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Abstract. We investigate the uniqueness problem of entire functions that share two
polynomials with their kth derivatives and obtain some results which improve and generalize
the recent result due to Lü and Yi (2011). Also, we exhibit some examples to show that
the conditions of our results are the best possible.
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1. Introduction, definitions and main results

Let M (C) be the family of non-constant functions which are meromorphic in C,

whereas E (C) denotes the family of non-constant entire functions. On the other

hand, we denote by MT (C) and ET (C) the families of transcendental meromorphic

and entire functions, respectively. In the paper for f ∈ M (C) we shall use the

standard notations of Nevanlinna’s value distribution theory such as T (r, f), m(r, f),

N(r, f), N(r, f), S(r, f), . . . (see, e.g., [2], [11]). Throughout the paper we denote

by ̺(f) the order of f ∈ M (C). Let f ∈ M (C). A meromorphic function a is said

to be a small function of f if T (r, a) = S(r, f).

Let k ∈ N and a ∈ C. We use N(k(r, 1/(f − a)) to denote the counting function of

0-points of f−a with multiplicity greater than or equal to k, whereasN (k(r, 1/(f−a))

is its reduced counting function.

Let f, g ∈ M (C) and Q be a polynomial or a finite complex number. If g−Q = 0

whenever f − Q = 0, we write f = Q ⇒ g = Q. If f = Q ⇒ g = Q and

g = Q ⇒ f = Q, we then write f = Q ⇔ g = Q and we say that f and g share

Q IM. If f −Q and g−Q have the same zeros with the same multiplicities, we write

f = Q ⇀↽ g = Q and we say that f and g share Q CM.
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Let f ∈ E (C). We know that f can be expressed by the power series f(z) =
∞
∑

n=0
anz

n. We denote

µ(r, f) = max
n∈N

|z|=r

{|anz
n|} and ν(r, f) = sup{n : |an|r

n = µ(r, f)}.

Clearly, for a polynomial P (z) = anz
n + an−1z

n−1 + . . .+ a0, an 6= 0 we have

µ(r, P ) = |an|r
n and ν(r, P ) = n

for all r sufficiently large. In the general case, |an|r
n 6 µ(r, f) for all n > 0 and

|an|r
n < µ(r, f) for all n > ν(r, f).

Here it is enough to recall that (see [10]):

(1) µ(r, f) is strictly increasing for all r sufficiently large, continuous and tends

to ∞ as r → ∞;

(2) ν(r, f) is increasing, piecewise constant, right-continuous and also tends to ∞

as r → ∞;

(3) ν(r, F ) = O(log r) if ̺(f) <∞.

Rubel and Yang (see [9]) considered the uniqueness of an entire function when

it shares two values CM with its first derivative. In 1977, the authors proved the

following well-known theorem.

Theorem A ([9]). Let a, b ∈ C such that b 6= a and let f ∈ E (C). If f = a ⇀↽

f ′ = a and f = b ⇀↽ f ′ = b , then f ≡ f ′.

Mues and Steinmetz (see [8]) have generalized Theorem A in view of relaxing the

sharing values from CM to IM and obtained the following result.

Theorem B ([8]). Let a, b ∈ C such that b 6= a and let f ∈ E (C). If f = a ⇔

f ′ = a and f = b⇔ f ′ = b, then f ≡ f ′.

Since then, shared value problems, especially the case of f and f ′ sharing two

values, have undergone various extensions and improvements (see [11]).

In 2006, Li and Yi in [5] improved Theorem A with the idea of “partially” sharing

values. In the following, we recall their result.

Theorem C ([5]). Let a, b ∈ C such that b 6= a, 0 and let f ∈ E (C). If f = a ⇒

f ′ = a and f = b ⇀↽ f ′ = b, then one of the following cases must occur:

(1) f ≡ f ′,

(2) f(z) = c exp((b/(b− a))z) + a, where c ∈ C \ {0}.
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Since b 6= a, one may assume that b 6= 0 in Theorem A. So Theorem C improves

Theorem A with the idea of “partially” sharing values.

In 2009, Lü et al. (see [6]) generalized Theorem C with the idea of sharing poly-

nomials. They proved the following result.

Theorem D ([6]). Let Q1 and Q2 (6≡ 0) be two distinct polynomials and let

f ∈ ET (C). If f = Q1 ⇒ f ′ = Q1 and f = Q2 ⇀↽ f ′ = Q2, then one of the following

cases must occur:

(1) f ≡ f ′,

(2) f(z) = Q1(z) + A exp(λz) and (λ − 1)Q2 = λQ1 − Q′
1, where A, λ ∈ C \ {0}

such that λ 6= 1.

In 2011, Lü and Yi in [7] asked the following question.

Q u e s t i o n A. What will happen if the first derivative f ′ in Theorem D is

replaced by the general derivative f (k)?

By considering the above question, Lü and Yi obtained the following result, which

is an improvement of Theorem D.

Theorem E ([7]). Let Q1 and Q2 (6≡ 0) be two distinct polynomials, k ∈ N and

let f ∈ ET (C). If

(i) all the zeros of f −Q1 have multiplicity at least k,

(ii) f = Q1 ⇒ f (k) = Q1 and f = Q2 ⇀↽ f (k) = Q2,

then one of the following cases must occur:

(1) f ≡ f (k),

(2) f(z) = Q1(z)+A exp(λz) and (µ− 1)Q2 = µQ1 −Q
(k)
1 , where A, λ, µ ∈ C \ {0}

such that λk = µ 6= 1.

R em a r k 1.1. If a is a Picard exceptional value of f , then one can easily con-

clude that the zeros of f − a have multiplicity ∞. Therefore, Theorem E holds even

when f − Q1 has no zeros. But it is to be noted that if f − Q1 has a zero at z0,

say, then the multiplicity of z0 must be at least k. On the other hand, if we add the

condition that f −Q1 has at least one zero in Theorem E, then conclusion (2) does

not occur.

