GENERALIZED ATOMIC SUBSPACES
FOR OPERATORS IN HILBERT SPACES

Prasenjit Ghosh, Kolkata, Tapas Kumar Samanta, Howrah

Received July 24, 2020. Published online August 4, 2021.
Communicated by Marek Ptak

Abstract. We introduce the notion of a \(g \)-atomic subspace for a bounded linear operator and construct several useful resolutions of the identity operator on a Hilbert space using the theory of \(g \)-fusion frames. Also, we shall describe the concept of frame operator for a pair of \(g \)-fusion Bessel sequences and some of their properties.

Keywords: frame; atomic subspace; \(g \)-fusion frame; \(K \)-\(g \)-fusion frame

MSC 2020: 42C15, 46C07

1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer in 1952 to study some fundamental problems in non-harmonic Fourier series (see [7]). Later on, after some decades, frame theory was popularized by Daubechies, Grossman, Meyer (see [5]). At present, frame theory has been widely used in signal and image processing, filter bank theory, coding and communications, system modeling and so on. Several generalizations of frames, namely \(K \)-frames, \(g \)-frames, fusion frames etc. have been introduced in recent times.

\(K \)-frames were introduced by Gavruta (see [8]) to study the atomic system with respect to a bounded linear operator. Using frame theory techiques, the author also studied the atomic decompositions for operators on reproducing kernel Hilbert spaces, see [9]. Sun in [15] introduced a \(g \)-frame and a \(g \)-Riesz basis in complex Hilbert spaces and discussed several properties of them. Huang in [12] began to study \(K \)-\(g \)-frame by combining \(K \)-frame and \(g \)-frame. Casazza (see [3]) was first to introduce the notion of fusion frames or frames of subspaces and gave various ways to obtain a resolution of the identity operator from a fusion frame. The concept of

DOI: 10.21136/MB.2021.0130-20

© The author(s) 2021. This is an open access article under the CC BY-NC-ND licence ☛拓展 ☛共享
an atomic subspace with respect to a bounded linear operator were introduced by Bhandari and Mukherjee in [2]. Construction of K-g-fusion frames and their dual were presented by Sadri and Rahimi (see [1]) to generalize the theory of K-frame, fusion frame and g-frame. Ghosh and Samanta in [11] studied the stability of dual g-fusion frames in Hilbert spaces.

In this paper, we present some useful results about resolution of the identity operator on a Hilbert space using the theory of g-fusion frames. We give the notion of g-atomic subspace with respect to a bounded linear operator. The frame operator for a pair of g-fusion Bessel sequences are discussed and some properties are going to be established.

The paper is organized as follows: in Section 2, we briefly recall the basic definitions and results. Various ways of obtaining resolution of the identity operator on a Hilbert space in g-fusion frame are studied in Section 3. g-atomic subspaces are introduced and discussed in Section 4. In Section 5, frame operators for a pair of g-fusion Bessel sequences are given and various properties are established.

Throughout this paper, H is considered to be a separable Hilbert space with associated inner product $\langle \cdot, \cdot \rangle$ and $\{H_j\}_{j \in J}$ are the collection of Hilbert spaces, where J is a subset of integers \mathbb{Z}. I_H is the identity operator on H. $\mathcal{B}(H_1, H_2)$ is a collection of all bounded linear operators from H_1 to H_2. In particular, $\mathcal{B}(H)$ denotes the space of all bounded linear operators on H. For $T \in \mathcal{B}(H)$, we denote $\mathcal{N}(T)$ and $\mathcal{R}(T)$ for null space and range of T, respectively. Also, $P_V \in \mathcal{B}(H)$ is the orthonormal projection onto a closed subspace $V \subset H$. Define the space

$$l^2(\{H_j\}_{j \in J}) = \left\{ \{f_j\}_{j \in J} : f_j \in H_j, \sum_{j \in J} \|f_j\|^2 < \infty \right\}$$

with inner product given by

$$\langle \{f_j\}_{j \in J}, \{g_j\}_{j \in J} \rangle = \sum_{j \in J} \langle f_j, g_j \rangle_{H_j}.$$

Clearly $l^2(\{H_j\}_{j \in J})$ is a Hilbert space with the pointwise operations (see [1]).

2. Preliminaries

Theorem 2.1 ([6], Douglas' factorization theorem). Let $U, V \in \mathcal{B}(H)$. Then the following conditions are equivalent:

1. $\mathcal{R}(U) \subseteq \mathcal{R}(V)$.
2. $UU^* \leq \lambda^2VV^*$ for some $\lambda > 0$.
3. $U = VW$ for some bounded linear operator W on H.

Online first
Theorem 2.2 ([13]). The set $S(H)$ of all self-adjoint operators on H is a partially ordered set with respect to the partial order \leq which is defined as for $T, S \in S(H)$

$$T \leq S \iff \langle T f, f \rangle \leq \langle S f, f \rangle \quad \forall f \in H.$$

Theorem 2.3 ([10]). Let $V \subset H$ be a closed subspace and $T \in B(H)$. Then $P_V T^* = P_V T^* P_{TV}$. If T is a unitary operator (i.e. $T^* T = I_H$), then $P_{TV} T = T P_V$.

Definition 2.4 ([4]). A sequence $\{f_j\}_{j \in J}$ of elements in H is a frame for H if there exist constants $A, B > 0$ such that

$$A \|f\|^2 \leq \sum_{j \in J} |\langle f, f_j \rangle|^2 \leq B \|f\|^2 \quad \forall f \in H.$$

The constants A and B are called frame bounds.

Definition 2.5 ([3]). Let $\{W_j\}_{j \in J}$ be a collection of closed subspaces of H and $\{v_j\}_{j \in J}$ be a collection of positive weights. A family of weighted closed subspaces $\{(W_j, v_j): j \in J\}$ is called a fusion frame for H if there exist constants $0 < A \leq B < \infty$ such that

$$A \|f\|^2 \leq \sum_{j \in J} v_j^2 \|P_{W_j}(f)\|^2 \leq B \|f\|^2 \quad \forall f \in H.$$

The constants A, B are called fusion frame bounds. If $A = B$, then the fusion frame is called a tight fusion frame, if $A = B = 1$, then it is called a Parseval fusion frame.

Definition 2.6 ([2]). Let $\{W_j\}_{j \in J}$ be a family of closed subspaces of H and $\{v_j\}_{j \in J}$ be a family of positive weights and $K \in B(H)$. Then $\{(W_j, v_j): j \in J\}$ is said to be an atomic subspace of H with respect to K if the following conditions hold:

(I) $\sum_{j \in J} v_j f_j$ is convergent for all $\{f_j\}_{j \in J} \in \left(\sum_{j \in J} \oplus W_j \right)_{l^2}$.

(II) For every $f \in H$ there exists $\{f_j\}_{j \in J} \in \left(\sum_{j \in J} \oplus W_j \right)_{l^2}$ such that

$$K(f) = \sum_{j \in J} v_j f_j \quad \text{and} \quad \|\{f_j\}\| \left(\sum_{j \in J} \oplus W_j \right)_{l^2} \leq C \|f\|_H$$

for some $C > 0$, where

$$\left(\sum_{j \in J} \oplus W_j \right)_{l^2} = \left\{ \{f_j\}_{j \in J}: f_j \in W_j, \sum_{j \in J} \|f_j\|^2 < \infty \right\}$$

with inner product given by $\langle \{f_j\}_{j \in J}, \{g_j\}_{j \in J} \rangle = \sum_{j \in J} \langle f_j, g_j \rangle_H$.

Online first
Definition 2.7 ([15]). A sequence \(\{\Lambda_j \in B(H, H_j) : j \in J\} \) is called a generalized frame or \(g \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) if there are two positive constants \(A \) and \(B \) such that
\[
A \|f\|^2 \leq \sum_{j \in J} \|\Lambda_j f\|^2 \leq B \|f\|^2 \quad \forall f \in H.
\]
The constants \(A \) and \(B \) are called the lower and upper frame bounds, respectively.

