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Abstract. We consider the Vilenkin orthonormal system on a Vilenkin group G and the
Vilenkin-Fourier coefficients f(n), n € N, of functions f € LP(G) for some 1 < p < 2.

x N
We obtain certain sufficient conditions for the finiteness of the series Y an|f(n)|", where

n=1
{an} is a given sequence of positive real numbers satisfying a mild assumption and 0 <
r < 2. We also find analogous conditions for the double Vilenkin-Fourier series. These
sufficient conditions are in terms of (either global or local) moduli of continuity of f and
give multiplicative analogue of some results due to Mdricz (2010), Méricz and Veres (2011),
Golubov and Volosivets (2012), and Volosivets and Kuznetsova (2020).
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1. INTRODUCTION

In 2006, Gogoladge and Meskhia (see [4]) considered the convergence of the series
S Vnoh(f), 0 < r < 2, where 0, (f) = (a2 (f) +02(f))?, an(f), bu(f) are the coef-
n=1

ficients of the Fourier trigonometric series of the function f, and {v,} is a sequence
of positive numbers satisfying certain definite conditions. In 2010, Méricz (see [9])
considered the Walsh orthonormal system on the interval [0,1) in the Paley enu-
meration and the Walsh-Fourier coefficients f (n), n € N, of functions f € LP[0,1)
for some 1 < p < 2. He found certain best possible sufficient conditions for the
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o0 ~
finiteness of the series Y a,|f(n)|", where {a,} is a given sequence of nonnegative

real numbers satisfyingia mild assumption considered by Gogoladge and Meskhia
in [4], and 0 < r < 2. Those sufficient conditions were in terms of (either global
or local) dyadic moduli of continuity of f. In 2011, Mdricz and Veres (see [10])
proved analogues of the results proved in [9] for the double Walsh-Fourier series.
In 2012, Golubov and Volosivets (see [6]) obtained several sufficient conditions for
generalized absolute convergence of bounded type single and double Vilenkin-Fourier
series. Those conditions gave a multiplicative analogue of results due to Gogoladze
and Meskhia (see [4]), and Izumi and Izumi (see [8]). They noticed that their re-
sults are analogous of the results obtained by Mdricz in [9], and Mdricz and Veres
n [10]. They also discussed the sharpness of some of their results. In 1966, Walker
(see [14]) proved Bernstein’s original theorem for Lipschitz functions on Vilenkin
groups without bounded property. In 1992, Yonis (see [15]) used the Walker’s tech-
nique to prove a result for the S-absolute convergence of Vilenkin-Fourier series on
an arbitrary Vilenkin group. Using the technique of Walker, we prove the analogues
of some results of [9], [10], [6], and [13], for single and double Vilenkin-Fourier series
on an arbitrary Vilenkin group

2. NOTATIONS AND EFINITIONS

2.1. Single Vilenkin-Fourier series. Let G be a compact, metrizable, 0-
dimensional, abelian group. Then the dual group X of G is a countable, discrete,
abelian, torsion group. In 1947, Vilenkin developed a part of the Fourier theory
on G. He proved the existence of an increasing sequence {X,} of finite subgroups
of X and of a sequence {p,} of characters in X such that the following hold.

(1) Xo ={xo0}, where xo(z) =1 for all z € G.
(2) For each n > 1, X,,/X,,_1 is of prime order p,.
(oo}
@) X=U Xn.
n=0
(4) on € Xps1 \ X, for all n >
(5) ¢t € X, for all n >
Using these (o, one can enumerate the elements of X as follows. Let my = 1 and
let my, = H pifork>1. Ifl > 1andifl = Z a;m;, with 0 < a; < piy1if 0 <@ < s,
1= z 0
then y; = <p0 . . Then Xy = {x;: 0 <i < myg}. Next, if Gy is the annihilator

of X}, that is,
Gp={z e G: x(z)=1for all x € Xy},
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then obviously G = Go D G1 D G2 D ..., [) Gr = {0}, and the Gy’s form a
k=0

fundamental system of neighborhoods of zero in G. Further, the index of G in G
is my, and since the Haar measure is translation invariant with m(G) = 1, one has
m(Gy) = 1/my. The metric on G is then given by

d(x7y):|x_y‘ for x?l/eGa

where || =0if 2 =0, and |z| = 1/mgy; if © € G \ Ggyq for k=0,1,2,...
Furthermore, for each & > 0 there exists an xj, € Gi, \ Gi4+1 such that x,, (zr) =

exp(2mi/pr+1), and each z € G can be represented uniquely by x = > b;z; with
0 < b; < pigq for all i > 0. Also, =0

Gk:{(EEGZ x:me,bO::bk1:0}

=0

Consequently, each coset of Gy in GG can be represented as z + G, where z =

k—1
> bix; for some choice of the b;, 0 < b; < p;+1. We shall denote these z, ordered
i=0
lexicographically, by zgk, 0<qg<myg.

