SOME EXTENSIONS OF CHU'S FORMULAS AND FURTHER COMBINATORIAL IDENTITIES

Said Zriaa, Mohammed Mouçouf, El Jadida
Received January 04, 2023. Published online August 22, 2023.
Communicated by Filip Najman

Abstract. We present some extensions of Chu's formulas and several striking generalizations of some well-known combinatorial identities. As applications, some new identities on binomial sums, harmonic numbers, and the generalized harmonic numbers are also derived.

Keywords: partial fraction decomposition; polynomial; combinatorial identity; harmonic number; generalized harmonic number; complete Bell polynomial

MSC 2020: 05A10, 05A19, 11B65

1. Introduction

First, let us recall that the generalized harmonic numbers denoted by $H_{n}^{(r)}$ are defined to be partial sums of the Riemann zeta series:

$$
\begin{equation*}
H_{0}^{(r)}=0 \quad \text { and } \quad H_{n}^{(r)}=\sum_{k=1}^{n} \frac{1}{k^{r}} \quad \text { for } n, r=1,2, \ldots \tag{1.1}
\end{equation*}
$$

When $r=1$, these numbers reduce to the classical harmonic numbers, shortened as $H_{n}=H_{n}^{(1)}$.

Secondly, we recall that the complete Bell polynomials can be explicitly expressed as in [9]

$$
\mathbf{B}_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{m_{1}+2 m_{2}+\ldots+n m_{n}=n} \frac{n!}{m_{1}!m_{2}!\ldots m_{n}!}\left(\frac{x_{1}}{1!}\right)^{m_{1}}\left(\frac{x_{2}}{2!}\right)^{m_{2}} \ldots\left(\frac{x_{n}}{n!}\right)^{m_{n}}
$$

Combinatorial identities is a classical topic in combinatorics that have always been of great importance since Euler's era. In [21], Karatsuba indicated that combinatorial
identities are used in several combinatorial problems, number theory, probability, the construction of computational algorithms, and mathematical physics. For some specific references of these applications see, for example, [1], [2], [7], [11], [14], [18], [19], [20], [24], [29], [30], [31], [33], [36].

There are various formulas and identities involving binomial coefficients. One of these combinatorial identities is

$$
\frac{n!}{x(x+1) \ldots(x+n)}=\sum_{j=0}^{n}\binom{n}{j} \frac{(-1)^{j}}{x+j},
$$

which appeared, for example, in [12], page 3, [14], equation (1.41) and [16], page 188. In recent years, there has been considerable interest in providing simple probabilistic proofs for this identity (see, for example, [26], [27], [32], [34]).

The second identity is the formula

$$
\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} j^{n}=n!.
$$

In the literature, this identity is usually called the Boole formula because it appears in Boole's classical book (see [6]). Actually, it goes back to Euler, so Gould (see [15]) renamed it to Euler's formula.

In recent decades, Euler's formula has received a regain of interest, therefore several papers have been devoted to provide new proofs. The interested reader can consult [1], [3], [4], [5], [13], [17], [22], [28].

Involving complex numbers, Katsuura (in [22]) generalized Euler's formula as

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}(b+a j)^{l}=\left\{\begin{array}{lll}
0 & \text { if } 0 \leqslant l<n \\
(-1)^{n} a^{n} n! & \text { if } l=n
\end{array}\right.
$$

where a and b are two complex numbers.
Extending Katsuura's formula, Pohoata (see [28]) considered the following identity in terms of polynomials with real coefficients:

$$
\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} P(\alpha+\beta j)=\beta^{n} n!a_{n},
$$

where $P(x)$ is a polynomial of degree n with leading coefficient a_{n}.
In [8], among other results, Chu established for any two natural numbers λ and θ with $0 \leqslant \theta<\lambda(n+1)$ the partial fraction decompositions of the two rational functions

$$
\frac{1}{x^{\lambda}(x+1)^{\lambda} \ldots(x+n)^{\lambda}} \quad \text { and } \quad \frac{x^{\theta}}{x^{\lambda}(x+1)^{\lambda} \ldots(x+n)^{\lambda}}
$$

then he obtained several striking harmonic number identities and recovered a conjectured identity due to Weideman (see [35]):

