THE UNIT GROUP OF SOME FIELDS OF THE FORM

$$
\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-l})
$$

Moha Ben Taleb El Hamam, Fez
Received June 3, 2022. Published online February 9, 2023.
Communicated by Clemens Fuchs

Abstract

Let p and q be two different prime integers such that $p \equiv q \equiv 3(\bmod 8)$ with $(p / q)=1$, and l a positive odd square-free integer relatively prime to p and q. In this paper we investigate the unit groups of number fields $\mathbb{Q}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-l})$.

Keywords: unit group; multiquadratic number fields; unit index
MSC 2020: 11R27, 11R04, 11R29

1. Introduction

Let k be a number field of degree n and let E_{k} denote the unit group of k that is the group of the invertible elements of the ring \mathcal{O}_{k} of algebraic integers of the number field k. By Dirichlet's well known unit theorem, if $n=r_{1}+2 r_{2}$, where r_{1} is the number of real embeddings and r_{2} the number of conjugate pairs of complex embeddings of k, then there exist $r=r_{1}+r_{2}-1$ units of \mathcal{O}_{k} that generate E_{k} (modulo the roots of unity), and these r units are called a fundamental system of units of k. Therefore

$$
E_{k} \simeq \mu(k) \times \mathbb{Z}^{r_{1}+r_{2}-1}
$$

where $\mu(k)$ is the group of roots of unity contained in k.
A major problem in algebraic number theory (and thus in the theory of units of number fields which is related to all areas of algebraic number theory) is the computation of a fundamental system of units. For quadratic fields, the problem is easily solved. For quartic bicyclic fields, Kubota (see [10]) gave a method for finding a fundamental system of units. Wada in [11] generalized Kubota's method, creating an algorithm for computing fundamental units in any given multiquadratic field. However, in general, it is not easy to compute the unit group of a number field especially
for number fields of degree greater than 4. Very recently, Azizi, Chems-Eddin and Zekhnini used some very technical computations to determine the unit group of some number fields k of degree 16 (cf. [4]-[7], [9]). This paper is actually a continuation of these works. We determine 7 generators of the torsion-free subgroup of E_{k} for an infinite family of number fields k of degree 16 of the form $\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-l})$, where $p \equiv q \equiv 3(\bmod 8)$ are two different prime integers and l a positive odd square-free integer. We note that the computation of the unit group of these fields may be very important to deal with the problem of the 2 -class field tower of biquadratic number fields (see, for example, [2]).

Let ε_{m} denote the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{m})$ and $(\% \cdot)$ the Legendre symbol. Then the main theorem of this paper is the following.

Theorem 1.1. Let $p \equiv q \equiv 3(\bmod 8)$ be two different prime integers, l a positive odd square-free integer relatively prime to p and q, and $\mathbb{L}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-l})$. Without loss of generality we may assume that $(p / q)=1$. So we have:
(1) If $l=1$, then a fundamental system of units of \mathbb{L} is given by

$$
\left\{\varepsilon_{2}, \sqrt{\varepsilon_{p}}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{p q}}, \sqrt{\sqrt{\varepsilon_{p}} \sqrt{\varepsilon_{q}} \sqrt{\varepsilon_{2 p q}}}, \sqrt{\sqrt{\varepsilon_{2 p}} \sqrt{\varepsilon_{2 q}} \sqrt{\varepsilon_{2 p q}}}, \sqrt{\zeta_{8} \varepsilon_{2} \sqrt{\varepsilon_{p}} \sqrt{\varepsilon_{2 p}}}\right\}
$$

where ζ_{8} is a primitive 8 th root of unity.
(2) If $l \neq 1$, then a fundamental system of units of \mathbb{L} is given by

$$
\left\{\varepsilon_{2}, \sqrt{\varepsilon_{p}}, \sqrt{\varepsilon_{2 p}}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{p q}}, \sqrt{\sqrt{\varepsilon_{p}} \sqrt{\varepsilon_{q}} \sqrt{\varepsilon_{2 p q}}}, \sqrt{\sqrt{\varepsilon_{2 p}} \sqrt{\varepsilon_{2 q}} \sqrt{\varepsilon_{2 p q}}}\right\} .
$$

The proof of this theorem needs long and technical computations. Therefore, we will expose it in the third section of the paper.