Definition 2.8 ([14], [1]). Let \(\{W_j\}_{j \in J} \) be a collection of closed subspaces of \(H \) and \(\{v_j\}_{j \in J} \) be a collection of positive weights and let \(\Lambda_j \in B(H, H_j) \) for each \(j \in J \). Then the family \(\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J} \) is called a generalized fusion frame or a \(g \)-fusion frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) if there exist constants \(0 < A \leq B < \infty \) such that
\[
(2.1) \quad A \|f\|^2 \leq \sum_{j \in J} v_j^2 \|\Lambda_j P_{W_j}(f)\|^2 \leq B \|f\|^2 \quad \forall f \in H.
\]
The constants \(A \) and \(B \) are called the lower and upper bounds of \(g \)-fusion frame, respectively. If \(A = B \), then \(\Lambda \) is called tight \(g \)-fusion frame and if \(A = B = 1 \), then we say \(\Lambda \) is a Parseval \(g \)-fusion frame. If \(\Lambda \) satisfies only the condition
\[
\sum_{j \in J} v_j^2 \|\Lambda_j P_{W_j}(f)\|^2 \leq B \|f\|^2 \quad \forall f \in H,
\]
then it is called a \(g \)-fusion Bessel sequence with bound \(B \) in \(H \).

Definition 2.9 ([1]). Let \(\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J} \) be a \(g \)-fusion Bessel sequence in \(H \) with a bound \(B \). The synthesis operator \(T_\Lambda \) of \(\Lambda \) is defined as
\[
T_\Lambda : l^2(\{H_j\}_{j \in J}) \to H, \quad T_\Lambda(\{f_j\}_{j \in J}) = \sum_{j \in J} v_j P_{W_j} \Lambda_j^* f_j \quad \forall \{f_j\}_{j \in J} \in l^2(\{H_j\}_{j \in J})
\]
and the analysis operator is given by
\[
T_\Lambda^* : H \to l^2(\{H_j\}_{j \in J}), \quad T_\Lambda^*(f) = \{v_j \Lambda_j P_{W_j}(f)\}_{j \in J} \quad \forall f \in H.
\]
The \(g \)-fusion frame operator \(S_\Lambda : H \to H \) is defined as
\[
S_\Lambda(f) = T_\Lambda T_\Lambda^*(f) = \sum_{j \in J} v_j^2 P_{W_j} \Lambda_j^* \Lambda_j P_{W_j}(f)
\]
and it can be easily verified that
\[
\langle S_\Lambda(f), f \rangle = \sum_{j \in J} v_j^2 \|\Lambda_j P_{W_j}(f)\|^2 \quad \forall f \in H.
\]

4 Online first
Furthermore, if Λ is a g-fusion frame with bounds A and B, then from (2.1),

$$\langle Af, f \rangle \leq \langle S_\Lambda(f), f \rangle \leq \langle Bf, f \rangle \quad \forall f \in H.$$

The operator S_Λ is bounded, self-adjoint, positive and invertible. Now, according to Theorem 2.2, we can write $AI_H \leq S_\Lambda \leq BI_H$ and this gives

$$B^{-1}I_H \leq S^{-1}_\Lambda \leq A^{-1}I_H.$$

Definition 2.10 ([1]). Let $\{W_j\}_{j \in J}$ be a collection of closed subspaces of H and $\{v_j\}_{j \in J}$ be a collection of positive weights and let $\Lambda_j \in B(H, H_j)$ for each $j \in J$ and $K \in B(H)$. Then the family $\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ is called a K-g-fusion frame for H if there exist constants $0 < A \leq B < \infty$ such that

$$(2.2) \quad A\|K^*f\|^2 \leq \sum_{j \in J} v_j^2\|\Lambda_j P_{W_j}(f)\|^2 \leq B\|f\|^2 \quad \forall f \in H.$$

Theorem 2.11 ([1]). Let Λ be a g-fusion Bessel sequence in H. Then Λ is a K-g-fusion frame for H if and only if there exists $A > 0$ such that $S_\Lambda \geq AKK^*$.

Definition 2.12 ([3]). A family of bounded operators $\{T_j\}_{j \in J}$ on H is called a resolution of identity operator on H if for all $f \in H$ we have $f = \sum_{j \in J} T_j(f)$, provided the series converges unconditionally for all $f \in H$.

3. Resolution of the Identity Operator in g-Fusion Frame

In this section, we present several useful results of resolution of the identity operator on a Hilbert space using the theory of g-fusion frames.

Theorem 3.1. Let $\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ be a g-fusion frame for H with frame bounds C, D and S_Λ be its associated g-fusion frame operator. Then the family $\{v_j^2 P_{W_j} \Lambda_j^* T_j\}_{j \in J}$ is the resolution of the identity operator on H, where $T_j = \Lambda_j P_{W_j} S^{-1}_\Lambda$, $j \in J$. Furthermore, for all $f \in H$ we have

$$\frac{C}{D^2} \|f\|^2 \leq \sum_{j \in J} v_j^2 \|T_j(f)\|^2 \leq \frac{D}{C^2} \|f\|^2.$$
Proof. For any $f \in H$ we have the reconstruction formula for g-fusion frame:

$$f = S_{\Lambda}S_{\Lambda}^{-1}(f) = \sum_{j \in J} v^2_j P_{W_j} \Lambda_j^* \Lambda_j P_{W_j} S_{\Lambda}^{-1}(f) = \sum_{j \in J} v^2_j P_{W_j} \Lambda_j^* T_j(f).$$

Thus, $\{v^2_j P_{W_j} \Lambda_j^* T_j\}_{j \in J}$ is a resolution of the identity operator on H. Since Λ is a g-fusion frame with bounds C and D, for each $f \in H$ we have

$$\sum_{j \in J} v^2_j \|T_j(f)\|^2 = \sum_{j \in J} v^2_j \|\Lambda_j P_{W_j} S_{\Lambda}^{-1}(f)\|^2 \leq D \|S_{\Lambda}^{-1}(f)\|^2 \leq D \|S_{\Lambda}^{-1}\|^2 \|f\|^2 \leq \frac{D}{C^2} \|f\|^2 \ (\text{since } D^{-1} I_H \leq S_{\Lambda}^{-1} \leq C^{-1} I_H).$$

On the other hand,

$$\sum_{j \in J} v^2_j \|T_j(f)\|^2 = \sum_{j \in J} v^2_j \|\Lambda_j P_{W_j} S_{\Lambda}^{-1}(f)\|^2 \geq C \|S_{\Lambda}^{-1}(f)\|^2 \geq \frac{C}{D^2} \|f\|^2.$$

Therefore

$$\frac{C}{D^2} \|f\|^2 \leq \sum_{j \in J} v^2_j \|T_j(f)\|^2 \leq \frac{D}{C^2} \|f\|^2 \ \forall \ f \in H.$$

Theorem 3.2. Let $\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ be a g-fusion frame for H with frame bounds C, D and let $T_j: H \rightarrow H_j$ be a bounded operator such that $\{v^2_j P_{W_j} \Lambda_j^* T_j\}_{j \in J}$ is a resolution of the identity operator on H. Then

$$\frac{1}{D} \left\| \sum_{j \in J} v^2_j P_{W_j} \Lambda_j^* T_j(f) \right\|^2 \leq \sum_{j \in J} v^2_j \|T_j(f)\|^2 \ \forall \ f \in H.$$