We now explain the notion of weighted sharing of values as introduced in [3].

Definition 1.1 ([3]). Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞} we denote by

Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is counted m

times if m 6 k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f and g

share a with weight k.
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We write f and g share (a, k) to mean that f and g share a with weight k. Also

we note that f and g share a IM or CM if and only if f and g share (a, 0) or (a,∞),

respectively.

After considering Theorem E, one may ask whether the conclusion of Theorem E

remains valid if the hypothesis “f = Q2 ⇀↽ f (k) = Q2” is replaced by “f −Q2 and

f (k) −Q2 share (0, 1)”? In the paper, we give an affirmative answer to this question

by proving the following result.

Theorem 1.1. Let Q1 and Q2 (6≡ 0) be two distinct polynomials, k ∈ N and let

f ∈ ET (C). Suppose

(i) all the zeros of f −Q1 have multiplicity at least k,

(ii) f = Q1 ⇒ f (k) = Q1 and f −Q2 and f
(k) −Q2 share (0, 1).

Now one of the following cases must occur:

(1) f ≡ f (k),

(2) if deg(Q1) < deg(Q2), then f(z) = Q1(z)+P (z) exp(λz), where P is a nonzero

polynomial, λ ∈ C \ {0} such that λk = 1 and

Q
(k)
1 −Q1

Q1 −Q2
=

k
∑

i=1

(

k

i

)

λk−iP
(i)

P
,(1.1)

(3) if deg(Q1) = deg(Q2) and lim
z→∞

Q1(z)/Q2(z) 6= 1, then f(z) = Q1(z) +

P (z) exp(λz), where P is a nonzero polynomial, λ ∈ C \ {0} such that

λk = lim
z→∞

(Q
(k)
1 (z)−Q2(z))/(Q1(z)−Q2(z)) and

Q
(k)
1 −Q2

Q1 −Q2
= λk +

k
∑

i=1

(

k

i

)

λk−iP
(i)

P
,(1.2)

(4) if deg(Q1) = deg(Q2) and lim
z→∞

Q1(z)/Q2(z) = 1, then f = Q1 + P exp(Q),

where P is a nonzero polynomial and Q is a non-constant polynomial such that

k deg(Q′) = deg(Q
(k)
1 −Q2)− deg(Q1 −Q2) and

Q
(k)
1 −Q2

Q1 −Q2
=

(P exp(Q))(k)

P exp(Q)
.(1.3)

We now make the following observations on the conclusions of Theorem 1.1:

(1) If deg(Q1) > deg(Q2), then we deduce immediately from Theorem 1.1 that

f ≡ f (k). It is to be noted that deg(Q1) = −∞ if Q1 ≡ 0.

(2) If Q1 ≡ 0, then since Q2 6≡ 0, we must have deg(Q1) < deg(Q2). Thereby

from (1.1) we observe that P is a nonzero constant. In this case, we must have

f(z) = c exp(λz), where c ∈ C \ {0} and λk = 1, which implies that f ≡ f (k).

Consequently, from Theorem 1.1 we solely have f ≡ f (k).
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(3) If we assume that f − Q1 has no zeros and deg(Q1) < deg(Q2), then P is a

nonzero constant and so from (1.1) we deduce that Q1 ≡ 0. In this case, we also

have f(z) = c exp(λz), where c ∈ C \ {0} and λk = 1 and so f ≡ f (k). Consequently,

from Theorem 1.1 we solely have f ≡ f (k).

(4) If we assume that f − Q1 has no zeros, deg(Q1) = deg(Q2) and lim
z→∞

Q1(z)/

Q2(z) 6= 1, then P is a nonzero constant and so from (1.2) we deduce that

(λk−1)Q2 = λkQ1−Q
(k)
1 , where λ

k 6= 1. Therefore, we have f(z) = Q1(z)+c exp(λz)

and (λk − 1)Q2 = λkQ1 −Q
(k)
1 , where c, λ ∈ C \ {0} such that λk 6= 1.

(5) If we assume that f − Q1 has no zeros, deg(Q1) = deg(Q2) and lim
z→∞

Q1(z)/

Q2(z) = 1, then P is a nonzero constant and so from (1.3) we deduce that

(Q
(k)
1 −Q2)/(Q1 −Q2) = (exp(Q))(k)/ exp(Q).

(6) If Q1, Q2 ∈ C \ {0}, then (Q
(k)
1 −Q2)/(Q1 −Q2) ∈ C \ {0} and lim

z→∞
Q1(z)/

Q2(z) 6= 1. Now from (1.2) we conclude that λk = (Q
(k)
1 −Q2)/(Q1 −Q2) and P is

a nonzero constant. Therefore we have f(z) = Q1(z) + c exp(λz) and (λk − 1)Q2 =

λkQ1, where c, λ ∈ C \ {0} such that λk 6= 1.

(7) If Q2 ∈ C \ {0}, then from Theorem 1.1 one can easily deduce that Q1 ∈ C.

(8) If f − Q1 has infinitely many zeros, then from Theorem 1.1 we solely have

f ≡ f (k).

R em a r k 1.2. The following example shows that conclusion (2) in Theorem 1.1

cannot be deleted.

E x am p l e 1.1. Let f(z) = 1 − (1/e − 1)(z + 1) + z exp(z), k = 1, Q1(z) =

1 − (1/e − 1)(z + 1) and Q2(z) = 1 − (1/e − 1)(z + 1) − (1/e − 1)z2 + z. Then

deg(Q1) < deg(Q2) and f(z)−Q1(z) = z exp(z) has only one zero at z = 0. It is easy

to derive that z = 0 is also a zero of f ′ −Q1, which implies that f = Q1 ⇒ f ′ = Q1.