2. Preliminary results

In this section we recall some results that will be useful in what follows.
Lemma 2.1. Let K_{0} be a real number field, $K=K_{0}(i)$ a quadratic extension of $K_{0}, n \geqslant 2$ an integer and ξ_{n} a primitive 2^{n} th root of unity, then $\xi_{n}=\frac{1}{2}\left(\mu_{n}+\mathrm{i} \lambda_{n}\right)$, where $\mu_{n}=\sqrt{2+\mu_{n-1}}, \lambda_{n}=\sqrt{2-\mu_{n-1}}, \mu_{2}=0, \lambda_{2}=2$ and $\mu_{3}=\lambda_{3}=\sqrt{2}$. Let n_{0} be the greatest integer such that $\xi_{n_{0}}$ is contained in $K,\left\{\varepsilon_{1}, \ldots, \varepsilon_{r}\right\}$ a fundamental system of units of K_{0} and ε a unit of K_{0} such that $\left(2+\mu_{n_{0}}\right) \varepsilon$ is a square in K_{0} (if it exists). Then a fundamental system of units of K is one of the following systems: (1) $\left\{\varepsilon_{1}, \ldots, \varepsilon_{r-1}, \sqrt{\xi_{n_{0}} \varepsilon}\right\}$ if ε exists, in this case $\varepsilon=\varepsilon_{1}^{j_{1}} \ldots \varepsilon_{r-1}^{j_{r-1}} \varepsilon_{r}$, where $j_{i} \in\{0,1\}$. (2) $\left\{\varepsilon_{1}, \ldots, \varepsilon_{r}\right\}$ otherwise.

Proof. See [1], Proposition 2.

Lemma 2.2. Let K_{0} / \mathbb{Q} be an abelian extension such that K_{0} is real and β a positive square-free algebraic integer of K_{0}. Assume that $K=K_{0}(\sqrt{-\beta})$ is a quadratic extension of K_{0}, which is abelian over \mathbb{Q}. Assume furthermore that $\mathrm{i}=\sqrt{-1} \notin K$. Let $\left\{\varepsilon_{1}, \ldots, \varepsilon_{r}\right\}$ be a fundamental system of units of K_{0}. Without loss of generality we may suppose that the units ε_{i} are positive. Let ε be a unit of K_{0} such that $\beta \varepsilon$ is a square in K_{0} (if it exists). Then a fundamental system of units of K is one of the following systems:
(1) $\left\{\varepsilon_{1}, \ldots, \varepsilon_{r-1}, \sqrt{-\varepsilon}\right\}$ if ε exists, in this case $\varepsilon=\varepsilon_{1}^{j_{1}} \ldots \varepsilon_{r-1}^{j_{r-1}} \varepsilon_{r}$, where $j_{i} \in\{0,1\}$. (2) $\left\{\varepsilon_{1}, \ldots, \varepsilon_{r}\right\}$ otherwise.

Proof. See [1], Proposition 3.

Lemma 2.3. Let $p \equiv q \equiv 3(\bmod 8)$ be two primes such that $(p / q)=1$.
(1) Let x and y be two integers such that $\varepsilon_{2 p q}=x+y \sqrt{2 p q}$. Then
(a) $x-1$ is a square in \mathbb{N},
(b) $\sqrt{2 \varepsilon_{2 p q}}=y_{1}+y_{2} \sqrt{2 p q}$ and $2=-y_{1}^{2}+2 p q y_{2}^{2}$ for some integers y_{1} and y_{2} satisfying $y=y_{1} y_{2}$.
(2) There are two integers a and b such that $\varepsilon_{p q}=a+b \sqrt{p q}$ and we have
(a) $2 p(a+1)$ is a square in \mathbb{N},
(b) b is even, $\sqrt{\varepsilon_{p q}}=b_{1} \sqrt{p}+b_{2} \sqrt{q}$ and $1=p b_{1}^{2}-q b_{2}^{2}$ for some integers b_{1} and b_{2} such that $b=2 b_{1} b_{2}$.
(3) Let c and d be two integers such that $\varepsilon_{2 q_{i}}=c+d \sqrt{2 q_{i}}$. Then we have
(a) $c-1$ is a square in \mathbb{N},
(b) $\sqrt{2 \varepsilon_{2 q_{i}}}=d_{1}+d_{2} \sqrt{2 q_{i}}$ and $2=-d_{1}^{2}+2 q_{i} d_{2}^{2}$ for some integers d_{1} and d_{2} such that $d=d_{1} d_{2}$.
(4) Let α and β be two integers such that $\varepsilon_{q_{i}}=\alpha+\beta \sqrt{q_{i}}$. Then we have
(a) $\alpha-1$ is a square in \mathbb{N},
(b) $\sqrt{2 \varepsilon_{q_{i}}}=\beta_{1}+\beta_{2} \sqrt{q_{i}}$ and $2=-\beta_{1}^{2}+q_{i} \beta_{2}^{2}$ for some integers β_{1} and β_{2} such that $\beta=\beta_{1} \beta_{2}$.