Proof. Assume $I \subset J$ with $|I| < \infty$. If our inequality holds for all finite subsets, then it would hold for all subsets. Let $f \in H$ and set $g = \sum_{j \in I} v^2_j P_{W_j} \Lambda_j^* T_j(f)$. Then

$$\|g\|^4 = \langle g, g \rangle^2 = \left\langle g, \sum_{j \in I} v^2_j P_{W_j} \Lambda_j^* T_j(f) \right\rangle^2 = \left(\sum_{j \in I} v_j \langle \Lambda_j P_{W_j}(g), v_j T_j(f) \rangle \right)^2 \leq \left(\sum_{j \in I} v_j \|\Lambda_j P_{W_j}(g)\| \|v_j T_j(f)\| \right)^2 \leq \sum_{j \in I} v^2_j \|\Lambda_j P_{W_j}(g)\|^2 \sum_{j \in I} \|v_j T_j(f)\|^2 \leq D \|g\|^2 \sum_{j \in I} \|v_j T_j(f)\|^2 \ (\text{since } \Lambda \text{ is a } g\text{-fusion frame})$$

$$\Rightarrow \frac{1}{D} \|g\|^2 \leq \sum_{j \in I} \|v_j T_j(f)\|^2$$

$$\Rightarrow \frac{1}{D} \left\| \sum_{j \in I} v^2_j P_{W_j} \Lambda_j^* T_j(f) \right\|^2 \leq \sum_{j \in I} v^2_j \|T_j(f)\|^2 \ \forall \ f \in H.$$
Since the inequality holds for any finite subset $I \subset J$, we have
\[\frac{1}{D} \left\| \sum_{j \in J} v_j^2 P_{W_j} \Lambda_j^* T_j(f) \right\|_2^2 \leq \sum_{j \in J} v_j^2 \| T_j(f) \|_2^2 \quad \forall f \in H. \]
This completes the proof. \(\square \)

Theorem 3.3. Let $\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ be a g-fusion frame for H with frame bounds C, D and let $T_j : H \to H_j$ be a bounded operator such that $\{v_j^2 P_{W_j} \Lambda_j^* T_j\}_{j \in J}$ is a resolution of the identity operator on H. If $T_j^* \Lambda_j P_{W_j} = T_j$, then
\[\frac{1}{D} \| f \|_2^2 \leq \sum_{j \in J} v_j^2 \| T_j(f) \|_2^2 \leq DE \| f \|_2^2 \quad \forall f \in H, \]
where $E = \sup_j \| T_j \|_2^2 < \infty$.

Proof. Since $\{v_j^2 P_{W_j} \Lambda_j^* T_j\}_{j \in J}$ is a resolution of the identity on H,
\[f = \sum_{j \in J} v_j^2 P_{W_j} \Lambda_j^* T_j(f), \quad f \in H. \]
Now, for each $f \in H$, using Theorem 3.2, we get
\[
\begin{align*}
\frac{1}{D} \| f \|_2^2 &= \frac{1}{D} \left\| \sum_{j \in J} v_j^2 P_{W_j} \Lambda_j^* T_j(f) \right\|_2^2 \\
&\leq \sum_{j \in J} v_j^2 \| T_j(f) \|_2^2 \\
&= \sum_{j \in J} v_j^2 \| T_j^* \Lambda_j P_{W_j}(f) \|_2^2 \quad \text{(since $T_j^* \Lambda_j P_{W_j} = T_j$)} \\
&\leq \sum_{j \in J} v_j^2 \| T_j \|_2^2 \| \Lambda_j P_{W_j}(f) \|_2^2 \\
&\leq E \sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j}(f) \|_2^2 \quad \text{(using $E = \sup_j \| T_j \|_2^2$)} \\
&\leq DE \| f \|_2^2 \quad \text{(since Λ is a g-fusion frame).}
\end{align*}
\]
This completes the proof. \(\square \)

Theorem 3.4. Let $\{W_j\}_{j \in J}$ be a family of closed subspaces of H and $\{v_j\}_{j \in J}$ be a family of bounded weights and let $\Lambda_j \in \mathcal{B}(H, H_j)$, $j \in J$. Then $\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ is a g-fusion frame for H if the following conditions hold:

1. For all $f \in H$ there exists $A > 0$ such that
\[\sum_{j \in J} \| \Lambda_j P_{W_j}(f) \|_2^2 \leq \frac{1}{A} \| f \|_2^2. \]

2. $\{v_j P_{W_j} \Lambda_j^* \Lambda_j P_{W_j}\}_{j \in J}$ is a resolution of the identity operator on H.

Online first
Proof. Since \(\{v_j P_{W_j} \Lambda_j^* \Lambda_j P_{W_j}\}_{j \in J} \) is a resolution of the identity operator on \(H \), for \(f \in H \) we have
\[
f = \sum_{j \in J} v_j P_{W_j} \Lambda_j^* \Lambda_j P_{W_j}(f).
\]

By Cauchy-Schwarz inequality, we have
\[
\|f\|^4 = \langle f, f \rangle^2 = \left(\sum_{j \in J} v_j \langle \Lambda_j P_{W_j}(f), \Lambda_j P_{W_j}(f) \rangle \right)^2 = \left(\sum_{j \in J} v_j \| \Lambda_j P_{W_j}(f) \|^2 \right)^2 \
\leq \sum_{j \in J} \| \Lambda_j P_{W_j}(f) \|^2 \sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j}(f) \|^2 \
\leq \frac{1}{A} \|f\|^2 \sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j}(f) \|^2 \quad \text{(using given condition (I))} \
\Rightarrow A \|f\|^2 \leq \sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j}(f) \|^2.
\]

On the other hand,
\[
\sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j}(f) \|^2 \leq B \sum_{j \in J} \| \Lambda_j P_{W_j}(f) \|^2 \quad \text{(where } B = \sup_{j \in J} \{v_j^2\})
\]
\[
\leq \frac{B}{A} \|f\|^2 \quad \text{(using given condition (I))}
\]

and hence, \(\Lambda \) is a \(g \)-fusion frame.

\[\square\]

4. \(g \)-ATOMIC SUBSPACE

In this section, we define a generalized atomic subspace or a \(g \)-atomic subspace of a Hilbert space with respect to a bounded linear operator.

Definition 4.1. Let \(K \in \mathcal{B}(H) \) and \(\{W_j\}_{j \in J} \) be a collection of closed subspaces of \(H \), let \(\{v_j\}_{j \in J} \) be a collection of positive weights and \(\Lambda_j \in \mathcal{B}(H, H_j) \) for each \(j \in J \). Then the family \(\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J} \) is said to be a generalized atomic subspace or \(g \)-atomic subspace of \(H \) with respect to \(K \) if the following statements hold:

(I) \(\Lambda \) is a \(g \)-fusion Bessel sequence in \(H \).

(II) For every \(f \in H \) there exists \(\{f_j\}_{j \in J} \in l^2(\{H_j\}_{j \in J}) \) such that
\[
K(f) = \sum_{j \in J} v_j P_{W_j} \Lambda_j^* f_j \quad \text{and} \quad \|\{f_j\}_{j \in J}\|_{l^2(\{H_j\}_{j \in J})} \leq C \|f\|_H
\]
for some \(C > 0 \).
Theorem 4.2. Let $K \in \mathcal{B}(H)$ and $\{W_j\}_{j \in J}$ be a collection of closed subspaces of H, let $\{v_j\}_{j \in J}$ be a collection of positive weights and $\Lambda_j \in \mathcal{B}(H, H_j)$ for each $j \in J$. Then the following statements are equivalent:

(I) $\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ is a g-atomic subspace of H with respect to K.

(II) Λ is a K-g-fusion frame for H.