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{3}\left(3\left(H_{k}-H_{n-k}\right)^{2}+\left(H_{k}^{(2)}+H_{n-k}^{(2)}\right)\right)=0 \tag{1.2}
\end{equation*}
$$

In [10], Driver and his collaborators confirmed this formula via computer algebra and symbolic calculus. It is important to note that Weideman (see [35]) declared that this formula is one of the hardest challenges among algebraic identities.

In [37], Zhu and Luo rewrote these two identities of Chu (see [8]) in another form as

$$
\begin{equation*}
\frac{1}{x^{\lambda}(x+1)^{\lambda} \ldots(x+n)^{\lambda}}=\sum_{k=0}^{n} \frac{(-1)^{k \lambda}}{(n!)^{\lambda}}\binom{n}{k}^{\lambda} \sum_{j=0}^{\lambda-1} \frac{\mathbf{B}_{j}\left(x_{1}, x_{2}, \ldots, x_{j}\right)}{j!(x+k)^{\lambda-j}} \tag{1.3}
\end{equation*}
$$

and for $\lambda \leqslant M<\lambda(n+1)$,

$$
\begin{equation*}
\frac{x^{M}}{x^{\lambda}(x+1)^{\lambda} \ldots(x+n)^{\lambda}}=\sum_{k=0}^{n} \frac{(-1)^{k \lambda+M}}{(n!)^{\lambda}}\binom{n}{k}^{\lambda} k^{M} \sum_{j=0}^{\lambda-1} \frac{\mathbf{B}_{j}\left(x_{1}, x_{2}, \ldots, x_{j}\right)}{j!(x+k)^{\lambda-j}} \tag{1.4}
\end{equation*}
$$

and gave a novel proof of these two main results of Chu (see [8]) using an appropriate contour integral and Cauchy's residue theorem.

Motivated by these results, our purpose is to establish the following general combinatorial identities which are a common generalization of these important works introduced before.

Let m and n be two positive integers. Let $P(x)=x^{m}(x+1)^{m}(x+2)^{m} \ldots(x+n)^{m}$ and $Q(x) \in \mathbb{C}[x]$ be two polynomials such that $\operatorname{deg}(Q)<m(n+1)$. Then the following algebraic identity holds true:

$$
\frac{(n!)^{m} Q(x)}{P(x)}=\sum_{j=0}^{n}(-1)^{j m}\binom{n}{j}^{m} \sum_{i=0}^{m-1} \sum_{k=0}^{m-1-i} \frac{(-1)^{k} \mathbf{B}_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right) Q^{(i)}(-j)}{i!k!(x+j)^{m-i-k}}
$$

where

$$
x_{l}=m(l-1)!\left(H_{n-j}^{(l)}+(-1)^{l} H_{j}^{(l)}\right) .
$$

Here and further, $Q^{(i)}(x)$ denotes the i th derivative of $Q(x)$.
In addition, if $Q(x) \in \mathbb{C}[x]$ is a polynomial of degree l with leading coefficient a_{l}, then we have the following identity:

$$
\begin{gathered}
\sum_{j=0}^{n}(-1)^{j m}\binom{n}{j}^{m} \sum_{i=0}^{m-1} \frac{(-1)^{m-1-i} \mathbf{B}_{m-1-i}\left(x_{1}, x_{2}, \ldots, x_{m-1-i}\right) Q^{(i)}(-j)}{i!(m-1-i)!} \\
= \begin{cases}0 & \text { if } 0 \leqslant l<m(n+1)-1 \\
(n!)^{m} a_{l} & \text { if } l=m(n+1)-1\end{cases}
\end{gathered}
$$