Proof. See [8], Lemma 2.4.

3. Proof of Theorem 1.1

Now we can prove Theorem 1.1. Let us prove the first statement.
(1) Without loss of generality we can suppose that $(p / q)=1$. First we will need a fundamental system of units of $\mathbb{L}^{+}=\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q})$ and then using Lemma 2.1 we deduce a fundamental system of units of \mathbb{L}.

Consider the following diagram of subfields of $\mathbb{L}^{+} / \mathbb{Q}(\sqrt{2})$.

Put $\operatorname{Gal}\left(\mathbb{L}^{+} / \mathbb{Q}\right)=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle$, where

$$
\begin{array}{lll}
\sigma_{1}(\sqrt{2})=-\sqrt{2}, & \sigma_{1}(\sqrt{p})=\sqrt{p}, & \sigma_{1}(\sqrt{q})=\sqrt{q} \\
\sigma_{2}(\sqrt{2})=\sqrt{2}, & \sigma_{2}(\sqrt{p})=-\sqrt{p}, & \sigma_{2}(\sqrt{q})=\sqrt{q} \\
\sigma_{3}(\sqrt{2})=\sqrt{2}, & \sigma_{3}(\sqrt{p})=\sqrt{p}, & \sigma_{3}(\sqrt{q})=-\sqrt{q}
\end{array}
$$

By [8], Proposition 2.7, we have

$$
E_{\mathbb{\mathrm { + }}}=\left\langle-1, \varepsilon_{2}, \sqrt{\varepsilon_{p}}, \sqrt{\varepsilon_{2 p}}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon_{p q}}, \sqrt{\sqrt{\varepsilon_{p}} \sqrt{\varepsilon_{q}} \sqrt{\varepsilon_{2 p q}}}, \sqrt{\sqrt{\varepsilon_{2 p}} \sqrt{\varepsilon_{2 q}} \sqrt{\varepsilon_{2 p q}}}\right\rangle .
$$

Put

$$
\xi^{2}=(2+\sqrt{2}) \varepsilon_{2}^{a}{\sqrt{\varepsilon_{p}}}^{b}{\sqrt{\varepsilon_{2 p}}}^{c}{\sqrt{\varepsilon_{q}}}^{d}{\sqrt{\varepsilon_{p q}}}^{e}{\sqrt[4]{\varepsilon_{p} \varepsilon_{q} \varepsilon_{2 p q}}}^{f} \sqrt[4]{\varepsilon_{2 p} \varepsilon_{2 q} \varepsilon_{2 p q}} g
$$

with $a, b, c, d, e, f, g \in\{0,1\}$ (see also [3], Theorem 3.14). We use norm maps from \mathbb{L}^{+} to its biquadratic subextensions. The computations of these norms are summarized in the following table (see Table 1). Note that the third line of Table 1 is constructed as follows (we similarly construct the rest of the table) By Lemma 2.3, we have $\sqrt{\varepsilon_{p}}=\frac{1}{\sqrt{2}}\left(\beta_{1}+\beta_{2} \sqrt{p}\right)$ and $2=-\beta_{1}^{2}+p \beta_{2}^{2}$. Thus