Proof. (I) \Rightarrow (II): Suppose Λ is a g-atomic subspace of H with respect to K. Then Λ is a g-fusion Bessel sequence, so there exists $B > 0$ such that

$$\sum_{j \in J} v_j^2 \|\Lambda_j P_{W_j}(f)\|^2 \leq B \|f\|^2 \quad \forall f \in H.$$

Now, for any $f \in H$ we have

$$\|K^* f\| = \sup_{\|g\|=1} |\langle K^* f, g \rangle| = \sup_{\|g\|=1} |\langle f, Kg \rangle|,$$

by Definition 4.1, for $g \in H$ there exists $\{f_j\}_{j \in J} \in l^2(\{H_j\}_{j \in J})$ such that

$$K(g) = \sum_{j \in J} v_j P_{W_j} \Lambda_j^* f_j \quad \text{and} \quad \|\{f_j\}_{j \in J}\|_{l^2(\{H_j\}_{j \in J})} \leq C \|g\|_H$$

for some $C > 0$. Thus

$$\|K^* f\| = \sup_{\|g\|=1} \left| \sum_{j \in J} v_j P_{W_j} \Lambda_j^* f_j \right| = \sup_{\|g\|=1} \left| \sum_{j \in J} v_j \langle \Lambda_j P_{W_j}(f), f_j \rangle \right|$$

$$\leq \sup_{\|g\|=1} \left(\sum_{j \in J} v_j^2 \|\Lambda_j P_{W_j}(f)\|^2 \right)^{1/2} \left(\sum_{j \in J} \|f_j\|^2 \right)^{1/2}$$

$$\leq C \sup_{\|g\|=1} \left(\sum_{j \in J} v_j^2 \|\Lambda_j P_{W_j}(f)\|^2 \right)^{1/2} \|g\|$$

$$\Rightarrow \frac{1}{C^2} \|K^* f\|^2 \leq \sum_{j \in J} v_j^2 \|\Lambda_j P_{W_j}(f)\|^2.$$

Therefore Λ is a K-g-fusion frame for H with bounds $1/C^2$ and B.

(II) \Rightarrow (I): Suppose that Λ is a K-g-fusion frame with the corresponding synthesis operator T_Λ. Then obviously Λ is a g-fusion Bessel sequence in H. Now, for each $f \in H$,

$$A \|K^* f\|^2 \leq \sum_{j \in J} v_j^2 \|\Lambda_j P_{W_j}(f)\|^2 = \|T_\Lambda^* f\|^2.$$
gives $AKK^* \leq T\Lambda T^*_\Lambda$ and by Theorem 2.1, exists $L \in \mathcal{B}(H, l^2(\{H_j\}_{j \in J}))$ such that $K = T\Lambda L$. Define $L(f) = \{f_j\}_{j \in J}$ for every $f \in H$. Then for each $f \in H$ we have

$$K(f) = T\Lambda L(f) = T\Lambda(\{f_j\}_{j \in J}) = \sum_{j \in J} v_j P_{W_j} A^*_j f_j$$

and

$$\|\{f_j\}_{j \in J} \|_{l^2(\{H_j\}_{j \in J})} = \| L(f) \|_{l^2(\{H_j\}_{j \in J})} \leq C \| f \|,$$

where $C = \| L \|$. Hence, Λ is a g-atomic subspace of H with respect to K. \hfill \Box

Theorem 4.3. Let $\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ be a g-fusion frame for H. Then Λ is a g-atomic subspace of H with respect to its g-fusion frame operator S_Λ.

Proof. Since Λ is a g-fusion frame in H, there exist $A, B > 0$ such that

$$A \| f \|^2 \leq \sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j}(f) \|^2 \leq B \| f \|^2 \quad \forall f \in H.$$

Since $\mathcal{R}(T\Lambda) = H = \mathcal{R}(S_\Lambda)$, by Theorem 2.1, there exists $\alpha > 0$ such that $\alpha S_\Lambda S^*_\Lambda \leq T\Lambda T^*_\Lambda$ and therefore for each $f \in H$ we have

$$\alpha \| S^*_\Lambda f \|^2 \leq \| T^*_\Lambda f \|^2 = \sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j}(f) \|^2 \leq B \| f \|^2.$$

Thus, Λ is a S_Λ-g-fusion frame and hence by Theorem 4.2, Λ is a g-atomic subspace of H with respect to S_Λ. \hfill \Box

Theorem 4.4. Let $\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J}$ and $\Gamma = \{(W_j, \Gamma_j, v_j)\}_{j \in J}$ be two g-atomic subspaces of H with respect to $K \in \mathcal{B}(H)$ with the corresponding synthesis operators $T\Lambda$ and $T\Gamma$, respectively. If $T\Lambda T^*_\Gamma = \theta_H$ (Θ_H is a null operator on H) and $U, V \in \mathcal{B}(H)$ such that $U + V$ is invertible operator on H with $K(U+V) = (U+V)K$, then

$$\{(U + V) W_j, (\Lambda_j + \Gamma_j) P_{W_j}(U + V)^*, v_j\}_{j \in J}$$

is a g-atomic subspace of H with respect to K.

Proof. Since Λ and Γ are g-atomic subspaces with respect to K, by Theorem 4.2, they are K-g-fusion frames for H. So, for each $f \in H$ there exist positive constants (A_1, B_1) and (A_2, B_2) such that

$$A_1 \| K^* f \|^2 \leq \sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j}(f) \|^2 \leq B_1 \| f \|^2$$

and

$$A_2 \| K^* f \|^2 \leq \sum_{j \in J} v_j^2 \| \Gamma_j P_{W_j}(f) \|^2 \leq B_2 \| f \|^2.$$
Since $T_\Lambda T_\Gamma^* = \theta_H$, for any $f \in H$ we have

\[(4.1) \quad T_\Lambda \{v_j \Gamma_j P_{W_j}(f)\}_{j \in J} = \sum_{j \in J} v_j^2 P_{W_j} \Lambda_j^* \Gamma_j P_{W_j}(f) = 0.\]

Also, $U + V$ is invertible, so

\[(4.2) \quad \|K^* f\|^2 = \|((U + V)^{-1})^* (U + V)^* K^* f\|^2 \leq \|(U + V)^{-1}\|^2 \| (U + V)^* K^* f\|^2.\]

Now, for any $f \in H$ we have

\[
\sum_{j \in J} v_j^2 \| (\Lambda_j + \Gamma_j) P_{W_j}(U + V)^* P_{(U + V)W_j}(f) \|^2 \\
= \sum_{j \in J} v_j^2 \| (\Lambda_j + \Gamma_j) P_{W_j}(U + V)^* (f)\|^2 \quad \text{(using Theorem 2.3)} \\
= \sum_{j \in J} v_j^2 \langle (\Lambda_j + \Gamma_j) P_{W_j}(T^*) f, (\Lambda_j + \Gamma_j) P_{W_j}(T^*) f \rangle \quad \text{(taking $T = U + V$)} \\
= \sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j}(T^*) f \|^2 \quad \text{(using (4.1))} \\
\leq B_1 \|T^* f\|^2 + B_2 \|T^* f\|^2 \quad \text{(since Λ, Γ are K-g-fusion frames)} \\
= (B_1 + B_2) \|(U + V)^* f\|^2 \quad \text{(since $T = U + V$)} \\
\leq (B_1 + B_2) \|U + V\|^2 \|f\|^2 \quad \text{(as $U + V$ is bounded).}
\]

On the other hand,

\[
\sum_{j \in J} v_j^2 \| (\Lambda_j + \Gamma_j) P_{W_j}(U + V)^* P_{(U + V)W_j}(f) \|^2 \\
= \sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j}(U + V)^* f \|^2 + \sum_{j \in J} v_j^2 \| \Gamma_j P_{W_j}(U + V)^* f \|^2 \\
\geq \sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j}(U + V)^* f \|^2 \\
\geq A_1 \|K^* (U + V)^* f\|^2 \quad \text{(since Λ is K-g-fusion frame)} \\
= A_1 \| (U + V)^* K^* f\|^2 \quad \text{(using $K(U + V) = (U + V)K$)} \\
\geq A_1 \| (U + V)^{-1}\|^{-2} \|K^* f\|^2 \quad \text{(using (4.2)).}
\]

Therefore \{((U + V)W_j, (\Lambda_j + \Gamma_j) P_{W_j}(U + V)^*, v_j)\}_{j \in J} is a K-g-fusion frame and by Theorem 4.2, it is a g-atomic subspace of H with respect to K. \qed
Corollary 4.5. Let Λ = \{(W_j, Λ_j, v_j)\}_{j \in J} and Γ = \{(W_j, Γ_j, v_j)\}_{j \in J} be two g-atomic subspaces of H with respect to K ∈ B(H) with the corresponding synthesis operators T_Λ and T_Γ. If T_Λ T_Γ^* = θ_H and U ∈ B(H) is an invertible operator with KU = UK, then \{(UW_j, (Λ_j + Γ_j)P_{W_j}U^*, v_j)\}_{j \in J} is a g-atomic subspace of H with respect to K.

