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Abstract. In this paper, a new generalization of Mersenne bihyperbolic numbers is in-
troduced. Some of the properties of presented numbers are given. A general bilinear
index-reduction formula for the generalized bihyperbolic Mersenne numbers is obtained.
This result implies the Catalan, Cassini, Vajda, d’Ocagne and Halton identities. Moreover,
generating function and matrix generators for these numbers are presented.
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1. Introduction

Let h be the unipotent element such that h 6= ±1 and h
2 = 1. A hyperbolic

number z is defined as z = x+yh, where x, y ∈ R. Denote by H the set of hyperbolic

numbers. The hyperbolic numbers were introduced by Cockle, see [5]–[8].

The addition and subtraction of hyperbolic numbers is done by adding and sub-

tracting the appropriate terms and thus their coefficients. The hyperbolic numbers

multiplication can be made analogously as multiplication of algebraic expressions us-

ing the rule h2 = 1. The real numbers x and y are called the real and unipotent parts

of the hyperbolic number z, respectively. For others details concerning hyperbolic

numbers see for example [12], [13].

The extension of complex numbers to a higher dimension is of interest not only

to mathematics but also to modern physics and engineering. Quaternions are one of

the well-known sets, however they form a non-commutative algebra.

In [11], Olariu introduced commutative hypercomplex numbers in different dimen-

sions. One of 4-dimensional commutative hypercomplex numbers is called the hyper-

bolic fourcomplex number. In [12], the authors used the name bihyperbolic numbers.
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Note that bihyperbolic numbers are a special case of generalized Segre’s quater-

nions, being a 4-dimensional commutative number system, and they are named as

canonical hyperbolic quaternions, see [3]. In this paper, we use the name bihyperbolic

numbers. Analogously as bicomplex numbers are an extension of complex numbers,

bihyperbolic numbers are a natural extension of hyperbolic numbers to 4-dimension.

Let H2 be the set of bihyperbolic numbers ζ of the form

ζ = x0 + j1x1 + j2x2 + j3x3,

where x0, x1, x2, x3 ∈ R and j1, j2, j3 /∈ R are operators such that

(1.1) j21 = j22 = j23 = 1, j1j2 = j2j1 = j3, j1j3 = j3j1 = j2, j2j3 = j3j2 = j1.

The addition and multiplication on H2 are commutative and associative. Moreover,

(H2,+, ·) is a commutative ring. For the algebraic properties of bihyperbolic num-

bers, see [1].

In this paper, we study some generalization of bihyperbolic Mersenne numbers.

The Mersenne sequence {Mn} is defined by the recurrence

(1.2) Mn = 2Mn−1 + 1 for n > 1

with the initial condition M0 = 0 or

(1.3) Mn = 3Mn−1 − 2Mn−2 for n > 2

with M0 = 0, M1 = 1. The Binet formula for the Mersenne numbers has the form

(1.4) Mn = 2n − 1.

Some interesting properties of the Mersenne numbers can be found in [2], [14].

In the literature there are some generalizations of the Mersenne numbers, see [4],

[10], [15]. In [10], a one parameter generalization of the Mersenne numbers was

investigated. We recall this generalization.

Let n > 0, k > 3 be integers, the generalized Mersenne numbers M(k, n) are

defined by the recurrence relation

(1.5) M(k, n) = kM(r, n− 1)− (k − 1)M(k, n− 2) for n > 2

with the initial conditions M(k, 0) = 0, M(k, 1) = 1. It is easily seen that

M(3, n) = Mn.
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In [9], the generalized Mersenne quaternionM
(p,r,s)
n was introduced. For an inte-

ger n and any integers p, r, s the generalized Mersenne quaternion is defined by

M(p,r,s)
n = Mn + iMn+p + jMn+r + kMn+s,

where {i, j, k} is the standard basis of quaternions. Motivated by the mentioned

concept, in this paper, we introduce and study generalized bihyperbolic Mersenne

numbers.