$$
\begin{aligned}
{\sqrt{\varepsilon_{p}}}^{\sigma_{1}} & =\frac{1}{-\sqrt{2}}\left(\beta_{1}+\beta_{2} \sqrt{p}\right)=-\sqrt{\varepsilon_{p}} \\
{\sqrt{\varepsilon_{p}}}^{\sigma_{2}} & =\frac{1}{\sqrt{2}}\left(\beta_{1}-\beta_{2} \sqrt{p}\right)=\frac{1}{\sqrt{2}} \frac{\left(\beta_{1}-\beta_{2} \sqrt{p}\right)\left(\beta_{1}+\beta_{2} \sqrt{p}\right)}{\beta_{1}+\beta_{2} \sqrt{p}} \\
& =\frac{1}{\sqrt{2}} \frac{\left(\beta_{1}^{2}-\beta_{2}^{2} p\right)}{\sqrt{2} \sqrt{\varepsilon_{p}}}=\frac{1}{2} \frac{-2}{\sqrt{\varepsilon_{p}}}=\frac{-1}{\sqrt{\varepsilon_{p}}}, \\
{\sqrt{\varepsilon_{p}}}^{\sigma_{3}} & =\frac{1}{\sqrt{2}}\left(\beta_{1}+\beta_{2} \sqrt{p}\right)=\sqrt{\varepsilon_{p}} \\
{\sqrt{\varepsilon_{p}}}^{1+\sigma_{1}} & =\sqrt{\varepsilon_{p}} \sigma_{1}\left(\sqrt{\varepsilon_{p}}\right)=\sqrt{\varepsilon_{p}}\left(-\sqrt{\varepsilon_{p}}\right)=-\varepsilon_{p} \\
{\sqrt{\varepsilon_{p}}}^{1+\sigma_{2}} & =\sqrt{\varepsilon_{p}} \sigma_{2}\left(\sqrt{\varepsilon_{p}}\right)=\sqrt{\varepsilon_{p}}\left(\frac{-1}{\sqrt{\varepsilon_{p}}}\right)=-1, \\
{\sqrt{\varepsilon_{p}}}^{1+\sigma_{1} \sigma_{3}} & =\sqrt{\varepsilon_{p}} \sigma_{1}\left(\sigma_{3}\left(\sqrt{\varepsilon_{p}}\right)\right)=\sqrt{\varepsilon_{p}} \sigma_{1}\left(\sqrt{\varepsilon_{p}}\right)=\sqrt{\varepsilon_{p}}\left(-\sqrt{\varepsilon_{p}}\right)=-\varepsilon_{p} \\
{\sqrt{\varepsilon_{p}}}^{1+\sigma_{2} \sigma_{3}} & =\sqrt{\varepsilon_{p}} \sigma_{2}\left(\sigma_{3}\left(\sqrt{\varepsilon_{p}}\right)\right)=\sqrt{\varepsilon_{p}} \sigma_{2}\left(\sqrt{\varepsilon_{p}}\right)=\sqrt{\varepsilon_{p}}\left(\frac{-1}{\sqrt{\varepsilon_{p}}}\right)=-1 .
\end{aligned}
$$

ε	$\varepsilon^{\sigma_{1}}$	$\varepsilon^{\sigma_{2}}$	$\varepsilon^{\sigma_{3}}$	$\varepsilon^{1+\sigma_{1}}$	$\varepsilon^{1+\sigma_{2}}$	$\varepsilon^{1+\sigma_{1} \sigma_{3}}$	$\varepsilon^{1+\sigma_{2} \sigma_{3}}$
ε_{2}	$\frac{-1}{\sqrt{\varepsilon_{2}}}$	ε_{2}	ε_{2}	-1	ε_{2}^{2}	-1	ε_{2}^{2}
$\sqrt{\varepsilon_{p}}$	$-\sqrt{\varepsilon_{p}}$	$\frac{-1}{\sqrt{\varepsilon_{p}}}$	$\sqrt{\varepsilon_{p}}$	$-\varepsilon_{p}$	-1	$-\varepsilon_{p}$	-1
$\sqrt{\varepsilon_{2 p}}$	$\frac{1}{\sqrt{\varepsilon_{2 p}}}$	$\frac{-1}{\sqrt{\varepsilon_{2 p}}}$	$\sqrt{\varepsilon_{2 p}}$	1	-1	1	-1
$\sqrt{\varepsilon_{q}}$	$-\sqrt{\varepsilon_{q}}$	$\sqrt{\varepsilon_{q}}$	$\frac{-1}{\sqrt{\varepsilon_{q}}}$	$-\varepsilon_{q}$	ε_{q}	1	-1
$\sqrt{\varepsilon_{2 q}}$	$\frac{1}{\sqrt{\varepsilon_{2 q}}}$	$\sqrt{\varepsilon_{2 q}}$	$\frac{-1}{\sqrt{\varepsilon_{2 q}}}$	1	$\varepsilon_{2 q}$	$-\varepsilon_{2 q}$	-1
$\sqrt{\varepsilon_{p q}}$	$\sqrt{\varepsilon_{p q}}$	$\frac{-1}{\sqrt{\varepsilon_{p q}}}$	$\frac{1}{\sqrt{\varepsilon_{p q}}}$	$\varepsilon_{p q}$	-1	1	$-\varepsilon_{p q}$
$\sqrt{\varepsilon_{2 p q}}$	$\frac{1}{\sqrt{\varepsilon_{2 p q}}}$	$\frac{-1}{\sqrt{\varepsilon_{2 p q}}}$	$\frac{-1}{\sqrt{\varepsilon_{2 p q}}}$	1	-1	$-\varepsilon_{2 p q}$	$\varepsilon_{2 p q}$