Next, let dz or m denote the normalized Haar measure on G. In this section, f
denotes a function from G to C. For f € L'(G) the Fourier series of f is the series

(2.1) S[fl(x) = > fk)xk(),

k=0

where

fmzljmﬁ@w7kew

is the k-th Vilenkin-Fourier coefficient of f.

If suppr = po < oo, we refer to G as a bounded group. A group G is said
to be ];)rimary if p, = p for all i. If p = 2 for all k, G is the so-called dyadic
group or Walsh group and the elements of its character group X are the Walsh
functions (see [1]). We denote this group by W. Note that in this case m; = 2¥ and
Gr = [0,1/2%) = W}, say. As usual, the space LP(G), 1 < p < 0o, is endowed with
the norm | /], = ([ |£(0]”dr)'"".

If S C G, then oscillation of f over S (see, e.g. [11], Definition 1) is defined as

(2.2) osc(f,5) = sup{[f(z) = f(y)l: =,y € S}
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For k € NU {0}, the k-th modulus of continuity of f (see, e.g. [11], Definition 2) is
defined as
(2.3)

w(f, k) =sup{|(Tnf — f)(@)|: x € G,h € G}, (Thf)(z) = f(x+h), ze€G.

For k € NU{0}, the k-th local modulus of continuity of f over the coset I = yo+ Gk
(see, e.g. [3], Definition 2.1) is defined as

(2.4) w(f, k, I) =sup{|(Thf — f)(@)|: z €I,he Gy}

Note that if I = yg + Gk, then x € I if and only if z — yg € Gk, and hence for each
k € NU{0}, it is clear that

(2.5) w(f,k, I) <w(f,k) and osc(f, zlfk + Gi) = w(f, k, zgk + Gp).

For k e NU{0}, f € LP(G), and 1 < p < oo, the k-th integral modulus of continuity
of order p (see, e.g. [12], Definition 2.2) is defined as

(2:6) w?(f,k) = sup{||Tuf = fllp: h € Gr}-

It is clear that

(2.7) WP (f k) <w(f, k), keNU{0}, 1<p< oo

For f € LP(G), 1 < p < 0o, the best approximation of f (see [6]) is defined as

(2:8) EW(f,n) =nf{||lf - Ql,: Q€Pn}, neN,

where P, = {f € L'(G): f(i) = 0,i > n}, n € N. The best approximation and
the modulus of continuity are connected by the inequalities of Efimov (see, e.g. [6],
page 107 or [5], §10.5):

(2:9) 271w (f,n) < EP(f,mn) <w®(fn).

For a function f € LP(G), k € NU {0}, and 1 < p < oo, the k-th local integral

modulus of continuity of order p of f over the coset I = yo + Gx (see, e.g. [3],
Definition 2.2) is defined as

@10) Wk =sw{ (oo [ 10 - HEra)’” neal.
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For k e NU {0} and 1 < p < o0, it is clear that
(2.11) WP (£, 1) <w(f kD).

For a > 0 if w(f,k) = O(m,*), then f is said to satisfy a Lipschitz condition of
order o and this class is denoted by Lip («, G) (see, e.g. [11], Definition 3). The class
Lip («, p, G) of functions satisfying Lipschitz condition of order a, 0 < av < 1, in the
mean of order p, 1 < p < oo (see [12], Definition 2.3), is defined by

(2.12) Lip (a,p,G) = {f € LP(G): wP(f, k) = O(m;;*)}.
It is clear that
(2.13) Lip (o, G) C Lip (e, p, G), 1< p < 0.

Following Mdricz (see [9], page 278) we define the s-bounded fluctuation as follows.

Definition 2.1. A function f is of s-bounded fluctuation for some 0 < s < 0
on G (in symbols: f € BF(G)) if

mE—1

1/s
Fls(f.G) = Sup ( > (wlfky2Gy + Gk))s> < o0
>0

q=0
and Fls(f, Q) is called the total s-fluctuation of f on G.

In view of the equality in (2.5), for s > 1, our Definition 2.1 is equivalent to [11],
Definition 4. Also, it is clear that if f € BF (G), 0 < s < oo, then f is bounded on G.
Following the definition of Gogoladge and Meskhia (see [4]), Golubov and Volo-
sivets (see [6], page 108) considered the following definition (see also [9], page 279).