We also have

f(z)−Q2(z) = z(exp(z) + (1/e− 1)z − 1),

f ′(z)−Q2(z) = (z + 1)(exp(z) + (1/e− 1)z − 1).

Clearly, f − Q2 and f ′ − Q2 share 0 CM except for the zero of z(z + 1) and

(Q′
1 −Q2)/(Q1 −Q2) = Q′, where P (z) = z and Q(z) = z.

R em a r k 1.3. The following example shows that conclusion (3) in Theorem 1.1

cannot be deleted.

E x am p l e 1.2. Let f(z) = 1
2 exp(

1
2z) + z, k = 1, Q1(z) = z and Q2(z) =

2 − z. Clearly, deg(Q1) = deg(Q2) and lim
z→∞

Q1(z)/Q2(z) = −1. Also we see that

f(z)−Q1(z) =
1
2 exp(

1
2z) has no zero and so f = Q1 ⇒ f ′ = Q1. Note that

f(z)−Q2(z) =
1

2

(

exp
(1

2
z
)

+ 4z − 4
)

and f ′(z)−Q2(z) =
1

4

(

exp
(1

2
z
)

+ 4z − 4
)

.
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Clearly, f − Q2 and f
′ − Q2 share 0 CM and (Q′

1 −Q2)/(Q1 −Q2) = Q′, where

P (z) = 1
2 and Q(z) = 1

2z.

R em a r k 1.4. The following example shows that conclusion (4) in Theorem 1.1

cannot be deleted.

E x am p l e 1.3. Let f(z) = exp(12 (z − 1)2) + z2, k = 1, Q1 = z2 and Q2(z) =

z2 + z. Clearly, deg(Q1) = deg(Q2) and lim
z→∞

Q1(z)/Q2(z) = 1. Also we see that

f(z)−Q1(z) = exp(12 (z − 1)2) has no zero and so f = Q1 ⇒ f ′ = Q1. Note that

f(z)−Q2(z) = exp
(z − 1)2

2
− z and f ′(z)−Q2(z) = (z − 1)

(

exp
(z − 1)2

2
− z

)

.

Clearly, f−Q2 and f
′−Q2 share 0 CM except for z = 1 and (Q′

1−Q2)/(Q1−Q2) = Q′,

where P (z) = 1 and Q(z) = 1
2 (z − 1)2.

R em a r k 1.5. The following examples show that conditions “f = Q1 ⇒

f (k) = Q1” and “all the zeros of f − Q1 have multiplicity at least k” in Theo-

rem 1.1 are sharp.

E x am p l e 1.4. Let f(z) = 1
4 exp(2z) +

3
4z, k = 2, Q1(z) = 1 and Q2(z) = z.

Note that f(z) −Q1(z) =
1
4 exp(2z) +

3
4z − 1, f ′′(z) −Q1(z) = exp(2z) − 1 and so

f −Q1 has only simple zeros and f = Q1 6⇒ f ′′ = Q1. On the other hand, we have

f(z)−Q2(z) =
1

4
(exp(2z)− z) and f ′′(z)−Q2(z) = exp(2z)− z

and so f−Q2 and f
′′−Q2 share 0 CM, but f does not satisfy any case of Theorem 1.1.

E x am p l e 1.5. Let f(z) = z + 2 exp(12z), k = 1, Q1(z) = 1 and Q2(z) = 2− z.

Then f −Q1 has simple zeros and f
′ −Q1 has no zeros and so f = Q1 6⇒ f ′ = Q1.

On the other hand, we have

f(z)−Q2(z) = 2
(

exp
(1

2
z
)

+ z − 1
)

and f ′(z)−Q1(z) = exp
(1

2
z
)

+ z − 1

and so f −Q2 and f
′ −Q2 share 0 CM, f does not satisfy any case of Theorem 1.1.

R em a r k 1.6. The following example shows that Theorem 1.1 does not hold

when f ∈ MT (C).

E x am p l e 1.6. Let f(z) = z/(1− exp(−z)), k = 1, Q1(z) = 0 and Q2(z) = 1.

Clearly, f −Q1 has no zero and so f = Q1 ⇒ f ′ = Q1. Note that

f(z)−Q2(z) =
z − 1 + exp(−z)

1− exp(−z)
and f ′(z)−Q2(z) = − exp(−z)

z − 1 + exp(−z)

(1− exp(−z))2
.

Clearly, f−Q2 and f
′−Q2 share 0 CM, but f does not satisfy any case of Theorem 1.1.
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If one of the polynomials Q1 and Q2 is a constant, then we immediately obtain

the following result.

Corollary 1.1. Let Q1 and Q2 (6≡ 0) be two distinct polynomials such that one

of them is a constant, k ∈ N and let f ∈ ET (C). If

(i) all the zeros of f −Q1 have multiplicity at least k,

(ii) f = Q1 ⇒ f (k) = Q1 and f −Q2 and f
(k) −Q2 share (0, 1),

then one of the following cases must occur:

(1) f ≡ f (k),

(2) f(z) = Q1+A exp(λz), where A, λ ∈ C \ {0} such that λk = Q2/(Q2−Q1) and

both Q1 and Q2 are constants.

2. Auxiliary lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 2.1 ([7], Theorem 1.3). Let f ∈ M (C) such that N(r, f) = O(log r).

Suppose that α = Q1 exp(Q) and β = Q2 exp(Q), where Q1, Q2 (6≡ Q1) and Q are

three polynomials. If for k ∈ N, all the zeros of f − α have multiplicities at least k,

f = α ⇒ f (k) = α and f = β ⇔ f (k) = β, then ̺(f) <∞.

Lemma 2.2 ([4], Corollary 2.3.4). Let f ∈ MT (C) and k ∈ N. If ̺(f) <∞, then

m
(

r,
f (k)

f

)

= O(log r) as r → ∞.