Online first

Consequently, we obtain

$$
\begin{aligned}
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}^{3} & \left(\frac{Q^{(2)}(-j)}{2}-3 Q^{\prime}(-j)\left(H_{n-j}-H_{j}\right)\right. \\
& \left.+\frac{3 Q(-j)}{2}\left(3\left(H_{n-j}-H_{j}\right)^{2}+\left(H_{n-j}^{(2)}+H_{j}^{(2)}\right)\right)\right) \\
= & \left\{\begin{array}{lll}
0 & \text { if } & 0 \leqslant l<3 n+2, \\
(n!)^{3} a_{l} & \text { if } & l=3 n+2 .
\end{array}\right.
\end{aligned}
$$

Setting $Q(x)=1$, the last expression reduces to the conjectured identity of Weideman (see [35]):

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}^{3}\left(3\left(H_{n-j}-H_{j}\right)^{2}+\left(H_{n-j}^{(2)}+H_{j}^{(2)}\right)\right)=0
$$

2. Preliminaries and the proof of the main identities

We first formulate the following important result.
Theorem 2.1. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ be distinct elements in the field of complex numbers \mathbb{C}. For a positive integer m, let $P(x)=\left(x-\alpha_{1}\right)^{m}\left(x-\alpha_{2}\right)^{m} \ldots\left(x-\alpha_{s}\right)^{m}$. For any polynomial $Q(x) \in \mathbb{C}[x]$ with $\operatorname{deg}(Q)<\operatorname{deg}(P)$, we have

$$
\begin{equation*}
\frac{Q(x)}{P(x)}=\sum_{j=1}^{s} \sum_{i=0}^{m-1} \sum_{k=0}^{m-1-i} \frac{(-1)^{k} g_{j}\left(\alpha_{j}\right) \mathbf{B}_{k}\left(x_{1}, \ldots, x_{k}\right) Q^{(i)}\left(\alpha_{j}\right)}{i!k!\left(x-\alpha_{j}\right)^{m-i-k}} \tag{2.1}
\end{equation*}
$$

where

$$
x_{l}=m(l-1)!\sum_{i=1, i \neq j}^{s} \frac{1}{\left(\alpha_{j}-\alpha_{i}\right)^{l}} \quad \text { and } \quad g_{j}(x)=\prod_{i=1, i \neq j}^{s}\left(x-\alpha_{i}\right)^{-m_{i}} .
$$

Proof. From [25], equation (4) we have

$$
Q(x)=\sum_{j=1}^{s} \sum_{i=0}^{m-1} \frac{1}{i!} Q^{(i)}\left(\alpha_{j}\right) L_{j i}(x)[P],
$$

where

$$
L_{j i}(x)[P]=P_{j}(x)\left(x-\alpha_{j}\right)^{i} \sum_{k=0}^{m-1-i} \frac{1}{k!} g_{j}^{(k)}\left(\alpha_{j}\right)\left(x-\alpha_{j}\right)^{k}
$$

and

$$
P_{j}(x)=\prod_{i=1, i \neq j}^{s}\left(x-\alpha_{i}\right)^{m}=\frac{P(x)}{\left(x-\alpha_{j}\right)^{m}}, \quad g_{j}(x)=\left(P_{j}(x)\right)^{-1} .
$$

As a consequence, we obtain the identity

$$
L_{j i}(x)[P]=P(x) \sum_{k=0}^{m-1-i} \frac{g_{j}^{(k)}\left(\alpha_{j}\right)}{k!\left(x-\alpha_{j}\right)^{m-i-k}}
$$

Therefore, by combining these identities, we can write

$$
\frac{Q(x)}{P(x)}=\sum_{j=1}^{s} \sum_{i=0}^{m-1} \sum_{k=0}^{m-1-i} \frac{g_{j}^{(k)}\left(\alpha_{j}\right) Q^{(i)}\left(\alpha_{j}\right)}{i!k!\left(x-\alpha_{j}\right)^{m-i-k}} .
$$