Proof. The proof of this Corollary directly follows from Theorem 4.4 by putting \(V = \theta_H\).

Theorem 4.6. Let Λ = \{(W_j, Λ_j, v_j)\}_{j \in J} is a g-atomic subspace for K ∈ B(H) and S_Λ be the frame operator of Λ. If U ∈ B(H) is a positive and invertible operator on H, then \(Λ' = \{(\sum (I + U)W_j, Λ_jP_{W_j}(I + U)^*, v_j)\}_{j \in J}\) is a g-atomic subspace of H with respect to K. Moreover, for any natural number \(n\), \(Λ'' = \{(\sum (I + U^n)W_j, Λ_jP_{W_j}(I + U^n)^*, v_j)\}_{j \in J}\) is a g-atomic subspace of H with respect to K.

Proof. Since Λ is a g-atomic subspace with respect to K, by Theorem 4.2, it is a K-g-fusion frame for H. Then according to Theorem 2.11, there exists \(A > 0\) such that \(S_Λ ≥ AKK^*\). Now, for each \(f ∈ H\) we have

\[
\sum_{j \in J} v_j^2 ∥Λ_jP_{W_j}(I + U)^*P_{(t_H + U)}W_j(f)∥^2 \\
= \sum_{j \in J} v_j^2 ∥Λ_jP_{W_j}(I + U)^*(f)∥^2 \quad \text{(using Theorem 2.3)}
\]

\[
≤ B∥(I + U)^*(f)∥^2 \quad \text{(since Λ is a K-g-fusion frame)}
\]

\[
≤ B∥I + U∥^2∥f∥^2 \quad \text{(since (I + U) ∈ B(H)).}
\]

Thus, Λ' is a g-fusion Bessel sequence in H. Also, for each \(f ∈ H\) we have

\[
\sum_{j \in J} v_j^2 P_{(t_H + U)}W_j(Λ_jP_{W_j}(I + U)^*)Λ_jP_{W_j}(I + U)^*P_{(t_H + U)}W_j(f)
\]

\[
= \sum_{j \in J} v_j^2 P_{(t_H + U)}W_j(I + U)P_{W_j}Λ_j^*Λ_jP_{W_j}(I + U)^*P_{(t_H + U)}W_j(f)
\]

\[
= \sum_{j \in J} v_j^2 (P_{W_j}(I + U)^*P_{(t_H + U)}W_j)Λ_j^*Λ_jP_{W_j}(I + U)^*P_{(t_H + U)}W_j(f)
\]

\[
= \sum_{j \in J} v_j^2 (P_{W_j}(I + U)^*)Λ_j^*Λ_jP_{W_j}(I + U)^*(f) \quad \text{(using Theorem 2.3)}
\]

\[
= \sum_{j \in J} v_j^2 (I + U)P_{W_j}Λ_j^*Λ_jP_{W_j}(I + U)^*(f)
\]

\[
= (I + U)\sum_{j \in J} v_j^2 P_{W_j}Λ_j^*Λ_jP_{W_j}(I + U)^*(f) = (I + U)S_Λ(I + U)^*(f).
\]
This shows that the frame operator of Λ' is $(I_H + U)S_{\Lambda}(I_H + U)^*$. Now,

$$(I_H + U)S_{\Lambda}(I_H + U)^* \geq S_{\Lambda} \geq AKK^* \quad \text{(since } U, S_{\Lambda} \text{ are positive}).$$

Then by Theorem 2.11, we can conclude that Λ' is a K-g-fusion frame and therefore by Theorem 4.2, Λ' is a g-atomic subspace of H with respect to K. According to the preceding procedure, for any natural number n, the frame operator of Λ'' is $(I_H + U^n)S_{\Lambda}(I_H + U^n)^*$ and similarly, it can be shown that Λ'' is a g-atomic subspace of H with respect to K.

\[\square\]

5. FRAME OPERATOR FOR A PAIR OF g-FUSION BESSEL SEQUENCES

In this section, we shall discuss the frame operator for a pair of g-fusion Bessel sequences and establish some properties relative to frame operator. At the end of this section, we shall construct a new g-fusion frame for the Hilbert space $H \oplus X$, using the g-fusion frames of the Hilbert spaces H and X.

Definition 5.1. Let $\Lambda = \{(W_j, \Lambda_j, w_j)\}_{j \in J}$ and $\Gamma = \{(V_j, \Gamma_j, v_j)\}_{j \in J}$ be two g-fusion Bessel sequences in H with bounds D_1 and D_2. Then the operator $S_{\Gamma\Lambda}: H \to H$, defined by

$$S_{\Gamma\Lambda}(f) = \sum_{j \in J} v_j w_j P_{V_j} \Gamma_j^* \Lambda_j P_{W_j}(f) \quad \forall f \in H,$$

is called the frame operator for the pair of g-fusion Bessel sequences Λ and Γ.

Theorem 5.2. The frame operator $S_{\Gamma\Lambda}$ for the pair of g-fusion Bessel sequences Λ and Γ is bounded and $S_{\Gamma\Lambda}^* = S_{\Lambda\Gamma}$.

Proof. For each $f, g \in H$ we have

$$\langle S_{\Gamma\Lambda}(f), g \rangle = \left\langle \sum_{j \in J} v_j w_j P_{V_j} \Gamma_j^* \Lambda_j P_{W_j}(f), g \right\rangle = \sum_{j \in J} v_j w_j \langle \Lambda_j P_{W_j}(f), \Gamma_j P_{V_j}(g) \rangle.$$

By the Cauchy-Schwarz inequality, we obtain

$$|\langle S_{\Gamma\Lambda}(f), g \rangle| \leq \left(\sum_{j \in J} v_j^2 \|\Gamma_j P_{V_j}(g)\|^2\right)^{1/2} \left(\sum_{j \in J} w_j^2 \|\Lambda_j P_{W_j}(f)\|^2\right)^{1/2} \leq \sqrt{D_2} \|g\| \sqrt{D_1} \|f\|.$$
This shows that $S_{\Gamma \Lambda}$ is a bounded operator with $\|S_{\Gamma \Lambda}\| \leq \sqrt{D_1 D_2}$. Now,

\[(5.3)\quad \|S_{\Gamma \Lambda} f\| = \sup_{\|g\|=1} |\langle S_{\Gamma \Lambda} (f), g \rangle| \leq \sup_{\|g\|=1} \sqrt{D_2} \|g\| \left(\sum_{j \in J} w_j^2 \|\Lambda_j P_{W_j} (f)\|^2 \right)^{1/2} \] (using (5.2))

and similarly, it can be shown that

\[(5.4)\quad \|S_{\Gamma \Lambda}^* g\| \leq \sqrt{D_1} \left(\sum_{j \in J} v_j^2 \|\Gamma_j P_{V_j} (g)\|^2 \right)^{1/2}.\]

Also, for each $f, g \in H$ we have

\[\langle S_{\Gamma \Lambda} (f), g \rangle = \left\langle \sum_{j \in J} v_j w_j P_{V_j} \Gamma_j^* \Lambda_j P_{W_j} (f), g \right\rangle = \sum_{j \in J} v_j w_j \langle f, P_{V_j} \Gamma_j^* \Lambda_j P_{W_j} (g) \rangle \]

and hence $S_{\Gamma \Lambda}^* = S_{\Lambda \Gamma}$.