Table 1. Norms in $\mathbb{L}^{+} / \mathbb{Q}(\sqrt{2})$.
Let us eliminate some forms of ξ^{2} such that ξ cannot be in \mathbb{L}. Considering $L_{4}=$ $\mathbb{Q}(\sqrt{p}, \sqrt{q})$, we apply the norm $N_{\mathbb{\mathbb { L }}} L_{4}=1+\sigma_{1}$,

$$
\begin{aligned}
N_{\mathbb{L} / L_{4}}\left(\xi^{2}\right) & =2(-1)^{a}(-1)^{b} \varepsilon_{p}^{b} 1(-1)^{d}\left(\varepsilon_{q}\right)^{d} \varepsilon_{p q}^{e}(-1)^{u f}{\sqrt{\varepsilon_{p}}}^{f}{\sqrt{\varepsilon_{q}}}^{f}(-1)^{g v} \\
& =(-1)^{a+b+d+u f+g v} 2 \varepsilon_{p}^{b} \varepsilon_{q}^{d} \varepsilon_{p q}^{e}{\sqrt{\varepsilon_{p}}}^{f}{\sqrt{\varepsilon_{q}}}^{f}
\end{aligned}
$$

Therefore, $a+b+d+u f+g v \equiv 0(\bmod 2)$. One can easily deduce that $f=0$. Thus $a+b+d+g v \equiv 0(\bmod 2)$ and

$$
\xi^{2}=(2+\sqrt{2}) \varepsilon_{2}^{a}{\sqrt{\varepsilon_{p}}}^{b}{\sqrt{\varepsilon_{2 p}}}^{c}{\sqrt{\varepsilon_{q}}}^{d}{\sqrt{\varepsilon_{p q}}}^{e} \sqrt[4]{\varepsilon_{2 p} \varepsilon_{2 q} \varepsilon_{2 p q}} .
$$

Now we apply the norm $N_{\mathbb{L} / L_{3}}=1+\sigma_{2} \sigma_{3}$, where $L_{3}=\mathbb{Q}(\sqrt{2}, \sqrt{p q})$. We have

$$
\begin{aligned}
N_{\mathbb{L} / L_{3}}\left(\xi^{2}\right) & =(2+\sqrt{2})^{2} \varepsilon_{2}^{2 a}(-1)^{b}(-1)^{c}(-1)^{d}(-1)^{e} \varepsilon_{p q}^{e}(-1)^{t g}{\sqrt{\varepsilon_{2 p q}}}^{g} \\
& =(2+\sqrt{2})^{2} \varepsilon_{2}^{2 a}(-1)^{b+c+d+e+t g} \varepsilon_{p q}^{e}{\sqrt{\varepsilon_{2 p q}}}^{g}
\end{aligned}
$$

Using Lemma 2.3, it is easy to deduce that $e=g=0$. Thus $b+c+d \equiv 0(\bmod 2)$ and $a+b+d \equiv 0(\bmod 2)$. It follows that $a=c$ and

$$
\xi^{2}=(2+\sqrt{2}) \varepsilon_{2}^{a}{\sqrt{\varepsilon_{p}}}^{b}{\sqrt{\varepsilon_{2 p}}}^{a}{\sqrt{\varepsilon_{q}}}^{d}
$$