On the other hand, we have

$$
g_{j}(x)=\varphi(x) \circ f_{j}(x)
$$

where $\varphi(x)=\exp (m x)$ and $f_{j}(x)=\ln \left(\prod_{i=1, i \neq j}^{s}\left(x-\alpha_{i}\right)^{-1}\right)$. It is clear that $\varphi_{s}^{(k)}(x)=m^{k} \exp (m x)$ and $f_{j}^{(k)}(x)=(-1)^{k}(k-1)!\mathcal{H}_{k, \alpha_{s}[j]}(x)$, where $\mathcal{H}_{l, \alpha_{s}[j]}(x)=$ $\sum_{\substack{i=1, i \neq j}}^{s} 1 /\left(x-\alpha_{i}\right)^{l}$. Now by applying the Faà di Bruno formula [23], equation (1.13), we get
$g_{j}^{(k)}(x)=(-1)^{k} g_{j}(x) \sum_{m_{1}+2 m_{2}+\ldots+k m_{k}=k} \frac{k!}{m_{1}!m_{2}!\ldots m_{k}!} \prod_{l=1}^{k}\left(\frac{m(l-1)!\mathcal{H}_{l, \alpha_{s}[j]}(x)}{l!}\right)^{m_{l}}$.
It follows that

$$
g_{j}^{(k)}\left(\alpha_{j}\right)=(-1)^{k} g_{j}\left(\alpha_{j}\right) \mathbf{B}_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

Therefore, the rest follows easily.
Theorem 2.1 has the following corollary.

Corollary 2.1. Let m and n be two positive integers. Let $P(x)=x^{m} \times$ $(x-1)^{m} \ldots(x-n)^{m}$ and $Q(x) \in \mathbb{C}[x]$ be two polynomials such that $\operatorname{deg}(Q)<\operatorname{deg}(P)$. We have

$$
\frac{(n!)^{m} Q(x)}{P(x)}=\sum_{j=0}^{n}\binom{n}{j}^{m} \sum_{i=0}^{m-1} \sum_{k=0}^{m-1-i} \frac{(-1)^{m(n-j)+k} \mathbf{B}_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right) Q^{(i)}(j)}{i!k!(x-j)^{m-i-k}}
$$

where

$$
x_{l}=m(l-1)!\left(H_{j}^{(l)}+(-1)^{l} H_{n-j}^{(l)}\right) .
$$

Online first

In particular, we get

$$
\frac{(n!)^{m} x^{l}}{P(x)}=\sum_{j=0}^{n}\binom{n}{j}^{m} \sum_{i=0}^{m-1} \sum_{k=0}^{m-1-i}\binom{l}{i} j^{l-i} \frac{(-1)^{m(n-j)+k} \mathbf{B}_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)}{k!(x-j)^{m-i-k}}
$$

where $1 \leqslant l<m(n+1)$, and

$$
\frac{(n!)^{m}}{P(x)}=\sum_{j=0}^{n}\binom{n}{j}^{m} \sum_{k=0}^{m-1} \frac{(-1)^{m(n-j)+k} \mathbf{B}_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)}{k!(x-j)^{m-k}}
$$

According to the expression of Theorem 2.1, we can easily obtain the following result.

Corollary 2.2. Let m and n be two positive integers. Let $P(x)=x^{m}(x+1)^{m} \times$ $(x+2)^{m} \ldots(x+n)^{m}$ and $Q(x) \in \mathbb{C}[x]$ be two polynomials such that $\operatorname{deg}(Q)<$ $m(n+1)$. The following algebraic identity holds true:

$$
\begin{equation*}
\frac{(n!)^{m} Q(x)}{P(x)}=\sum_{j=0}^{n}(-1)^{j m}\binom{n}{j}^{m} \sum_{i=0}^{m-1} \sum_{k=0}^{m-1-i} \frac{(-1)^{k} \mathbf{B}_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right) Q^{(i)}(-j)}{i!k!(x+j)^{m-i-k}} \tag{2.2}
\end{equation*}
$$

where

$$
x_{l}=m(l-1)!\left(H_{n-j}^{(l)}+(-1)^{l} H_{j}^{(l)}\right) .
$$

By multiplying both sides of (2.2) by x and letting x to ∞, we obtain the following result.