Lemma 2.3 ([2], Lemma 3.5). Let F be meromorphic in a domain D and n ∈ N.

Then

F (n)

F
= fn +

n(n− 1)

2
fn−2f ′ + anf

n−3f ′′ + bnf
n−4(f ′)2 + Pn−3(f),

where f = F ′/F , an = 1
6n(n− 1)(n− 2), bn = 1

8n(n− 1)(n− 2)(n− 3) and Pn−3(f)

is a differential polynomial with constant coefficients, which vanishes identically for

n 6 3 and has degree n− 3 when n > 3.

Lemma 2.4 ([4], Theorem 3.2). Let f ∈ ET (C). Then there exists a set E ⊂

(1,∞) with finite logarithmic measure; we choose z satisfying |z| = r 6∈ [0, 1]∪E and

|f(z)| =M(r, f), such that

f (j)(z)

f(z)
=

(ν(r, f)

z

)j

(1 + o(1)) for j ∈ N.
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3. Proofs of the main results

P r o o f of Theorem 1.1. Set

Φ =
L(f)(f − f (k))

(f −Q1)(f −Q2)
,(3.1)

where L(f) = (Q′
1 − Q′

2)(f − Q1) − (Q1 − Q2)(f
′ − Q′

1) = (Q′
1 − Q′

2)(f − Q2) −

(Q1 −Q2)(f
′ −Q′

2). If possible, suppose L(f) ≡ 0. Then we have

f ′ −Q′
1

f −Q1
≡
Q′

1 −Q′
2

Q1 −Q2
.

On integration we have f−Q1 ≡ d(Q1−Q2), where d ∈ C, i.e., f ≡ Q1+d(Q1−Q2).

This shows that f is a polynomial, which is impossible as f ∈ ET (C). Hence L(f) 6≡ 0.

We now divide the proof considering the following two possible cases.

Case 1. Suppose Φ 6≡ 0. Then f 6≡ f (k). Now from (3.1), we have

Φ =
1

Q1 −Q2

(

Q1
L(f)

f −Q1
−Q2

L(f)

f −Q2

)(

1−
f (k)

f

)

(3.2)

=
(f ′ −Q′

2

f −Q2
Q2 −

f ′ −Q′
1

f −Q1
Q1 +Q′

1 −Q′
2

)(

1−
f (k)

f

)

.

Therefore, applying Lemma 2.1, we deduce that ̺(f) < ∞. Consequently, from

Lemma 2.2 and (3.2), we conclude that m(r,Φ) = O(log r) as r → ∞.

Next we want to prove that Φ has no poles. For this let z0 be a zero of f − Q1

of multiplicity p0. Since f = Q1 ⇒ f (k) = Q1, it follows that z0 must be a zero of

f (k)−Q1 of multiplicity q0. Clearly, z0 is a zero of L(f) and f −f
(k) of multiplicities

p0 − 1 and t0 = min{p0, q0} (> 1), respectively, and so from (3.1) we have

(3.3) Φ(z) = O((z − z0)
t0−1).

This shows that Φ is holomorphic at z0.

Let z1 be a zero of f − Q2 of multiplicity p1. Since f − Q2 and f
(k) − Q2 share

(0, 1), it follows that z1 is also a zero of f
(k) −Q2 of multiplicity q1. Then in some

neighbourhood of z1 we get by Taylor’s expansion

f(z)−Q2(z) = ap1
(z − z1)

p1 + ap1+1(z − z1)
p1+1 + . . . , ap1

6= 0,

f (k)(z)−Q2(z) = bq1(z − z1)
q1 + bq1+1(z − z1)

q1+1 + . . . , bq1 6= 0.

Clearly,

f ′(z)−Q′
2(z) = p1ap1

(z − z1)
p1−1 + (p1 + 1)ap1+1(z − z1)

p1 + . . .
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Note that

f(z)− f (k)(z) =











ap1
(z − z1)

p1 + . . . if p1 < q1,

−bq1(z − z1)
q1 − . . . if p1 > q1,

(ap1
− bp1

)(z − z1)
p1 + . . . if p1 = q1.

Clearly, from (3.1) we get

(3.4) Φ(z) = O((z − z1)
t1−1),

where t1 > min{p1, q1} > 1. Now from (3.4) it follows that Φ is holomorphic at z1.

Consequently, Φ has no poles, i.e., N(r,Φ) = 0 and so T (r,Φ) = m(r,Φ) = O(log r)

as r → ∞. This means that Φ is a polynomial.

If z1 is a zero of f − Q1 and f
(k) − Q2 of multiplicities p1 (> 2) and q1 (> 2),

respectively, then from (3.1) and (3.4) we see that z2 is a zero of Φ. Since T (r,Φ) =

O(log r), it follows that

N(r,Q2; f |> 2) = O(log r) and N(r,Q2; f
(k) |> 2) = O(log r) as r → ∞.(3.5)

Consequently, f −Q2 and f
(k) −Q2 have finitely many multiple zeros. Let

α =
f (k) −Q2

f −Q2
.

Clearly, α 6≡ 0. Since f −Q2 and f
(k) −Q2 share (0, 1) and f −Q2, f

(k) −Q2 have

finitely many multiple zeros, we deduce that α has finitely many zeros and poles.