Definition 2.2. A sequence {a;} of positive numbers is said to belong to the
class A, (G) for some v > 1 if the inequality

1/~
(2.14) < > a’,g> <rkm STy = mEVAS e NU{o),
keDS keDS
is satisfied, where

(2.15) DY

v o= Amy,my + 1,0 my g — 1} for e NU {0}, and DC, = {1},

and the constant x > 1 does not depend on pu.
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We note that for any bounded group G we have (see, e.g. [13], page 220)
(2.16) 2, (G) C Ay, (G) for 1 > 7s.
However, this is not true if G is unbounded (see Lemma 3.1).

2.2. Double Vilenkin-Fourier series. Let G be a Vilenkin group as in Sec-
tion 2.1. Let H be another such Vilenkin group and let the corresponding sequence
of primes be {¢;}. Let Y be the dual group of H with characters v;, i = 0,1,2,...
and {Y;} be the increasing sequence of finite subgroups of ¥ as in Section 2.1. Then

!
Y, = {¢; : 0 <i < ny}, where n; := [] ¢;. Let H; be annihilator of Y7, that is,
i=1

(2.17) H ={yeH: ¢(y)=1"for all Y € Y;}.

The group G x H is called a two-dimensional Vilenkin group. The normalized Haar

measure is denoted by dm(z,y). In this section, f will denote a function from G x H

to C. Also, fory € H, f(-,y) denotes the function on G defined by f(-,y)(z) = f(z,y)

and for © € G, f(x,-) denotes the function on H defined by f(z,-)(y) = f(x,y).
The two-dimensional Fourier coefficients of f € L'(G x H) are defined as

f(m,m) == /G @@ dm(ag). mon e,

We recall the difference operators Aj g, Ag 1, and A; 1, which are defined in the
usual way as follows:

Arof(z,yiha) = f(x+hi,y) — f(z,y), Doaf(z,y;he) = flz,y+ he) — f(z,y),
and
Al,lf(xay; h17h2) = f(x + hlay + h2) - f(a:,y + h’2) - f(l‘ + hlvy) + f(a:,y)

If Wx Z C G x H, then oscillation of f over W x Z (see, e.g. [13], page 220) is
defined as

osc(f, W x Z) = sup{|f(z,y) = f(w,y) = f(z,2) + f(w, 2)|: z,w e W, y,z € Z}.

For k,1 € NU {0}, the (k,1)-th modulus of continuity of f (see, e.g. [6], page 107) is
defined as

(218) w(fa kvl) = Sup{‘Al,lf(xay; hla h2)|: hl S GkahQ € Hl}v (1‘7y) € G x H.
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For k,1 € NU {0}, the (k,1)-th local modulus of continuity of f over the set I x J,
I =20+Gk, J =wy+ Hy, is defined as

w(fok, ;1 x J) =sup{|Ar1f(z,y; b1, ho)|: (z,y) €1 x J, hy € Gy, ha € Hi}.

For k,1 € NU{0} and each set I x J, it is easy to verify that w(f, k,l; IxJ) < w(f, k,1)
and

(2.19)  osc(f, (25 & + Gr) X (25, + H1) = w(f k1, (26 1 + Gi) X (25 + H1))-

For k,1 e NU {0}, f € LP(G x H), and 1 < p < o0, the (k,1)-th integral modulus of
continuity of order p (see [6], page 107) is defined as

(2.20) w® (f,k,1) = sup{||A11(z,y; 1, ha)|lp: h1 € G, ho € Hy}.
It is clear from the definitions that
(2.21) WP (f k1) <w(f k1), k1eNU{0},1<p< oo

Following Mdricz and Veres (see [10], page 125), the (k,)-th local integral modulus
of continuity of order p (1 < p < 0), of a function f € LP(G x H), over the set
IxJ, I=z2+Gg, J=wo+ Hg, k,1 € NU{0}, is defined as
(2.22)

WP (f k1T x J)

1 1/P
— - . p .
SUP{ (m([ <) /IXJ |A11f (2, y; b, ha)l dm(%y)) : h1 € Gy, ho € Hl}~

As in the case of one variable, for k,/ € NU {0} and 1 < p < oo, we have
WP (f k15T < J) <w(f,k, T x J).