2. Generalized bihyperbolic Mersenne numbers

Let p > 1, r > 1, s > 1, n > 0 be integers, the nth generalized bihyperbolic

Mersenne number BhM
(p,r,s)
n is defined as

(2.1) BhM (p,r,s)
n = Mn + j1Mn+p + j2Mn+r + j3Mn+s,

where Mn is the nth Mersenne number and operators j1, j2, j3 satisfy (1.1).

By (2.1) we obtain

(2.2) BhM
(p,r,s)
0 = M0 + j1Mp + j2Mr + j3Ms,

BhM
(p,r,s)
1 = M1 + j1M1+p + j2M1+r + j3M1+s,

BhM
(p,r,s)
2 = M2 + j1M2+p + j2M2+r + j3M2+s.

For p = 1, r = 2, s = 3 we obtain the definition of the nth bihyperbolic Mersenne

number BhM
(1,2,3)
n , i.e., BhM

(1,2,3)
n = BhMn.

By the definition of the generalized bihyperbolic Mersenne numbers we get the

following recurrence relations.

Theorem 2.1. Let n > 2, p > 1, r > 1, s > 1 be integers. Then

(2.3) BhM (p,r,s)
n = 3BhM

(p,r,s)
n−1 − 2BhM

(p,r,s)
n−2 ,

where BhM
(p,r,s)
0 , BhM

(p,r,s)
1 are given by (2.2).

P r o o f. Using (2.1) and (1.3), we have

3BhM
(p,r,s)
n−1 − 2BhM

(p,r,s)
n−2 = 3(Mn−1 + j1Mn−1+p + j2Mn−1+r + j3Mn−1+s)

− 2(Mn−2 + j1Mn−2+p + j2Mn−2+r + j3Mn−2+s)

= Mn + j1Mn+p + j2Mn+r + j3Mn+s = BhM (p,r,s)
n .

�
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Theorem 2.2. Let n > 1, p > 1, r > 1, s > 1 be integers. Then

(2.4) BhM (p,r,s)
n = 2BhM

(p,r,s)
n−1 + 1 + j1 + j2 + j3,

where BhM
(p,r,s)
0 is given by (2.2).

P r o o f. Using (2.1) and (1.2), we get

2BhM
(p,r,s)
n−1 = 2(Mn−1 + j1Mn−1+p + j2Mn−1+r + j3Mn−1+s)

= Mn − 1 + j1(Mn+p − 1) + j2(Mn+r − 1) + j3(Mn−1+s − 1)

= Mn + j1Mn+p + j2Mn+r + j3Mn+s − (1 + j1 + j2 + j3)

= BhM (p,r,s)
n − (1 + j1 + j2 + j3),

which ends the proof. �

In the proof of the next theorem we will use the following result.

Theorem 2.3 ([10]). Let n > 1, t > 1 be integers. Then

Mn+1 −Mn = 2n.

Theorem 2.4. Let n > 0, p > 1, r > 1, s > 1, t > 1 be integers. Then

BhM
(p,r,s)
n+1 −BhM (p,r,s)

n = 2n(1 + 2pj1 + 2rj2 + 2sj3).

P r o o f. By the equality (2.1) and Theorem 2.3, we have

BhM
(p,r,s)
n+1 −BhM (p,r,s)

n = Mn+1 + j1Mn+1+p + j2Mn+1+r + j3Mn+1+s

− (Mn + j1Mn+p + j2Mn+r + j3Mn+s)

= Mn+1 −Mn + j1(Mn+1+p −Mn+p)

+ j2(Mn+1+r −Mn+r) + j3(Mn+1+s −Mn+s)

= 2n(1 + 2pj1 + 2rj2 + 2sj3).

�

Now, we give the Binet formula for the generalized bihyperbolic Mersenne num-

bers.