Therefore, by Hadamard’s factorization theorem, we can assume that α = β exp(γ),

where β (6≡ 0) is a rational function and γ is a polynomial. Hence

f (k) −Q2

f −Q2
= β exp(γ).(3.6)

Now we want to prove that γ is a constant. If not, suppose deg(γ) > 1. Then

from (3.6) we have

β exp(γ) =
f (k)/f −Q2/f

1−Q2/f
, i.e., γ = log

1

β

f (k)/f −Q2/f

1−Q2/f
,

where log h is the principle branch of the logarithm. Therefore, we have

|γ(z)| =
∣

∣

∣
log

1

β(z)

f (k)(z)/f(z)−Q2(z)/f(z)

1−Q2(z)/f(z)

∣

∣

∣
.(3.7)
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Since f ∈ ET (C), it follows that M(r, f) → ∞ as r → ∞, where M(r, f) =

max
|z|=r

|f(z)|. Again we let

M(r, f) = |f(zr)|, where zr = reiθ and θ ∈ [0, 2π).(3.8)

Now from (3.8) and Lemma 2.4, there exists a subset E ⊂ (1,∞) with finite

logarithmic measure such that for a point zr = reiθ (θ ∈ [0, 2π)) satisfying |zr| =

r 6∈ E and M(r, f) = |f(zr)|, we have

f (k)(z)

f(z)
=

(ν(r, f)

z

)k

(1 + o(1)) as r → ∞.(3.9)

Since f ∈ ET (C) andM(r, f) increases faster thanM(r,Q2), it follows from (3.8) that

lim
r→∞

∣

∣

∣

Q2(zr)

f(zr)

∣

∣

∣
6 lim

r→∞

M(r,Q2(zr))

M(r, f(zr))
= 0.(3.10)

Also, we know that if ̺(f) <∞, then

log ν(r, f) = O(log r).(3.11)

Therefore, from (3.7)–(3.11) we conclude that |γ(zr)| = O(log r) for |zr| = r 6∈ E,

which is impossible. Hence, γ is a constant. Without loss of generality we as-

sume that

f (k) −Q2 ≡ β(f −Q2), i.e., f (k) ≡ βf + (1− β)Q2.(3.12)

Since f 6≡ f (k), from (3.12) we conclude that β 6≡ 1.

Next we want to prove that f −Q1 has only finitely many zeros. Let z0 be a zero

of f −Q1 such that β(z0) 6= 0,∞. Then f(z0) = Q1(z0). Since f = Q1 ⇒ f (k) = Q1,

it follows that f (k)(z0) = Q1(z0). Putting z0 into (3.12), we get Q1(z0) = Q2(z0).

Since Q1 6≡ Q2, it follows that z0 is a zero of Q1 −Q2. Therefore

N(r, 1/(f −Q1)) 6 N(r, 1/(Q1 −Q2)) +N(r, 1/β) +N(r, β) = O(log r),

i.e., N(r, 1/(f −Q1)) = O(log r) as r → ∞. This shows that f −Q1 has only finitely

many zeros.

We now consider the following two possible sub-cases.

Sub-case 1.1. Suppose ̺(f) < 1. Then clearly, f 6≡ Q1 and ̺(f −Q1) < 1. Since

f − Q1 is an entire function having finitely many zeros, by Hadamard’s factoriza-

tion theorem we may assume that f − Q1 = P , where P is a nonzero polynomial.

Therefore, f = Q1 + P , which is a contradiction as f ∈ ET (C).
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Sub-case 1.2. Suppose ̺(f) > 1. Since f − Q1 has only finitely many zeros, by

Hadamard’s factorization theorem, we can express f = Q1 +P exp(Q), where P is a

nonzero polynomial andQ is a non-constant polynomial. Clearly, deg(Q) = ̺(f) > 1.

Now differentiating k-times, we get

f (k) = Q
(k)
1 + (P (Q′)k + P1) exp(Q),

where P1 is a polynomial such that deg(P1) < deg(P (Q′)k). Putting them into (3.12),

we get

(P (Q′)k + P1 − βP ) exp(Q) = βQ1 −Q
(k)
1 + (1− β)Q2,

which implies that

P (Q′)k + P1 ≡ βP,(3.13)

Q
(k)
1 ≡ βQ1 + (1 − β)Q2.(3.14)

We now consider the following three possible sub-cases.

Sub-case 1.2.1. Suppose deg(Q1) > deg(Q2). Then clearly, deg(Q1 − Q2) >

deg(Q
(k)
1 −Q2). Now from (3.13) and (3.14) we deduce that

Q
(k)
1 −Q2

Q1 −Q2
=

(P exp(Q))(k)

P exp(Q)
.(3.15)

Let F = (P exp(Q))′/(P exp(Q)). Then F = Q′ + P ′/P and so by Lemma 2.3, we

have

(P exp(Q))(k)

P exp(Q)
=

(

Q′ +
P ′

P

)k

+ Pk−1

(

Q′ +
P ′

P

)

,(3.16)

where Pk−1(Q
′ + P ′/P ) is a differential polynomial with constant coefficients of

degree at most k − 1 in Q′ + P ′/P .

Now from (3.15) and (3.16) we obtain

Q
(k)
1 −Q2

Q1 −Q2
=

(

Q′ +
P ′

P

)k

+ Pk−1

(

Q′ +
P ′

P

)

.(3.17)

Letting |z| → ∞, from (3.17) we see that k deg(Q′) = 0, i.e., Q′ ∈ C. We claim that

Q′ ≡ 0. If not, suppose that Q′ = c ∈ C \ {0}. Note that

(3.18)
(P exp(Q))(k)

P exp(Q)
= ck +

k
∑

i=1

(

k

i

)

ck−iP
(i)

P

and so from (3.15) we have

(3.19)
Q

(k)
1 −Q2

Q1 −Q2
= ck +

k
∑

i=1

(

k

i

)

ck−iP
(i)

P
.
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Letting |z| → ∞, we arrive at a contradiction from (3.19). Hence Q′ ≡ 0 and

so Q ∈ C. Thus, it follows from f = Q1 + P exp(Q) that f is a polynomial, a

contradiction.