Theorem 5.3. Let $S_{\Gamma \Lambda}$ be the frame operator for a pair of g-fusion Bessel sequences Λ and Γ with bounds D_1 and D_2, respectively. Then the following statements are equivalent:

(I) $S_{\Gamma \Lambda}$ is bounded below.

(II) There exists $K \in B(H)$ such that $\{T_j\}_{j \in J}$ is a resolution of the identity operator on H, where $T_j = v_j w_j K P_{V_j} \Gamma_j^* \Lambda_j P_{W_j}$, $j \in J$.

If one of the given conditions holds, then Λ is a g-fusion frame.

Proof. (I) \Rightarrow (II): Suppose that $S_{\Gamma \Lambda}$ is bounded below. Then for each $f \in H$ there exists $A > 0$ such that

\[\|f\|^2 \leq A \|S_{\Gamma \Lambda} f\|^2 \Rightarrow \langle I_H f, f \rangle \leq A \langle S_{\Gamma \Lambda}^* S_{\Gamma \Lambda} f, f \rangle \Rightarrow I_H^* I_H \leq A S_{\Gamma \Lambda}^* S_{\Gamma \Lambda}.\]

So, by Theorem 2.1, there exists $K \in B(H)$ such that $K S_{\Gamma \Lambda} = I_H$. Therefore for each $f \in H$ we have

\[f = K S_{\Gamma \Lambda} (f) = K \sum_{j \in J} v_j w_j P_{V_j} \Gamma_j^* \Lambda_j P_{W_j} (f) = \sum_{j \in J} v_j w_j K P_{V_j} \Gamma_j^* \Lambda_j P_{W_j} (f) = \sum_{j \in J} T_j (f)\]

and hence $\{T_j\}_{j \in J}$ is a resolution of the identity operator on H, where $T_j = v_j w_j K P_{V_j} \Gamma_j^* \Lambda_j P_{W_j}$.
(II) \implies (I): Since \(\{T_j\}_{j \in J} \) is a resolution of the identity operator on \(H \), for any \(f \in H \) we have
\[
f = \sum_{j \in J} T_j(f) = \sum_{j \in J} v_j w_j K \Gamma_j^* \Lambda_j P_{W_j}(f) = K \sum_{j \in J} v_j w_j \Gamma_j^* \Lambda_j P_{W_j}(f) = KS_{\Gamma \Lambda}(f).
\]
Thus, \(I_H = KS_{\Gamma \Lambda} \). So, by Theorem 2.1, there exists \(\alpha > 0 \) such that \(I_H I_H^* \leq \alpha S_{\Gamma \Lambda} S_{\Gamma \Lambda}^* \) and hence \(S_{\Gamma \Lambda} \) is bounded below.

Last part: First we suppose that \(S_{\Gamma \Lambda} \) is bounded below. Then for all \(f \in H \) there exists \(M > 0 \) such that \(\|S_{\Gamma \Lambda} f\| \geq M \|f\| \) and this implies that
\[
M^2 \|f\|^2 \leq \|S_{\Gamma \Lambda} f\|^2 \leq D_2 \sum_{j \in J} w_j^2 \|\Lambda_j P_{W_j}(f)\|^2 \quad \text{(using (5.3))}
\]
\[
\Rightarrow M^2 \|f\|^2 \leq \sum_{j \in J} w_j^2 \|\Lambda_j P_{W_j}(f)\|^2.
\]
Hence, \(\Lambda \) is a \(g \)-fusion frame for \(H \) with bounds \(M^2/D_2 \) and \(D_1 \).

Next, we suppose that the given condition (II) holds. Then for any \(f \in H \) we have
\[
f = \sum_{j \in J} v_j w_j K \Gamma_j^* \Lambda_j P_{W_j}(f), \quad K \in \mathcal{B}(H).
\]
By Cauchy-Schwarz inequality, for each \(f \in H \) we have
\[
\|f\|^2 = \langle f, f \rangle = \left(\sum_{j \in J} v_j w_j K \Gamma_j^* \Lambda_j P_{W_j}(f), f \right) = \sum_{j \in J} v_j w_j \langle \Lambda_j P_{W_j}(f), \Gamma_j P_{V_j}(K^* f) \rangle
\]
\[
\leq \left(\sum_{j \in J} w_j^2 \|\Lambda_j P_{W_j}(f)\|^2 \right)^{1/2} \left(\sum_{j \in J} v_j^2 \|\Gamma_j P_{V_j}(K^* f)\|^2 \right)^{1/2}
\]
\[
\leq \sqrt{D_2} \|K^* f\| \left(\sum_{j \in J} w_j^2 \|\Lambda_j P_{W_j}(f)\|^2 \right)^{1/2}
\]
\[
\leq \sqrt{D_2} \|K\| \|f\| \left(\sum_{j \in J} w_j^2 \|\Lambda_j P_{W_j}(f)\|^2 \right)^{1/2}
\]
\[
\Rightarrow \frac{1}{D_2 \|K\|^2} \|f\|^2 \leq \sum_{j \in J} w_j^2 \|\Lambda_j P_{W_j}(f)\|^2.
\]
Therefore, in this case \(\Lambda \) is also a \(g \)-fusion frame for \(H \). \hfill \Box

Theorem 5.4. Let \(S_{\Gamma \Lambda} \) be the frame operator for a pair of \(g \)-fusion Bessel sequences \(\Lambda \) and \(\Gamma \) with bounds \(D_1 \) and \(D_2 \), respectively. Suppose \(\lambda_1 < 1, \lambda_2 > -1 \) such that for each \(f \in H \), \(\|f - S_{\Gamma \Lambda} f\| \leq \lambda_1 \|f\| + \lambda_2 \|S_{\Gamma \Lambda} f\| \). Then \(\Lambda \) is a \(g \)-fusion frame for \(H \).
Thus, \(\Lambda \) is a \(g \)-fusion frame for \(H \) with bounds \((1 - \lambda_1)^2(1 + \lambda_2)^{-2}D_2^{-1} \) and \(D_1 \).

Theorem 5.5. Let \(S_{\Gamma\Lambda} \) be the frame operator for a pair of \(g \)-fusion Bessel sequences \(\Lambda \) and \(\Gamma \) of bounds \(D_1 \) and \(D_2 \), respectively. Assume \(\lambda \in [0,1) \) such that

\[
\|f - S_{\Gamma\Lambda}f\| \leq \lambda\|f\| \quad \forall f \in H.
\]

Then \(\Lambda \) and \(\Gamma \) are \(g \)-fusion frames for \(H \).

Proof. By putting \(\lambda_1 = \lambda \) and \(\lambda_2 = 0 \) in (5.5), we get

\[
\frac{(1 - \lambda)^2}{D_2} \|f\|^2 \leq \sum_{j \in J} w_j^2 \|\Lambda_j P_{V_j} (f)\|^2
\]

and therefore \(\Lambda \) is a \(g \)-fusion frame. Now, for each \(f \in H \) we have

\[
\|f - S_{\Gamma\Lambda}^* f\| = \|(I_H - S_{\Gamma\Lambda})^* f\| \leq \|(I_H - S_{\Gamma\Lambda})\||f\| \leq \lambda\|f\|
\]

\[
\Rightarrow (1 - \lambda)\|f\| \leq \|S_{\Gamma\Lambda}^* f\| \leq \sqrt{D_1} \left(\sum_{j \in J} v_j^2 \|\Gamma_j P_{V_j} (f)\|^2 \right)^{1/2} \quad \text{(using (5.4))}
\]

\[
\Rightarrow \sum_{j \in J} v_j^2 \|\Gamma_j P_{V_j} (f)\|^2 \geq \frac{(1 - \lambda)^2}{D_1} \|f\|^2 \quad \forall f \in H.
\]

Hence, \(\Gamma \) is a \(g \)-fusion frame with bounds \((1 - \lambda)^2/D_1 \) and \(D_2 \).