Theorem 2.5 (Binet formula). Let n > 0, p > 1, r > 1, s > 1 be integers. Then

(2.5) BhM (p,r,s)
n = 2n(1 + 2pj1 + 2rj2 + 2sj3)− (1 + j1 + j2 + j3).
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P r o o f. By the formulas (2.1) and (1.4) we get

BhM (p,r,s)
n = Mn + j1Mn+p + j2Mn+r + j3Mn+s

= 2n − 1 + j1(2
n+p − 1) + j2(2

n+r − 1) + j3(2
n+s − 1)

= 2n(1 + 2pj1 + 2rj2 + 2sj3)− (1 + j1 + j2 + j3).

�

By Theorem 2.5, we get the Binet formula for the bihyperbolic Mersenne numbers.

Corollary 2.1. Let n > 0 be an integer. Then

BhMn = 2n(1 + 2j1 + 4j2 + 8j3)− (1 + j1 + j2 + j3).

Assume that p > 1, r > 1, s > 1 are integers.

Theorem 2.6 (General bilinear index-reduction formula for the generalized bihy-

perbolic Mersenne numbers). Let a > 0, b > 0, c > 0, d > 0 be integers such that

a+ b = c+ d. Then

BhM (p,r,s)
a · BhM

(p,r,s)
b −BhM (p,r,s)

c ·BhM
(p,r,s)
d = (2c + 2d − 2a − 2b)AB,

where A = 1 + 2pj1 + 2rj2 + 2sj3, B = 1 + j1 + j2 + j3.

P r o o f. By formula (2.5), we get

BhM (p,r,s)
a · BhM

(p,r,s)
b −BhM (p,r,s)

c ·BhM
(p,r,s)
d

= (2aA− (1 + j1 + j2 + j3))(2
bA− (1 + j1 + j2 + j3))

− (2cA− (1 + j1 + j2 + j3))(2
dA− (1 + j1 + j2 + j3))

= − 2aA(1 + j1 + j2 + j3)− 2bA(1 + j1 + j2 + j3)

+ 2cA(1 + j1 + j2 + j3) + 2dA(1 + j1 + j2 + j3)

= (2c + 2d − 2a − 2b)AB,

where A = 1 + 2pj1 + 2rj2 + 2sj3, B = 1 + j1 + j2 + j3. �

It is easily seen that for special values of a, b, c, d, by Theorem 2.6, we get new

identities for generalized bihyperbolic Mersenne numbers:

⊲ Catalan identity (for a = n−m, b = n+m and c = d = n),

⊲ Cassini identity (for a = n− 1, b = n+ 1 and c = d = n),

⊲ d’Ocagne identity (for a = n, b = m+ 1, c = n+ 1 and d = m),

⊲ Vajda identity (for a = m+ k, b = n− k, c = m and d = n),

⊲ Halton identity (for a = m+ k, b = n, c = k and d = m+ n).

79



Corollary 2.2 (Catalan identity for generalized bihyperbolic Mersenne num-

bers). Let n > 0, m > 0 be integers such that n > m. Then

BhM
(p,r,s)
n−m · BhM

(p,r,s)
n+m − (BhM (p,r,s)

n )2 = −2n−m(1− 2m)2AB.

Corollary 2.3 (Cassini identity for generalized bihyperbolic Mersenne num-

bers). Let n > 1 be an integer. Then

BhM
(p,r,s)
n−1 ·BhM

(p,r,s)
n+1 − (BhM (p,r,s)

n )2 = −2n−1AB.

Corollary 2.4 (d’Ocagne identity for generalized bihyperbolic Mersenne num-

bers). Let n > 0, m > 0 be integers such that n > m. Then

BhM (p,r,s)
n ·BhM

(p,r,s)
m+1 −BhM

(p,r,s)
n+1 ·BhM (p,r,s)

m = (2n − 2m)AB.