Sub-case 1.2.2. Suppose deg(Q1) < deg(Q2). Then clearly deg(Q1 − Q2) =

deg(Q
(k)
1 −Q2) and so from (3.17) we have

1 +
Q

(k)
1 −Q1

Q1 −Q2
=

(

Q′ +
P ′

P

)k

+ Pk−1

(

Q′ +
P ′

P

)

.(3.20)

Note that deg(Q
(k)
1 −Q1) < deg(Q1−Q2). Letting |z| → ∞, from (3.20) we see that

k deg(Q′) = 0, i.e., Q′ ∈ C. Since f ∈ ET (C), it follows that Q
′ ∈ C \ {0}. Again

from (3.16) and (3.19), we have

1 +
Q

(k)
1 −Q1

Q1 −Q2
= (Q′)k +

k
∑

i=1

(

k

i

)

(Q′)k−iP
(i)

P
.(3.21)

This shows that (Q′)k = 1 and

Q
(k)
1 −Q1

Q1 −Q2
=

k
∑

i=1

(

k

i

)

(Q′)k−iP
(i)

P
,

which implies that deg(P ) > 1 if Q1 6≡ 0. Let Q′ = λ. Clearly, λk = 1. In this case,

we have f(z) = Q1(z)+P (z) exp(λz), where P is a nonzero polynomial, λ ∈ C \ {0}

such that λk = 1 and

Q
(k)
1 −Q1

Q1 −Q2
=

k
∑

i=1

(

k

i

)

λk−iP
(i)

P
.

Sub-case 1.2.3. Suppose deg(Q1) = deg(Q2). In this sub-case, we consider two

possibilities: (1) lim
z→∞

(Q1(z)/Q2(z)) 6= 1 and (2) lim
z→∞

(Q1(z)/Q2(z)) = 1.

First we assume that lim
z→∞

(Q1(z)/Q2(z)) 6= 1. Then clearly, deg(Q1 − Q2) =

deg(Q
(k)
1 −Q2). Let

lim
z→∞

Q
(k)
1 (z)−Q2(z)

Q1(z)−Q2(z)
= µ.

Then from (3.17) we have

µ+
Q

(k)
1 − µQ1 + (µ− 1)Q2

Q1 −Q2
=

(

Q′ +
P ′

P

)k

+ Pk−1

(

Q′ +
P ′

P

)

,(3.22)

where deg(Q
(k)
1 − µQ1 + (µ− 1)Q2) < deg(Q1 −Q2).
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Now letting |z| → ∞, from (3.22) we conclude that (Q′)k = µ. LetQ′ = λ. Clearly,

λk = µ. In this case, we have f(z) = Q1(z) + P (z) exp(λz), where P is a nonzero

polynomial, λ ∈ C \ {0} such that λk = lim
z→∞

(Q
(k)
1 (z)−Q2(z))/(Q1(z)−Q2(z)) and

Q
(k)
1 −Q2

Q1 −Q2
= λk +

k
∑

i=1

(

k

i

)

λk−iP
(i)

P
.

Next we assume that lim
z→∞

Q1(z)/Q2(z) = 1. Then clearly, deg(Q1 − Q2) <

deg(Q
(k)
1 − Q2). Now letting |z| → ∞, from (3.17) we conclude that k deg(Q′) =

deg(Q
(k)
1 − Q2) − deg(Q1 − Q2) and so deg(Q) > 2. In this case, we have f =

Q1 + P exp(Q), where P is a nonzero polynomial and Q is a non-constant polyno-

mial such that k deg(Q′) = deg(Q
(k)
1 −Q2)− deg(Q1 −Q2) and

Q
(k)
1 −Q2

Q1 −Q2
=

(P exp(Q))(k)

P exp(Q)
,

which is immediately obtained from (3.13) and (3.14).

Case 2. Suppose Φ ≡ 0. Since L(f) 6≡ 0, it follows that f ≡ f (k).

This completes the proof. �

P r o o f of Corollary 1.1. We prove Corollary 1.1 with the line of proof of Theo-

rem 1.1 with some necessary modifications. Here we use the same auxiliary function Φ

given by (3.1). Note that if Φ ≡ 0, then since L(f) 6≡ 0, we have f ≡ f (k). Next we

suppose that Φ 6≡ 0 and so f 6≡ f (k).

Now we divide the proof considering the following two possible cases.

Case 1. Suppose Q1 6∈ C. Then by the given condition, we must have Q2 ∈ C\{0}

and so deg(Q1) > deg(Q2). Then by Theorem 1.1, we have f ≡ f (k), which is a

contradiction.

Case 2. Suppose Q1 ∈ C. Then one of the conclusions of Theorem 1.1 must hold

except conclusion (1).

We now consider the following two sub-cases.

Sub-case 2.1. Suppose Q2 6∈ C. Clearly, deg(Q1) < deg(Q2) and so conclusion (2)

of Theorem 1.1 must hold. Therefore, we have f(z) = Q1(z)+P (z) exp(λz), where P

is a nonzero polynomial, λ ∈ C \ {0} such that λk = 1 and

Q
(k)
1 −Q1

Q1 −Q2
=

k
∑

i=1

(

k

i

)

λk−iP
(i)

P
.(3.23)

First we suppose that Q1 ≡ 0. Then from (3.23) we deduce that P is a nonzero

constant. Consequently, we have f(z) = A exp(λz), where A ∈ C \ {0} and λk = 1,
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which implies that f ≡ f (k), a contradiction. Next we suppose that Q1 ∈ C \ {0}.

Therefore, from (3.23) we have

Q1

Q2 −Q1
=

k
∑

i=1

(

k

i

)

λk−iP
(i)

P
,

i.e.,

(3.24)
PQ1

Q2 −Q1
=

k
∑

i=1

(

k

i

)

λk−iP (i),

which implies that deg(Q2) = 1 and deg(P ) > 1.

We now want to prove that P has only one zero. If possible, suppose that P has at

least two zeros. For the sake of simplicity we assume that P (z) = a(z−z1)
m(z−z2)

n,

where a ∈ C \ {0}.

