n) = 1, F (n) = n, γ = 1
3 and Q(n) =

1/3n(n− 2)1/3. The transformed canonical equation is

∆2u(n) +
1

3n(n− 2)1/3
u1/3(n− 2) = 0, n > 3.

The condition (2.15) becomes

∞
∑

n=3

(n− 2)1/3

3n(n− 2)1/3
=

∞
∑

n=3

1

3n
= ∞,

so by Theorem 2.6 the equation (3.2) is oscillatory.
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4. Conclusion

The oscillatory behavior of solutions of the equation (1.1) for the case α = β

is discussed in [12] and therefore in this paper we have studied oscillation of the

equation (1.1) for the case α 6= β. Thus the results of this paper are new and

complementary to some existing results reported in the literature. Further note that

our results are applicable only to delay difference equations.
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