Let us apply $N_{\mathbb{L} / L_{5}}=1+\sigma_{1} \sigma_{3}$ with $L_{5}=\mathbb{Q}(\sqrt{p}, \sqrt{2 q})$. We have

$$
N_{\mathbb{L} / L_{3}}\left(\xi^{2}\right)=2(-1)^{a}(-1)^{b} \varepsilon_{p}^{b} 11=(-1)^{a+b} 2 \varepsilon_{p}^{b} .
$$

So $a+b \equiv 0(\bmod 2)$. Since 2 is not a square in L_{5}, then using Lemma 2.3, one easily deduces that $b=1$ and so $a=1$. Since $a+b+d \equiv 0(\bmod 2)$, then $d=0$. Therefore,

$$
\xi^{2}=(2+\sqrt{2}) \varepsilon_{2} \sqrt{\varepsilon_{p}} \sqrt{\varepsilon_{2 p}}
$$

Since Hasse's unit index $Q_{\mathbb{\unrhd}}$ equals 2 (cf. the proof of the main theorem of [8]), then by Lemma 2.1, $(2+\sqrt{2}) \varepsilon_{2} \sqrt{\varepsilon_{p}} \sqrt{\varepsilon_{2 p}}$ is a square and therefore the first statement holds.
(2) For the proof of the second statement we similarly put

$$
\xi^{2}=l \varepsilon_{2}^{a}{\sqrt{\varepsilon_{p}}}^{b}{\sqrt{\varepsilon_{2 p}}}^{c}{\sqrt{\varepsilon_{q}}}^{d}{\sqrt{\varepsilon_{p q}}}_{e}^{e} \sqrt[4]{\varepsilon_{p} \varepsilon_{q} \varepsilon_{2 p q}}{\sqrt[4]{\varepsilon_{2 p} \varepsilon_{2 q} \varepsilon_{2 p q}}}^{g}
$$

with $a, b, c, d, e, f \in\{0,1\}$. We proceed as above to eliminate all forms of ξ^{2} and we deduce the result by using Lemma 2.2.

Let us eliminate some forms of ξ^{2} such that ξ cannot be in \mathbb{L}. Considering $L_{4}=$ $\mathbb{Q}(\sqrt{p}, \sqrt{q})$, we apply the norm $N_{\mathbb{L} / L_{4}}=1+\sigma_{1}$,

$$
\begin{aligned}
N_{\mathbb{L} / L_{4}}\left(\xi^{2}\right) & =l^{2}(-1)^{a}(-1)^{b} \varepsilon_{p}^{b} 1(-1)^{d}\left(\varepsilon_{q}\right)^{d} \varepsilon_{p q}^{e}(-1)^{u f}{\sqrt{\varepsilon_{p}}}^{f}{\sqrt{\varepsilon_{q}}}^{f}(-1)^{g v} \\
& =l^{2}(-1)^{a+b+d+u f+g v} \varepsilon_{p}^{b} \varepsilon_{q}^{d} \varepsilon_{p q}^{e}{\sqrt{\varepsilon_{p}}}^{f}{\sqrt{\varepsilon_{q}}}^{f} .
\end{aligned}
$$

Therefore, $a+b+d+u f+g v \equiv 0(\bmod 2)$. One can easily deduce that $f=0$. Thus $a+b+d+g v \equiv 0(\bmod 2)$ and

$$
\xi^{2}=l \varepsilon_{2}^{a}{\sqrt{\varepsilon_{p}}}^{b}{\sqrt{\varepsilon_{2 p}}}^{c}{\sqrt{\varepsilon_{q}}}^{d}{\sqrt{\varepsilon_{p q}}}^{e} \sqrt[4]{\varepsilon_{2 p} \varepsilon_{2 q} \varepsilon_{2 p q}} .
$$