Since f(z) = Q1 + P (z) exp(λz) and all the zeros of f − Q1 have multiplicity at

least k, it follows that m > k and n > k. Also from (3.24), without loss of generality

we may assume that Q1/(Q2(z)−Q1) = (z − z1)/b, where b ∈ C \ {0}. Note that

P (i)(z) = a(z − z1)
m−i(z − z2)

n−iϕi(z),

where ϕi is a polynomial such that deg(ϕi) = i and ϕi(zj) 6= 0 for i = 1, 2, . . . , k and

j = 1, 2. Now from (3.24) we see that

b(z − z1)
m−1(z − z2)

n =

k
∑

i=1

(

k

i

)

λk−i(z − z1)
m−i(z − z2)

n−iϕi(z).(3.25)

Cancelling the term (z − z2)
n−k from both sides of (3.25), we get

b(z − z1)
m−1(z − z2)

k =

k
∑

i=1

(

k

i

)

λk−i(z − z1)
m−i(z − z2)

k−iϕi(z),

which again implies that ϕk(z2) = 0, a contradiction. Therefore, P just has one zero,

say z1 and we may assume that P (z) = a(z− z1)
m, where m > k. Again from (3.24)

we see that

b(z − z1)
m−1 =

k
∑

i=1

(

k

i

)

λk−i(z − z1)
m−iψi(z),(3.26)

where ψi is a polynomial such that deg(ψi) = i and ψi(z1) 6= 0 for i = 1, 2, . . . , k.
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If k > 2, then by simple calculation, one can easily arrive at a contradiction

from (3.26). Hence, the only possibility is that k = 1. Therefore, P (z) = a(z− z1)
m,

where m > 1.

Consequently, from (3.24) we have Q1/(Q2 − Q1) = P ′/P = m/(z − z1),

i.e., Q2(z) = Q1(z − z1)/m + Q1. On the other hand, we have f(z) = Q1 +

a(z − z1)
m exp(z). Also, since k = 1, by the given condition, we have f = Q1 ⇒

f ′ = Q1. Note that f
′(z) = a(z − z1)

m−1(z − z1 +m) exp(z).

Since f(z1) = Q1, it follows that f
′(z1) = Q1. Therefore, we conclude that m = 1

and a exp(z1) = Q1. Also we see that

f(z)−Q2(z) = (z−z1)(a exp(z)−Q1) and f
′(z)−Q2(z) = (z−z1+1)(a exp(λz)−Q1).

Since f −Q2 and f
′ −Q2 share (0, 1), it follows that z = z1 − 1 must be a zero of

f(z)−Q2(z) and so

a exp(z1 − 1) = Q1,

i.e., a exp(z1) exp(−1) = Q1, i.e., Q1 exp(−1) = Q1, i.e., exp(−1) = 1,

which is impossible.

Sub-case 2.2. Suppose Q2 ∈ C \ {0}. Then clearly, we have

Q
(k)
1 −Q2

Q1 −Q2
=

−Q2

Q1 −Q2
∈ C \ {0}.

If Q1 ≡ 0, then obviously deg(Q1) < deg(Q2). Therefore, from (3.23) we conclude

that P is a nonzero constant. In this case, we must have f ≡ f (k), which is a

contradiction.

If Q1 ∈ C \ {0}, then obviously deg(Q1) = deg(Q2). Since Q1 6≡ Q2, it follows

that lim
z→∞

(Q1(z)/Q2(z)) 6= 1. Then conclusion (3) of Theorem 1.1 must occur.

Consequently, from (1.2) we deduce that P is a nonzero constant and λk = Q2/

(Q2 − Q1). Therefore, in this case, we have f(z) = Q1 + A exp(λz), where A, λ ∈

C \ {0} such that λk = Q2/(Q2 −Q1). This completes the proof. �

4. An application for Brück conjecture

What can be the relationship between f and f ′ if f ∈ E (C) shares only one value

CM with its first derivative f ′?

In 1996, Brück (see [1]) first discussed the possible relationship between f and f ′

when f ∈ E (C) and its derivative f ′ share only one finite value CM. In this direction,

a still open and interesting problem is the following conjecture proposed by Brück.
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Conjecture A ([1]). Let f ∈ E (C) such that ̺2(f) 6∈ N ∪ {∞}, where ̺2(f) is

the hyper-order of f . If f and f ′ share a ∈ C CM, then f ′ − a ≡ c(f − a), where

c ∈ C \ {0}.

Though the conjecture is not settled in its full generality, it gives rise to a long

course of research on the uniqueness of entire and meromorphic functions sharing

a single value with its derivatives. Specially, it was observed by Yang and Zhang

in [12] that Brück’s conjecture holds if instead of an entire function one considers its

suitable power. They proved the following theorem.

Theorem F ([12]). Let f ∈ E (C) and n ∈ N such that n > 7. Suppose that fn

and (fn)′ share 1 CM, then fn ≡ (fn)′ and f(z) = c exp(z/n), where c ∈ C \ {0}.

In 2010, Zhang and Yang (see [13]) improved and generalised Theorem F by con-

sidering higher order derivatives and by lowering the power of the entire function.

Theorem G ([13]). Let f ∈ E (C) and k, n ∈ N such that n > k + 1. If fn and

(fn)(k) share 1 CM, then fn ≡ (fn)(k) and f(z) = c exp(λz/n), where c, λ ∈ C \ {0}

and λk = 1.

In 2011, Lü and Yi (see [7]) replaced the sharing value 1 by sharing a polynomial

in Theorem G and obtained the following result.

Theorem H ([7]). Let f ∈ ET (C), k, n ∈ N such that n > k + 1 and let Q 6≡ 0

be a polynomial. If fn − Q and (fn)(k) − Q share 0 CM, then the conclusion of

Theorem G holds.