Corollary 2.5 (Vajda identity for generalized bihyperbolic Mersenne num-

bers). Let n > 0, m > 0, k > 0 be integers such that n > k. Then

BhM
(p,r,s)
m+k ·BhM

(p,r,s)
n−k −BhM (p,r,s)

m ·BhM (p,r,s)
n =

(

2m(1− 2k) + 2n
(

1−
1

2k

))

AB.

Corollary 2.6 (Halton identity for generalized bihyperbolic Mersenne num-

bers). Let n > 0, m > 0, k > 0 be integers such that n > k. Then

BhM
(p,r,s)
m+k ·BhM (p,r,s)

n −BhM
(p,r,s)
k ·BhM

(p,r,s)
m+n = (2m − 1)(2n − 2k)AB.

In the proof of the next theorem we will use the following result.

Theorem 2.7 ([15]). Let m > 1, n > 1 be integers. Then

(2.6) Mn+m = MnMm+1 − 2Mn−1Mm.

Theorem 2.8. Let m > 1, n > 1 be integers. Then

BhM (p,r,s)
n · BhM

(p,r,s)
m+1 − 2BhM

(p,r,s)
n−1 · BhM (p,r,s)

m

= BhM
(p,r,s)
n+m + j1BhM

(p,r,s)
n+m+p + j2BhM

(p,r,s)
n+m+r + j3BhM

(p,r,s)
n+m+s.
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P r o o f. By simple calculations we have

BhM (p,r,s)
n · BhM

(p,r,s)
m+1 − 2BhM

(p,r,s)
n−1 ·BhM (p,r,s)

m

= (Mn + j1Mn+p + j2Mn+r + j3Mn+s)

· (Mm+1 + j1Mm+1+p + j2Mm+1+r + j3Mm+1+s)

− 2(Mn−1 + j1Mn−1+p + j2Mn−1+r + j3Mn−1+s)

· (Mm + j1Mm+p + j2Mm+r + j3Mm+s)

= MnMm+1 − 2Mn−1Mm

+ j1(MnMm+1+p − 2Mn−1Mm+p +Mn+pMm+1 − 2Mn+p−1Mm)

+ j2(MnMm+1+r − 2Mn−1Mm+r +Mn+rMm+1 − 2Mn+r−1Mm)

+ j3(MnMm+1+s − 2Mn−1Mm+s +Mn+sMm+1 − 2Mn+s−1Mm)

+Mn+pMm+1+p − 2Mn+p−1Mm+p +Mn+rMm+1+r

− 2Mn+r−1Mm+r +Mn+sMm+1+s − 2Mn+s−1Mm+s

+ j1(Mn+rMm+1+s − 2Mn+r−1Mm+s +Mn+sMm+1+r − 2Mn+s−1Mm+r)

+ j2(Mn+pMm+1+s − 2Mn+p−1Mm+s +Mn+sMm+1+p − 2Mn+s−1Mm+p)

+ j3(Mn+rMm+1+p − 2Mn+r−1Mm+p +Mn+pMm+1+r − 2Mn+p−1Mm+r).

By the formula (2.6) we get

BhM (p,r,s)
n ·BhM

(p,r,s)
m−1 − 2BhM

(p,r,s)
n−1 ·BhM (p,r,s)

m

= Mn+m + j1Mn+m+p + j1Mn+m+p + j2Mn+m+r

+ j2Mn+m+r + j3Mn+m+s + j3Mn+m+s

+Mn+m+p+p +Mn+m+r+r +Mn+m+s+s

+ j1Mn+m+r+s + j1Mn+m+s+r + j2Mn+m+p+s

+ j2Mn+m+s+p + j3Mn+m+p+r + j3Mn+m+r+p

= Mn+m + j1Mn+m+p + j2Mn+m+r + j3Mn+m+s

+ j1(Mn+m+p + j1Mn+m+p+p + j2Mn+m+p+r + j3Mn+m+p+s)

+ j2(Mn+m+r + j1Mn+m+r+p + j2Mn+m+r+r + j3Mn+m+r+s)

+ j3(Mn+m+s + j1Mn+m+s+p + j2Mn+m+s+r + j3Mn+m+s+s)

= BhM
(p,r,s)
n+m + j1BhM

(p,r,s)
n+m+p + j2BhM

(p,r,s)
n+m+r + j3BhM

(p,r,s)
n+m+s,

which ends the proof. �

Now, we give the ordinary generating function for the generalized bihyperbolic

Mersenne numbers.