Now, analogously to one variable we introduce the following. For «a,8 > 0 if
w(f, k1) = O(m,;“nl_ﬁ), we say that f satisfies a Lipschitz condition of order («, )
and this class is denoted by Lip (a, 8; G x H). We define the class Lip («, 8, p; G x H)
of functions satisfying Lipschitz condition of order (a, 3), 0 < a, f < 1, in the mean
of order p, 1 < p < o0, as

(223)  Lip (e, 8,p;G x H) = {f € LP(G x H): P (f,k,1) = O(my“n; )}
It is clear that
(2.24) Lip (o, ;G x H) C Lip (e, B,p; G x H), 0<a,f<1,1<p<oc.

Similarly to the case of one variable, following Mdricz and Veres (see [10]), we
have the following definition.
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Definition 2.3. Let 0 < s < oco. We say that a function f is of s-bounded
fluctuation (in symbols: f € BF;(G x H)) if the total s-fluctuation of f on G x H,

mr—1n;—1 1/s
Fly(f,G x H) zsup<z > (W(f k1 (28 4+ Gr) X (q21+Hl)))) < o0,

RIZ0N g1=0 go=0

and Fls(f,G x H) is called the total s-fluctuation of f on G x H. In view of (2.19),
we can replace w(f, k, 1, (ng +Gy) x (ch';,z + H;)) by osc(f, (zﬁ’k +Gj) x (Zg,l +H)))
in the above definition of Fls(f,G x H).

Remark 2.1. Likewise the functions on rectangles, if f is such that Fls(f,
G x H) < oo, then it is not necessary that f be measurable or bounded. For example,
let E be a non-measurable subset of G (such a non-measurable set always exists for
any infinite compact abelian group (see [7], 16.13) and hence, in particular, for a
Vilenkin group), and define f(z,y) = xe(z), (z,y) € G x H. Then Fl,(f,Gx H) =
0 < oo but f is not measurable, as the set {(x,y) € GXxH: f(z,y) > 1} =ExHisa
non-measurable set, because E is a non-measurable set. Further, let f(z,y) = 1/|z|
for 0 # © € G and f(0,y) = 0 for all y € H, where |-| is as defined in Section 2.1.
Then Fls(f,G x H) = 0 < oo, but f is not bounded as f(x,y) — oo as k — oo
for x € Gi \ Gi+1. However, if f is such that Fls(f,G x H) < oo and for a fixed
(xo,y0) € Gx H, Fls(f(xo,-),H) < oo and Fls(f(-,y0), H) < oo, then f is bounded.
Indeed, for (z,y) € G x H we have

(2.25) |f(z )l < [f(@,y) = f(@o,y) = f(z,y0) + f(@o,y0)| + | f (z0, y0)|
+ | f(@o,y) = (@0, y0)| + | f(z,90) — f(z0,y0)]
< osc(f,Gog x Hp) + osc(f(xo, "), Ho)
+o0sc(f(+,90), Go) + | f (%0, yo)|
< Fls(f,G x H) + Fls(f (xo,-), H)
+ Fls(f(-,90), G) + [ f (20, yo)|

< 00.

Therefore f is bounded on G x H.

Volosivets and Kuznetsova (see [13]) gave an analogue of Waterman’s well-known
definition of bounded A-variation as follows.

Definition 2.4 ([13]). Let p > 1 and A = {N;}{2; and ¥ = {1;}52, be two

nondecreasing sequences of positive numbers such that A, = Z/\i Vand ¥, =
n i=1
> 1~ tend to infinity as n — oo.

i=1

8 Online first



Let f(z,y) be bounded on G x H. For fixed k,l € N, let

mr—1n;—1 (OSC(f,( + G ) (Zgz +H )))p 1/p
(2.26) Vawp(f, k1) = Sup( Z Z ik k il 1 ) |

=0 %o Ai1¥j41

Where the supremum in the formula for V is taken over all permutations {c; };"% and
{B;}jL, of the index sets {0, 1,...,m; — 1} and {0,1,...,n; — 1}. If

(2.27) Vawp(f,G x H) :=sup{Vp,wp(f k,1): k,1 €N} < oo,

then we say that f € (A, U)FI,(G x H).

For G = W, a two-dimensional analogue of the class 2.,(G) (see Definition 2.2)
was defined by Méricz and Veres in [10], page 127. Their definition is a particular
case of the following definition given by Golubov and Volosivets (see [6]) in the case
when G = W.

Definition 2.5. Let {ax;: k,l =1,2,...} be a double sequence of positive num-
bers and v > 1. If for arbitrary p,v € NU {0} the inequality

e (T ¥ agl)” < Clmm) " 3 Y

kEDSlEDVG kEDG7 lEDG71
is satisfied, where fo is as in (2.15) and the constant x > 1 does not depend on p
or v, then {ag; } is said to belong to the class A*(v,2).