Theorem 2.2. Let m and n be two positive integers. Let $Q(x) \in \mathbb{C}[x]$ be a polynomial of degree l with leading coefficient a_{l}. Then we have the following identity:

$$
\begin{array}{r}
\sum_{j=0}^{n}(-1)^{j m}\binom{n}{j}^{m} \sum_{i=0}^{m-1} \frac{(-1)^{m-1-i} \mathbf{B}_{m-1-i}\left(x_{1}, x_{2}, \ldots, x_{m-1-i}\right) Q^{(i)}(-j)}{i!(m-1-i)!} \\
= \begin{cases}0 & \text { if } 0 \leqslant l<m(n+1)-1 \\
(n!)^{m} a_{l} & \text { if } l=m(n+1)-1,\end{cases}
\end{array}
$$

where

$$
x_{l}=m(l-1)!\left(H_{n-j}^{(l)}+(-1)^{l} H_{j}^{(l)}\right) .
$$

Setting $m=1,2,3$ in Theorem 2.2, we gain the following identities.

Corollary 2.3. Let n be a positive integer and $Q(x) \in \mathbb{C}[x]$ be a polynomial of degree l with leading coefficient a_{l}. Then we have
(a) for $m=1$

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} Q(-j)= \begin{cases}0 & \text { if } 0 \leqslant l<n, \tag{2.3}\\ n!a_{l} & \text { if } l=n,\end{cases}
$$

(b) for $m=2$

$$
\sum_{j=0}^{n}\binom{n}{j}^{2}\left(Q^{\prime}(-j)-2\left(H_{n-j}-H_{j}\right) Q(-j)\right)= \begin{cases}0 & \text { if } 0 \leqslant l<2 n+1 \tag{2.4}\\ (n!)^{2} a_{l} & \text { if } l=2 n+1\end{cases}
$$

(c) for $m=3$

$$
\begin{align*}
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}^{3} & \left(\frac{Q^{(2)}(-j)}{2}-3 Q^{\prime}(-j)\left(H_{n-j}-H_{j}\right)\right. \tag{2.5}\\
& \left.+\frac{3 Q(-j)}{2}\left(3\left(H_{n-j}-H_{j}\right)^{2}+\left(H_{n-j}^{(2)}+H_{j}^{(2)}\right)\right)\right) \\
= & \begin{cases}0 & \text { if } 0 \leqslant l<3 n+2, \\
(n!)^{3} a_{l} & \text { if } l=3 n+2 .\end{cases}
\end{align*}
$$

Remark 2.1. In the following, we derive Euler's formula, Katsuura's formula, and Pohoata's formula.
\triangleright When $Q(x)=x^{n}$, identity (2.3) gives Euler's formula.
\triangleright When $Q(x)=(b-a x)^{l}$, identity (2.3) reduces to Katsuura's formula.
\triangleright Setting $Q(x)=P(\alpha-\beta x)$ in identity (2.3), we obtain Pohoata's formula.
The following example is an illustration of (2.4).
Example 2.1. Choose $Q(x)=x$ and $Q(x)=x^{2 n+1}$ in (2.4), we derive

$$
\sum_{j=0}^{n}\binom{n}{j}^{2}\left(1+2 j\left(H_{n-j}-H_{j}\right)\right)=0
$$

and

$$
\sum_{j=0}^{n}\binom{n}{j}^{2}\left((2 n+1) j^{2 n}+2 j^{2 n+1}\left(H_{n-j}-H_{j}\right)\right)=(n!)^{2}
$$

respectively.