81



Theorem 2.9. The generating function for the generalized bihyperbolic Mersenne

sequence {BhM
(p,r,s)
n } is

g(x) =
BhM

(p,r,s)
0 + (BhM

(p,r,s)
1 − 3BhM

(p,r,s)
0 )x

1− 3x+ 2x2
.

P r o o f. Let

g(x) = BhM
(p,r,s)
0 +BhM

(p,r,s)
1 x+BhM

(p,r,s)
2 x2 + . . .+BhM (p,r,s)

n xn + . . .

be the generating function of the generalized bihyperbolic Mersenne numbers. Hence

we have

−3xg(x) = − 3BhM
(p,r,s)
0 x− 3BhM

(p,r,s)
1 x2 − 3BhM

(p,r,s)
2 x3

− . . .− 3BhM
(p,r,s)
n−1 xn − . . . ,

2x2g(x) = 2BhM
(p,r,s)
0 x2 + 2BhM

(p,r,s)
1 x3 + 2BhM

(p,r,s)
2 x4

+ . . .+ 2BhM
(p,r,s)
n−2 xn + . . .

Using the recurrence (2.3), we get

g(x)(1− 3x+ 2x2) = BhM
(p,r,s)
0 + (BhM

(p,r,s)
1 − 3BhM

(p,r,s)
0 )x.

Thus

g(x) =
BhM

(p,r,s)
0 + (BhM

(p,r,s)
1 − 3BhM

(p,r,s)
0 )x

1− 3x+ 2x2
.

�

In the next theorem we give a summation formula for the generalized bihyperbolic

Mersenne numbers. In the proof we will use the following result.

Theorem 2.10 ([2]). If Mi is the ith term of the Mersenne sequence then

(2.7)

n
∑

i=0

Mi = 2Mn − n.

Theorem 2.11. Let n > 0, p > 1, r > 1, s > 1 be integers. Then

n
∑

i=0

BhM
(p,r,s)
i = 2BhM (p,r,s)

n −BhM
(p,r,s)
0 − n(1 + j1 + j2 + j3).
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P r o o f. By the definition of the generalized bihyperbolic Mersenne numbers

we get

n
∑

i=0

BhM
(p,r,s)
i = M0 + j1Mp + j2Mr + j3Ms

+M1 + j1M1+p + j2M1+r + j3M1+s + . . .

+Mn + j1Mn+p + j2Mn+r + j3Mn+s

=

n
∑

i=0

Mi + j1

n
∑

i=0

Mi+p + j2

n
∑

i=0

Mi+r + j3

n
∑

i=0

Mi+s

=

n
∑

i=0

Mi + j1

(n+p
∑

i=0

Mi −

p−1
∑

i=0

Mi

)

+ j2

(n+r
∑

i=0

Mi −

r−1
∑

i=0

Mi

)

+ j3

(n+s
∑

i=0

Mi −

s−1
∑

i=0

Mi

)

.

By the formula (2.7) we obtain

n
∑

i=0

BhM (p,r,s)
n = 2Mn − n+ j1[2Mn+p − (n+ p)− (2Mp−1 − (p− 1))]

+ j2[2Mn+r − (n+ r)− (2Mr−1 − (r − 1))]

+ j3[2Mn+s − (n+ s)− (2Ms−1 − (s− 1))]

= 2Mn − n+ 2j1Mn+p − 2j1Mp−1 + j1(−n− 1)

+ 2j2Mn+r − 2j2Mr−1 + j2(−n− 1)

+ 2j3Mn+s − 2j3Ms−1 + j3(−n− 1).