Definition 5.6. Let \(H \) and \(X \) be two Hilbert spaces. Define

\[
H \oplus X = \{(f, g) : f \in H, g \in X\}.
\]

Then \(H \oplus X \) forms a Hilbert space with respect to point-wise operations and inner product defined by

\[
\langle (f, g), (f', g') \rangle = \langle f, f' \rangle_H + \langle g, g' \rangle_X \quad \forall f, f' \in H \text{ and } \forall g, g' \in X.
\]

Now, if \(U \in B(H, Z), V \in B(X, Y) \), then for all \(f \in H, g \in X \) we define

\[
U \oplus V \in B(H \oplus X, Z \oplus Y) \quad \text{by} \quad (U \oplus V) (f, g) = (U f, V g),
\]
and \((U \oplus V)^* = U^* \oplus V^*\), where \(Z, Y\) are Hilbert spaces and also we define
\[P_{M \oplus N}(f, g) = (P_M f, P_N g),\]
where \(P_M, P_N\) and \(P_{M \oplus N}\) are orthonormal projections onto the closed subspaces \(M \subset H, N \subset X\) and \(M \oplus N \subset H \oplus X\), respectively.

From here we assume that for each \(j \in J\), \(W_j \oplus V_j\) are the closed subspaces of \(H \oplus X\) and \(\Gamma_j \in \mathcal{B}(X, X_j)\), where \(\{X_j\}_{j \in J}\) is the collection of Hilbert spaces and \(\Lambda_j \oplus \Gamma_j \in \mathcal{B}(H \oplus X, H_j \oplus X_j)\).

Theorem 5.7. Let \(\Lambda = \{(W_j, \Lambda_j, v_j)\}_{j \in J}\) be a \(g\)-fusion frame for \(H\) with bounds \(A, B\) and \(\Gamma = \{(V_j, \Gamma_j, v_j)\}_{j \in J}\) be a \(g\)-fusion frame for \(X\) with bounds \(C, D\). Then \(\Lambda \oplus \Gamma = \{(W_j \oplus V_j, \Lambda_j \oplus \Gamma_j, v_j)\}_{j \in J}\) is a \(g\)-fusion frame for \(H \oplus X\) with bounds \(\min\{A, C\}, \max\{B, D\}\). Furthermore, if \(S_\Lambda, S_\Gamma\) and \(S_{\Lambda \oplus \Gamma}\) are \(g\)-fusion frame operators for \(\Lambda, \Gamma\) and \(\Lambda \oplus \Gamma\), respectively, then we have \(S_{\Lambda \oplus \Gamma} = S_\Lambda \oplus S_\Gamma\).

Proof. Let \((f, g) \in H \oplus X\) be an arbitrary element. Then
\[
\sum_{j \in J} v_j^2 \| (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} (f, g) \|^2
\]
\[
= \sum_{j \in J} v_j^2 \langle (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} (f, g), (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} (f, g) \rangle
\]
\[
= \sum_{j \in J} v_j^2 \langle \Lambda_j \oplus \Gamma_j (P_{W_j} (f), P_{V_j} (g)), \Lambda_j \oplus \Gamma_j (P_{W_j} (f), P_{V_j} (g)) \rangle
\]
\[
= \sum_{j \in J} v_j^2 \langle (\Lambda_j P_{W_j} (f), \Gamma_j P_{V_j} (g)), (\Lambda_j P_{W_j} (f), \Gamma_j P_{V_j} (g)) \rangle
\]
\[
= \sum_{j \in J} v_j^2 \langle (\Lambda_j P_{W_j} (f), \Lambda_j P_{W_j} (f))_H + (\Gamma_j P_{V_j} (g), \Gamma_j P_{V_j} (g))_X \rangle
\]
\[
= \sum_{j \in J} v_j^2 (\| \Lambda_j P_{W_j} (f) \|^2_H + \| \Gamma_j P_{V_j} (g) \|^2_X)
\]
\[
= \sum_{j \in J} v_j^2 \| \Lambda_j P_{W_j} (f) \|^2_H + \sum_{j \in J} v_j^2 \| \Gamma_j P_{V_j} (g) \|^2_X
\]
\[
\leq B \| f \|^2_H + D \| g \|^2_X \quad \text{(since } \Lambda, \Gamma \text{ are } g\text{-fusion frames)}
\]
\[
\leq \max\{B, D\} (\| f \|^2_H + \| g \|^2_X) = \max\{B, D\} \| (f, g) \|^2.
\]

Similarly, it can be shown that
\[
\min\{A, C\} \| (f, g) \|^2 \leq \sum_{j \in J} v_j^2 \langle (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} (f, g), (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} (f, g) \rangle.
\]

Therefore, for all \((f, g) \in H \oplus X\) we have
\[
A_1 \| (f, g) \|^2 \leq \sum_{j \in J} v_j^2 \| (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} (f, g) \|^2 \leq B_1 \| (f, g) \|^2
\]
and hence $\Lambda \oplus \Gamma$ is a g-fusion frame for $H \oplus X$ with bounds $A_1 = \min\{A, C\}$ and $B_1 = \max\{B, D\}$. Furthermore, for $(f, g) \in H \oplus X$ we have

$$S_{\Lambda \oplus \Gamma}(f, g) = \sum_{j \in J} v_j^2 P_{W_j \oplus V_j} (\Lambda_j \oplus \Gamma_j)^* (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j}(f, g)$$

$$= \sum_{j \in J} v_j^2 P_{W_j \oplus V_j} (\Lambda_j \oplus \Gamma_j)^* (\Lambda_j \oplus \Gamma_j) (P_{W_j}(f), P_{V_j}(g))$$

$$= \sum_{j \in J} v_j^2 P_{W_j \oplus V_j} (\Lambda_j \oplus \Gamma_j)^* (\Lambda_j P_{W_j}(f), \Gamma_j P_{V_j}(g))$$

$$= \sum_{j \in J} v_j^2 P_{W_j \oplus V_j} (\Lambda_j^* \Lambda_j P_{W_j}(f), \Gamma_j^\dagger \Gamma_j P_{V_j}(g))$$

$$= \sum_{j \in J} v_j^2 (P_{W_j} \Lambda_j^* \Lambda_j P_{W_j}(f), P_{V_j} \Gamma_j^\dagger \Gamma_j P_{V_j}(g))$$

$$= \left(\sum_{j \in J} v_j^2 P_{W_j} \Lambda_j^* \Lambda_j P_{W_j}(f), \sum_{j \in J} v_j^2 P_{V_j} \Gamma_j^\dagger \Gamma_j P_{V_j}(g) \right)$$

$$= (S_\Lambda(f), S_\Gamma(g))$$

$$= (S_{\Lambda \oplus \Gamma} \oplus \Gamma)(f, g) \quad \forall (f, g) \in H \oplus X.$$

Hence, $S_{\Lambda \oplus \Gamma} = S_\Lambda \oplus S_\Gamma$. This completes the proof. \hfill \Box

Theorem 5.8. Let $\Lambda \oplus \Gamma = \{(W_j \oplus V_j, \Lambda_j \oplus \Gamma_j, v_j)\}_{j \in J}$ be a g-fusion frame for $H \oplus X$ with frame operator $S_{\Lambda \oplus \Gamma}$. Then

$$\Delta' = \{(S_{\Lambda \oplus \Gamma}^{-1/2}(W_j \oplus V_j), (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1/2}, v_j)\}_{j \in J}$$

is a Parseval g-fusion frame for $H \oplus X$.