Example 2.2. By choosing special polynomials in Corollary 2.3, we obtain interesting identities.
\triangleright Setting $Q(x)=1$, the expression of (2.5) becomes

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}^{3}\left(3\left(H_{n-j}-H_{j}\right)^{2}+\left(H_{n-j}^{(2)}+H_{j}^{(2)}\right)\right)=0
$$

The last identity is declared as one of the hardest challenges among identities. It is conjectured by [35], equation (20) and proved in [10] by means of symbolic calculus and computer algebra package Sigma.
\triangleright When $Q(x)=x$, the formula of (2.5) reduces to the identity

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}^{3}\left(2\left(H_{n-j}-H_{j}\right)+j\left(3\left(H_{n-j}-H_{j}\right)^{2}+\left(H_{n-j}^{(2)}+H_{j}^{(2)}\right)\right)\right)=0
$$

When we set $Q(x)=1$ and $Q(x)=x^{\theta}$, where θ is a positive integer, in the formula (2.2), we can easily reformulate the two algebraic identities appeared in the work of Chu (see [8]), anticipated at the beginning of this paper, as follows.

Corollary 2.4. Let m, n and θ be three positive integers with $0 \leqslant \theta<m(n+1)$. Then

$$
\begin{align*}
& \frac{(n!)^{m} x^{\theta}}{x^{m}(x+1)^{m} \ldots(x+n)^{m}} \tag{2.6}\\
& \quad=\sum_{j=0}^{n}(-1)^{j m}\binom{n}{j}^{m} \sum_{i=0}^{m-1} \sum_{k=0}^{m-1-i}\binom{\theta}{i} j^{\theta-i} \frac{(-1)^{k+\theta-i} \mathbf{B}_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)}{k!(x+j)^{m-i-k}},
\end{align*}
$$

where

$$
x_{l}=m(l-1)!\left(H_{n-j}^{(l)}+(-1)^{l} H_{j}^{(l)}\right) .
$$

In particular, we have

$$
\begin{equation*}
\frac{(n!)^{m}}{x^{m}(x+1)^{m} \ldots(x+n)^{m}}=\sum_{j=0}^{n}(-1)^{j m}\binom{n}{j}^{m} \sum_{k=0}^{m-1} \frac{(-1)^{k} \mathbf{B}_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)}{k!(x+j)^{m-k}} . \tag{2.7}
\end{equation*}
$$

According to (2.6), we can provide a list of identities, for example the following two examples.

Example 2.3. Let n and θ be two positive integers with $\theta<n+1$. Then

$$
\frac{n!x^{\theta}}{x(x+1) \ldots(x+n)}=\sum_{j=0}^{n}\binom{n}{j}(-1)^{j+\theta} \frac{j^{\theta}}{(x+j)}
$$

The last identity appeared in the work of Chu (see [8], Example 1).
Example 2.4. Let n and θ be two positive integers with $\theta<2(n+1)$. Then

$$
\frac{(n!)^{2} x^{\theta}}{x^{2}(x+1)^{2} \ldots(x+n)^{2}}=\sum_{j=0}^{n}\binom{n}{j}^{2}\left(\frac{(-1)^{\theta} j^{\theta}}{(x+j)^{2}}-(-1)^{\theta} \frac{j^{\theta}\left(H_{n-j}-H_{j}\right)+\theta j^{\theta-1}}{(x+j)}\right)
$$

and the corresponding harmonic number identity is

$$
\sum_{j=0}^{n} j^{\theta-1}\binom{n}{j}^{2}\left(\theta-2 j\left(H_{j}-H_{n-j}\right)\right)= \begin{cases}0 & \text { if } 0 \leqslant \theta<2 n+1 \\ (n!)^{2} & \text { if } \theta=2 n+1\end{cases}
$$

We note that the last formula has been conjectured by Weideman in [35], equation (11) and proved in [10], Theorem 1 and recovered by Chu in [8], Example 2.

According to (2.7), we can obtain several expansion expressions involving the generalized harmonic numbers, for example for $m=2,3$, one obtains the following two identities.