Naturally, one may ask whether the conclusion of Theorem H still holds if fn −Q

and (fn)(k) −Q share (0, 1). In the following we give an affirmative answer.

Theorem 4.1. Let f ∈ ET (C), k, n ∈ N such that n > k + 1 and let Q 6≡ 0 be a

polynomial. If fn−Q and (fn)(k)−Q share (0, 1), then the conclusion of Theorem G

holds.

P r o o f. Let us take Q1 = 0 and Q2 = Q. By the given condition, we see that

fn − Q2 and (fn)(k) − Q2 share (0, 1) and f
n = Q1 ⇒ (fn)(k) = Q1. Note that

if Φ ≡ 0, then since L(fn) 6≡ 0, we have fn ≡ (fn)(k) and so the conclusion of

Theorem G holds. Next we suppose that Φ 6≡ 0 and so fn 6≡ (fn)(k).

Now we consider the following two possible cases.

Case 1. Suppose Q ∈ C \ {0}. Clearly, deg(Q1) < deg(Q2) and so conclusion (2)

of theorem must hold. Thereby from (1.1) we observe that P is a nonzero constant.

Consequently, we must have fn(z) = c exp(λz), where c ∈ C\ {0} and λk = 1, which

implies that fn ≡ (fn)(k), a contradiction.
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Case 2. Suppose Q 6∈ C. Here we see that fn−Q1 = fn has zeros of multiplicities

at least k + 1. Therefore, from Corollary 1.1 we conclude that fn ≡ (fn)(k), a

contradiction. This completes the proof. �

5. Concluding remark

Keeping other conditions intact, can the sharing condition in Theorem 1.1 be

relaxed to (0, 0) so that the conclusions remain the same?

References

[1] R.Brück: On entire functions which share one value CM with their first derivative.
Result. Math. 30 (1996), 21–24. zbl MR doi

[2] W.K.Hayman: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon
Press, Oxford, 1964. zbl MR

[3] I. Lahiri: Weighted value sharing and uniqueness of meromorphic functions. Complex
Variables, Theory Appl. 46 (2001), 241–253. zbl MR doi

[4] I. Laine: Nevanlinna Theory and Complex Differential Equations. de Gruyter Studies in
Mathematics 15. Walter de Gruyter, Berlin, 1993. zbl MR doi

[5] J. Li, H.Yi: Normal families and uniqueness of entire functions and their derivatives.
Arch. Math. 87 (2006), 52–59. zbl MR doi

[6] F.Lü, J. Xu, A. Chen: Entire functions sharing polynomials with their first derivatives.
Arch. Math. 92 (2009), 593–601. zbl MR doi

[7] F.Lü, H.Yi: The Brück conjecture and entire functions sharing polynomials with their
k-th derivatives. J. Korean Math. Soc. 48 (2011), 499–512. zbl MR doi

[8] E.Mues, N. Steinmetz: Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen.
Manuscr. Math. 29 (1979), 195–206. (In German.) zbl MR doi

[9] L.A.Rubel, C.-C.Yang: Values shared by an entire function and its derivative. Complex
Analysis. Lecture Notes in Mathematics 599. Springer, Berlin, 1977, pp. 101–103. zbl MR doi

[10] J. L. Schiff: Normal Families. Universitext. Springer, New York, 1993. zbl MR doi
[11] C.-C.Yang, H.-X.Yi: Uniqueness Theory of Meromorphic Functions. Mathematics and

Its Applications (Dordrecht) 557. Kluwer Academic, Dordrecht, 2003. zbl MR doi
[12] L.-Z.Yang, J.-L. Zhang: Non-existence of meromorphic solutions of Fermat type func-

tional equation. Aequationes Math. 76 (2008), 140–150. zbl MR doi
[13] J.-L. Zhang, L.-Z. Yang: A power of an entire function sharing one value with its deriva-

tive. Comput. Math. Appl. 60 (2010), 2153–2160. zbl MR doi

Authors’ address: Sujoy Majumder (corresponding author), Nabadwip Sarkar Depart-
ment of Mathematics, Raiganj University, Raiganj, West Bengal-733134, India, e-mail:
sm05math@gmail.com, smj@raiganjuniversity.ac.in, naba.iitbmath@gmail.com.

103

https://zbmath.org/?q=an:0861.30032
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1402421
http://dx.doi.org/10.1007/BF03322176
https://zbmath.org/?q=an:0115.06203
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0164038
https://zbmath.org/?q=an:1025.30027
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1869738
http://dx.doi.org/10.1080/17476930108815411
https://zbmath.org/?q=an:0784.30002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1207139
http://dx.doi.org/10.1515/9783110863147
https://zbmath.org/?q=an:1104.30019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2246406
http://dx.doi.org/10.1007/s00013-005-1619-0
https://zbmath.org/?q=an:1179.30027
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2516165
http://dx.doi.org/10.1007/s00013-009-3075-8
https://zbmath.org/?q=an:1232.30024
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2815888
http://dx.doi.org/10.4134/JKMS.2011.48.3.499
https://zbmath.org/?q=an:0416.30028
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0545041
http://dx.doi.org/10.1007/BF01303627
https://zbmath.org/?q=an:0362.30026
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0460640
http://dx.doi.org/10.1007/BFb0096830
https://zbmath.org/?q=an:0770.30002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1211641
http://dx.doi.org/10.1007/978-1-4612-0907-2
https://zbmath.org/?q=an:1070.30011
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2105668
http://dx.doi.org/10.1007/978-94-017-3626-8
https://zbmath.org/?q=an:1161.30022
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2443466
http://dx.doi.org/10.1007/s00010-007-2913-7
https://zbmath.org/?q=an:1205.30033
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2719737
http://dx.doi.org/10.1016/j.camwa.2010.08.001