Proof. Since $S_{\Lambda \oplus \Gamma}$ is a positive operator, there exists a unique positive square root $S_{\Lambda \oplus \Gamma}^{1/2}$ (or $S_{\Lambda \oplus \Gamma}^{-1/2}$) and they commute with $S_{\Lambda \oplus \Gamma}$ and $S_{\Lambda \oplus \Gamma}^{-1}$. Therefore, each $(f, g) \in H \oplus X$ can be written as

$$(f, g) = S_{\Lambda \oplus \Gamma}^{-1/2} S_{\Lambda \oplus \Gamma} S_{\Lambda \oplus \Gamma}^{-1/2}(f, g)$$

$$= \sum_{j \in J} v_j^2 S_{\Lambda \oplus \Gamma}^{-1/2} P_{W_j \oplus V_j} (\Lambda_j \oplus \Gamma_j)^* (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1/2}(f, g).$$
Now, for each \((f, g) \in H \oplus X\) we have

\[
\| (f, g) \|^2 = \langle (f, g), (f, g) \rangle = \left\langle \sum_{j \in J} v_j^2 S_{\Lambda \oplus \Gamma}^{-1/2} P_{W_j \oplus V_j} (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1/2} (f, g), (f, g) \right\rangle \\
= \sum_{j \in J} v_j^2 \| (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1/2} (f, g) \|^2 \\
\leq \sum_{j \in J} v_j^2 \| (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1/2} P_{S_{\Lambda \oplus \Gamma}^{-1/2} (W_j \oplus V_j)} (f, g) \|^2
\]

(by Theorem 2.3).

This shows that \(\Delta'\) is a Parseval \(g\)-fusion frame for \(H \oplus X\). \qed

Theorem 5.9. Let \(\Lambda \oplus \Gamma = \{(W_j \oplus V_j, \Lambda_j \oplus \Gamma_j, v_j)\}_{j \in J}\) be a \(g\)-fusion frame for \(H \oplus X\) with bounds \(A_1, B_1\) and \(S_{\Lambda \oplus \Gamma}\) be the corresponding frame operator. Then

\[
\Delta = \{(S_{\Lambda \oplus \Gamma}^{-1}(W_j \oplus V_j), (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1}, v_j)\}_{j \in J}
\]

is a \(g\)-fusion frame for \(H \oplus X\) with frame operator \(S_{\Lambda \oplus \Gamma}^{-1}\).

Proof. For any \((f, g) \in H \oplus X\) we have

\[
(f, g) = S_{\Lambda \oplus \Gamma} S_{\Lambda \oplus \Gamma}^{-1}(f, g) = \sum_{j \in J} v_j^2 P_{W_j \oplus V_j} (\Lambda_j \oplus \Gamma_j)^* (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1}(f, g).
\]

By Theorem 2.3, for any \((f, g) \in H \oplus X\) we have

\[
\sum_{j \in J} v_j^2 \| (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1}(W_j \oplus V_j)} (f, g) \|^2
\]

\[
\leq B_1 \| S_{\Lambda \oplus \Gamma}^{-1} \|^2 \| (f, g) \|^2 \quad \text{(since } \Lambda \oplus \Gamma \text{ is } g\)-fusion frame).
On the other hand, using (5.6), we get
\[
\|(f, g)\|^4 = |\langle (f, g), (f, g) \rangle|^2 \\
= \left| \left\langle \sum_{j \in J} v_j^2 P_{W_j \oplus V_j} (\Lambda_j \oplus \Gamma_j)^* (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1} (f, g), (f, g) \right\rangle \right|^2 \\
= \left| \sum_{j \in J} v_j^2 \langle (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1} (f, g), (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} (f, g) \rangle \right|^2 \\
\leq \sum_{j \in J} v_j^2 \|(\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1} (f, g)\|^2 \sum_{j \in J} v_j^2 \|(\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} (f, g)\|^2 \\
\leq \sum_{j \in J} v_j^2 \|(\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1} (f, g)\|^2 B_1 \|(f, g)\|^2 \\
\quad \text{(as } \Lambda \oplus \Gamma \text{ is } g\text{-fusion frame)} \\
= B_1 \|(f, g)\|^2 \sum_{j \in J} v_j^2 \|(\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1} (W_j \oplus V_j)} (f, g)\|^2 \\
\quad \text{(from (5.7)).}
\]

Therefore
\[
B_1^{-1} \|(f, g)\|^2 \leq \sum_{j \in J} v_j^2 \|(\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1} P_{S_{\Lambda \oplus \Gamma}^{-1} (W_j \oplus V_j)} (f, g)\|^2.
\]

Hence, \(\Delta \) is a \(g \)-fusion frame for \(H \oplus X \). Let \(S_\Delta \) be the \(g \)-fusion frame operator for \(\Delta \) and take \(\Delta_j = \Lambda_j \oplus \Gamma_j \). Now, for each \((f, g) \in H \oplus X, S_\Delta (f, g) \)
\[
= \sum_{j \in J} v_j^2 P_{S_{\Lambda \oplus \Gamma}^{-1} (W_j \oplus V_j)} (\Delta_j P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1} (f, g))’ (\Delta_j P_{W_j \oplus V_j} S_{\Lambda \oplus \Gamma}^{-1} (f, g))’ P_{S_{\Lambda \oplus \Gamma}^{-1} (W_j \oplus V_j)} (f, g) \\
= \sum_{j \in J} v_j^2 (P_{W_j \oplus V_j} S^{-1}_{\Lambda \oplus \Gamma} P_{S_{\Lambda \oplus \Gamma}^{-1} (W_j \oplus V_j)})’ (P_{W_j \oplus V_j} S^{-1}_{\Lambda \oplus \Gamma} P_{S_{\Lambda \oplus \Gamma}^{-1} (W_j \oplus V_j)}) (f, g) \\
= \sum_{j \in J} v_j^2 (P_{W_j \oplus V_j} S^{-1}_{\Lambda \oplus \Gamma})’ (P_{W_j \oplus V_j} S^{-1}_{\Lambda \oplus \Gamma}) (f, g) \\
\quad \text{(using Theorem 2.3)} \\
= \sum_{j \in J} v_j^2 S^{-1}_{\Lambda \oplus \Gamma} P_{W_j \oplus V_j} (\Lambda_j \oplus \Gamma_j)’ (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} S^{-1}_{\Lambda \oplus \Gamma} (f, g) \\
= S^{-1}_{\Lambda \oplus \Gamma} \left(\sum_{j \in J} v_j^2 (P_{W_j \oplus V_j} (\Lambda_j \oplus \Gamma_j)’ (\Lambda_j \oplus \Gamma_j) P_{W_j \oplus V_j} (S^{-1}_{\Lambda \oplus \Gamma} (f, g))) \right) \\
= S^{-1}_{\Lambda \oplus \Gamma} S_{\Lambda \oplus \Gamma} (S^{-1}_{\Lambda \oplus \Gamma} (f, g))’ \quad \text{(by definition of } S_{\Lambda \oplus \Gamma}) \\
= S^{-1}_{\Lambda \oplus \Gamma} (f, g).
\]

Thus, \(S_\Delta = S^{-1}_{\Lambda \oplus \Gamma} \). This completes the proof. \(\square \)
Note 5.10. Form Theorem 5.9 we can conclude that if $\Lambda \oplus \Gamma$ is a g-fusion frame for $H \oplus K$, then Δ is also a g-fusion frame for $H \oplus K$. The g-fusion frame Δ is a called the canonical dual g-fusion frame of $\Lambda \oplus \Gamma$.

References

Authors’ addresses: Prasenjit Ghosh, Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India, e-mail: prasenjitpuremath@gmail.com; Tapas Kumar Samanta, Department of Mathematics, Uluberia College, Uluberia, Howrah, 711315, West Bengal, India, e-mail: mumpu_tapas@yahoo.co.in.