Remark2.2.

$$
\begin{gathered}
\frac{(n!)^{2}}{x^{2}(x+1)^{2} \ldots(x+n)^{2}}=\sum_{j=0}^{n}\binom{n}{j}^{2}\left(\frac{1}{(x+j)^{2}}-\frac{2}{(x+j)}\left(H_{n-j}-H_{j}\right)\right), \\
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}^{3}\left(\frac{1}{(x+j)^{3}}-\frac{3\left(H_{n-j}-H_{j}\right)}{(x+j)^{2}}+\frac{9\left(H_{n-j}-H_{j}\right)^{2}+3\left(H_{n-j}^{(2)}+H_{j}^{(2)}\right)}{(x+j)}\right) \\
=\frac{(n!)^{3}}{x^{3}(x+1)^{3} \ldots(x+n)^{3}} .
\end{gathered}
$$

Corollary 2.5. Let n be a positive integer. Let $Q(x) \in \mathbb{C}[x]$ be a polynomial such that $\operatorname{deg}(Q)<n+1$. We have

$$
\begin{equation*}
\frac{n!Q(x)}{x(x+1) \ldots(x+n)}=\sum_{j=0}^{n}\binom{n}{j} \frac{(-1)^{j} Q(-j)}{(x+j)} \tag{2.8}
\end{equation*}
$$

When $Q(x)=x^{l}, l=0,1, \ldots, n$, formula (2.8) reduces to

$$
\frac{n!x^{l}}{x(x+1) \ldots(x+n)}=\sum_{j=0}^{n}\binom{n}{j} \frac{(-1)^{j+l} j^{l}}{(x+j)} .
$$

As a consequence, we recover the well-known identity (see, for example, [12], page 3, [14], equation (1.41), and [16], page 188):

$$
\frac{n!}{x(x+1) \ldots(x+n)}=\sum_{j=0}^{n}\binom{n}{j} \frac{(-1)^{j}}{x+j} .
$$

3. Conclusion

In this concluding section, we encourage the interested reader to develop the results of this paper and examine other important algebraic identities.

Acknowledgments. The authors would like to thank the referee for the detailed and valuable comments that helped to improve the original manuscript in its present form.

References

[1] H. Alzer, R. Chapman: On Boole's formula for factorials. Australas. J. Comb. 59 (2014), 333-336.
[2] G. E. Andrews: Identities in combinatorics. I. On sorting two ordered sets. Discrete Math. 11 (1975), 97-106.
[3] R. Anglani, M. Barile: Two very short proofs of a combinatorial identity. Integers 5 (2005), Article ID A18, 3 pages.
[4] N. Batir: On some combinatorial identities and harmonic sums. Int. J. Number Theory 13 (2017), 1695-1709.

Zbl MR doi
[5] K. Belbahri: Scale invariant operators and combinatorial expansions. Adv. Appl. Math. 45 (2010), 548-563.

Zbl MR doi
[6] G. Boole: Calculus of Finite Differences. Chelsea, New York, 1958.
zbl MR
[7] J. Choi: Summation formulas involving binomial coefficients, harmonic numbers, and generalized harmonic numbers. Abst. Appl. Anal. 2014 (2014), Article ID 501906, 10 pages.

Zbl MR doi
[8] W. Chu: Harmonic number identities and Hermite-Padé approximations to the logarithm function. J. Approximation Theory 137 (2005), 42-56.
[9] L. Comtet: Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel, Dordrecht, 1974.
[10] K. Driver, H. Prodinger, C. Schneider, J. A. C. Weideman: Padé approximations to the logarithm. II. Identities, recurrences and symbolic computation. Ramanujan J. 11 (2006), 139-158.
[11] C. Elsner: On recurrence formulae for sums involving binomial coefficients. Fibonacci Q. 43 (2005), 31-45.
zbl MR
[12] P. Flajolet, L. Vepstas: On differences of zeta values. J. Comput. Appl. Math. 220 (2008), 58-73.
zbl MR doi
[13] L. Gonzáles: A new approach for proving or generating combinatorial identities. Int. J. Math. Educ. Sci. Technol. 41 (2010), 359-372.
zbl MR doi
[14] H. W. Gould: Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations. Henry W. Gould, Morgantown, 1972.
zbl MR
[15] H. W. Gould: Euler's formula for nth differences of powers. Am. Math. Mon. 85 (1978), 450-467.
zbl MR doi
[16] R. L. Graham, D. E. Knuth, O. Patashnik: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Reading, 1989.
zbl MR
[17] F. Holland: A proof, a consequence and an application of Boole's combinatorial identity. Ir. Math. Soc. Bull. 89 (2022), 25-28.
zbl MR doi
[18] M. E. H. Ismail, D. Stanton: Some combinatorial and analytical identities. Ann. Comb. 16 (2012), 755-771.
zbl MR doi
[19] E. A. Karatsuba: On a method for constructing a family of approximations of zeta constants by rational fractions. Probl. Inf. Transm. 51 (2015), 378-390.
zbl MR doi
[20] E. A. Karatsuba: On a method of evaluation of zeta-constants based on one number theoretic approach. Available at https://arxiv.org/abs/1805.02076 (2018), 19 pages. doi
[21] E. A. Karatsuba: On an identity with binomial coefficients. Math. Notes 105 (2019), 145-147.
[22] H. Katsuura: Summations involving binomial coefficients. Coll. Math. J. 40 (2009), 275-278.
zbl MR doi