Using the formula (1.2), we have

n
∑

i=0

BhM
(p,r,s)
i = 2Mn + 2j1Mn+p + 2j2Mn+r + 2j3Mn+s

− 2j1Mp−1 − 2j2Mr−1 − 2j3Ms−1

− n+ j1(−n− 1) + j2(−n− 1) + j3(−n− 1)

= 2BhM (p,r,s)
n − j1(Mp − 1)− j2(Mr − 1)− j3(Ms − 1)

− n+ j1(−n− 1) + j2(−n− 1) + j3(−n− 1)

= 2BhM (p,r,s)
n − j1Mp + j1 − j2Mr + j2 − j3Ms + j3 −M0

− n+ j1(−n− 1) + j2(−n− 1) + j3(−n− 1)

= 2BhM (p,r,s)
n −M0 − j1Mp − j2Mr − j3Ms

− n(1 + j1 + j2 + j3)

= 2BhM (p,r,s)
n −BhM

(p,r,s)
0 − n(1 + j1 + j2 + j3).

�
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At the end, we give matrix representations of the numbers BhM
(p,r,s)
n . By the

equality (2.3) we get the following result.

Theorem 2.12. Let n > 1 be an integer. Then

[

BhM
(p,r,s)
n+1

BhM
(p,r,s)
n

]

=

[

3 −2

1 0

]

·

[

BhM
(p,r,s)
n

BhM
(p,r,s)
n−1

]

.

Theorem 2.13. Let n > 0 be an integer. Then

(2.8)

[

BhM
(p,r,s)
n+2 BhM

(p,r,s)
n+1

BhM
(p,r,s)
n+1 BhM

(p,r,s)
n

]

=

[

BhM
(p,r,s)
2 BhM

(p,r,s)
1

BhM
(p,r,s)
1 BhM

(p,r,s)
0

]

·

[

3 1

−2 0

]n

.

P r o o f. We use induction on n. If n = 0 then the result is obvious. Assuming

the formula (2.8) holds for n > 0, we shall prove it for n+ 1. Using the induction’s

hypothesis and formula (2.3), we have

[

BhM
(p,r,s)
2 BhM

(p,r,s)
1

BhM
(p,r,s)
1 BhM

(p,r,s)
0

]

·

[

3 1

−2 0

]n

·

[

3 1

−2 0

]

=

[

BhM
(p,r,s)
n+2 BhM

(p,r,s)
n+1

BhM
(p,r,s)
n+1 BhM

(p,r,s)
n

]

·

[

3 1

−2 0

]

=

[

3BhM
(p,r,s)
n+2 − 2BhM

(p,r,s)
n+1 BhM

(p,r,s)
n+2

3BhM
(p,r,s)
n+1 − 2BhM

(p,r,s)
n BhM

(p,r,s)
n+1

]

=

[

BhM
(p,r,s)
n+3 BhM

(p,r,s)
n+2

BhM
(p,r,s)
n+2 BhM

(p,r,s)
n+1

]

,

which ends the proof. �

Calculating determinants in the formula (2.8), we obtain the Cassini identity.

Corollary 2.7. For n ∈ N ∪ {0} we have

BhM
(p,r,s)
n+2 ·BhM (p,r,s)

n −(BhM
(p,r,s)
n+1 )2 = 2n(BhM

(p,r,s)
2 ·BhM

(p,r,s)
0 −(BhM

(p,r,s)
1 )2).

Corollary 2.8. For n ∈ N ∪ {0} we have

BhMn+2 · BhMn − (BhMn+1)
2 = −15 · 2n(1 + j1 + j2 + j3).
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