Now we apply the norm $N_{\mathbb{\mathbb { L }}} L_{3}=1+\sigma_{2} \sigma_{3}$, where $L_{3}=\mathbb{Q}(\sqrt{2}, \sqrt{p q})$. We have

$$
\begin{aligned}
N_{\mathbb{\square} / L_{3}}\left(\xi^{2}\right) & =l^{2} \varepsilon_{2}^{2 a}(-1)^{b}(-1)^{c}(-1)^{d}(-1)^{e} \varepsilon_{p q}^{e}(-1)^{t g} \sqrt{\varepsilon_{2 p q}} \\
& =l^{2} \varepsilon_{2}^{2 a}(-1)^{b+c+d+e+t g} \varepsilon_{p q}^{e}{\sqrt{\varepsilon_{2 p q}}}^{g} .
\end{aligned}
$$

Using Lemma 2.3, it is easy to deduce that $e=g=0$. Thus $b+c+d \equiv 0(\bmod 2)$ and $a+b+d \equiv 0(\bmod 2)$. It follows that $a=c$ and

$$
\xi^{2}=l \varepsilon_{2}^{a}{\sqrt{\varepsilon_{p}}}^{b}{\sqrt{\varepsilon_{2 p}}}^{a}{\sqrt{\varepsilon_{q}}}^{d} .
$$

Let us apply $N_{\mathbb{Q} / L_{5}}=1+\sigma_{1} \sigma_{3}$ with $L_{5}=\mathbb{Q}(\sqrt{p}, \sqrt{2 q})$. We have

$$
N_{\mathbb{\square} / L_{3}}\left(\xi^{2}\right)=l(-1)^{a}(-1)^{b} \varepsilon_{p}^{b} 11=l(-1)^{a+b} \varepsilon_{p}^{b} .
$$

Therefore, $a+b \equiv 0(\bmod 2)$ and by Lemma 2.3, it is clear that $b=0$. Thus, $a=0$. Since $a+b+d \equiv 0(\bmod 2)$, this implies that $d=0$. Hence Lemma 2.2 gives the second statement of Theorem 1.1.

Acknowledgment. The author would like to thank the referee for several advices and helpful suggestions that helped improve this article, and for his calling attention to the missing details.

References

[1] A. Azizi: Unités de certains corps de nombres imaginaires et abéliens sur \mathbb{Q}. Ann. Sci. Math. Qué. 23 (1999), 15-21. (In French.)
zbl MR
[2] A. Azizi, M. M. Chems-Eddin, A. Zekhnini: Note on the Hilbert 2-class field tower. Math. Bohem. 147 (2022), 513-524.

MR doi
[3] M. M. Chems-Eddin: Arithmetic of some real triquadratic fields: Units and 2-class groups. Available at https://arxiv.org/abs/2108.04171v1 (2021), 32 pages.
[4] M. M. Chems-Eddin: Unit groups of some multiquadratic number fields and 2-class groups. Period. Math. Hung. 84 (2022), 235-249.

Zbl MR doi
[5] M. M. Chems-Eddin: On units of some fields of the form $\mathbb{Q}(\sqrt{2}, \sqrt{p}, \sqrt{q}, \sqrt{-l})$. Math. Bohem. 148 (2023), 237-242.
zbl MR doi
[6] M. M. Chems-Eddin, A. Azizi, A. Zekhnini: Unit groups and Iwasawa lambda invariants of some multiquadratic number fields. Bol. Soc. Mat. Mex, III. Ser. 27 (2021), Article ID 24, 16 pages.
zbl MR doi
[7] M. M. Chems-Eddin, A. Zekhnini, A. Azizi: Units and 2-class field towers of some multiquadratic number fields. Turk. J. Math. 44 (2020), 1466-1483.
zbl MR doi
[8] M. M. Chems-Eddin, A. Zekhnini, A. Azizi: On the Hilbert 2-class field towers of some cyclotomic \mathbb{Z}_{2}-extensions. Available at https://arxiv.org/abs/2005.06646 (2021), 15 pages.
[9] M. M. Chems-Eddin, A. Zekhnini, A. Azizi: Unit groups of some multiquadratic number fields of degree 16. São Paulo J. Math. Sci 16 (2022), 1091-1096.
zbl MR doi
[10] T. Kubota: Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J. 10 (1956), 65-85. (In German.)
zbl MR doi
[11] H. Wada: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209.

Author's address: Moha Ben Taleb El Hamam, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Fez, Morocco, e-mail: mohaelhomam@gmail.com.