MR doi
[23] S. G. Krantz, H. R. Parks: A Primer of Real Analytic Functions. Birkhäuser Advances Texts. Basler Lehrbücher. Birkhäuser, Boston, 2002.
zbl MR doi
[24] V. P. Krivokolesko: Integral representations for linearly convex polyhedra and some combinatorial identities. J. Sib. Fed. Univ., Math. Phys. 2 (2009), 176-188.
zbl
[25] M. Mouçouf, S. Zriaa: A new approach for computing the inverse of confluent Vandermonde matrices via Taylor's expansion. Linear Multilinear Algebra 70 (2022), 5973-5986.
zbl MR doi
[26] T. Nakata: Another probabilistic proof of a binomial identity. Fibonacci Q. 52 (2014), 139-140.
zbl MR
[27] J. Peterson: A probabilistic proof of a binomial identity. Am. Math. Mon. 120 (2013), 558-562.
zbl MR doi
[28] C. Pohoata: Boole's formula as a consequence of Lagrange's interpolating polynomial theorem. Integers 8 (2008), Article ID A23, 2 pages.
zbl MR
[29] J. Quaintance: Combinatorial Identities for Stirling Numbers: The Unpublished Notes of H. W. Gould. World Scientific, Singapore, 2015.
zbl MR doi
[30] O. V.Sarmanov, B. A.Sevast'yanov, V.E. Tarakanov: Some combinatorial identities. Math. Notes 11 (1972), 77-80.
zbl MR doi
[31] A. Sofo, H. M. Srivastava: Identities for the harmonic numbers and binomial coefficients. Ramanujan. J. 25 (2011), 93-113.
zbl MR doi
[32] M. Z. Spivey: Probabilistic proofs of a binomial identity, its inverse, and generalizations. Am. Math. Mon. 123 (2016), 175-180.
[33] V. Strehl: Binomial identities - combinatorial and algorithmic aspects. Discrete. Math. 136 (1994), 309-346.
zbl MR doi
[34] P. Vellaisamy: On probabilistic proofs of certain binomial identities. Am. Stat. 69 (2015), 241-243.
zbl MR doi
[35] J. A. C. Weideman: Padé approximations to the logarithm. I. Derivation via differential equations. Quaest. Math. 28 (2005), 375-390.
[36] R. Wituta, E. Hetmaniok, D. Stota, N. Gawrońska: Convolution identities for central binomial numbers. Int. J. Pure Appl. Math. 85 (2013), 171-178.
zbl MR doi
[37] J.-M. Zhu, Q.-M. Luo: A novel proof of two partial fraction decompositions. Adv. Difference Equ. 2021 (2021), Article ID 274, 8 pages.
zbl MR doi

Authors' address: Said Zriaa (corresponding author), Mohammed Mouçouf, Chouaib
Doukkali University, Faculty of Science, Department of Mathematics, El Jadida, 24000, Morocco, e-mail: saidzriaa1992@gmail.com, e-mail: moucouf@hotmail.com.