Analogously to the class A*(v,2), defined above, we define the class % (G x H)
as follows.

Definition 2.6. A sequence {ay;} of positive numbers is said to belong to the
class 2 (G x H) for some v > 1 if the inequality

1/~
(2.29) <Z Z azl) </{(m#ny)(1_7)/7 Z Z Gl

keDG leDH Iceij ,leDH |

= r(myn, )AL v € NUA{O),
is satisfied, where DY is as in (2.15),
(2.30) DF:={n,,n,+1,...,ny41 —1} forveNU{0}, and DT :={1},
and the constant x > 1 does not depend on p or v.
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We note that the class 2% (G x H) is a generalization of the class 2L, (G), v > 1,
defined by Mdricz and Veres (see [10], page 127).

In this paper, we shall prove certain results analogous to the results proved by
Moéricz in [9], and Méricz and Veres in [10] for the single and double Vilenkin-
Fourier series, respectively. We shall also prove some results analogous to the results
proved by Golubov and Volosivets in [6], and Volosivets and Kuznetsova in [13]
for arbitrary, bounded or unbounded Vilenkin group. In what follows, C' denote a
positive constant, which may not have the same value at each occurrence.

3. RESULTS

3.1. Single Vilenkin-Fourier series. Our first result is the following example,
which shows that (2.16) does not hold if we replace a bounded Vilenkin group by an
unbounded Vilenkin group.

Example 3.1. If G is unbounded, then there exists {a,} € A2(G) such that

{an} & 2.(G).

Our next result is a Vilenkin group analogue of a result of Mdricz, see [9], The-
orem 1. Our theorem also gives an analogue of a result of Golubov and Volosivets
(see [6], Corollary 1) for any Vilenkin group.

Theorem 3.1. If f € LP(G) for some 1 < p < 2 and
(3.1) {an} € Ap)(p—rptr)(G) for some 0 <1 < g,
where 1/p+1/q =1, then

(3.2) i n)|" <2_7/2ﬁ2m_7/qAG LW (f, )T,

pn=0

where & is from (2.14) corresponding to v = p/(p—rp+r). In particular, if the series
on the right-hand side of (3.2) converges, then

(33) > anlf(n)

Remark 3.1. Theorem 3.1 is proved in a similar way, except for a few steps,
by Golubov and Volosivets (see [6], Corollary 1, and the proof of Theorem 1). They
used the boundedness of G to prove this result. However, our proof will work for
any group, whether it is bounded or unbounded. To prove this result for arbitrary
group, we will use the technique used by Walker in [14].
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Corollary 3.1. If the hypotheses of Theorem 3.1 hold and the series

(34) > ann T UEP (f,n))"

n=0

converges, then (3.3) holds.

Corollary 3.2. If f € L?(G), G is bounded, and Z"rn,l/2(,u(2)(f7 p) < oo, then
o u=1
> 7] < .

We note that Corollary 3.2 is not true for an unbounded Vilenkin group G (see [12],
Corollary 4.2 for p = 2).

Remark 3.2. Our Corollary 3.1 is an analogue of Corollary 2 of [6] for any
Vilenkin group. Since Theorem 2 of [6] shows the unimprovability of Corollary 2
of [6], it shows that our Corollary 3.1 is also unimprovable for any Vilenkin group.

It is worth formulating Theorem 3.1 in the particular case when f € Lip (o, p, G)
and a, = 1.

Corollary 3.3. If f € Lip (o, p,G) for some a« > 0,1 <p <2, 1/p+1/qg=1,
G is bounded, and if

q
14+ aq

(3.5) <r<gq,

then

(36) SIfm)l < oe.

For an unbounded group G, Corollary 3.3 is already known due to Younis, see [15],
Theorem 3.1 (Actually only the condition p/(p + ap — 1) < ¢ was used in the proof
of Theorem 3.1 of [15]).

Next, we formulate Theorem 3.1 in the particular case when f € Lip (a,p, G),
a, =n® and r = 1.

Corollary 3.4. If f € Lip (a, p, G) for some o > 0, 1 < p < 2, G is bounded, and
if 6 € R is such that

1
3.7 ) _ -
( ) <« p’
then
(3.8) > nl|f(n)] < oc.
n=1
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For functions of the narrower class Lip (o, G) and p = 2, Corollaries 3.3 and 3.4 are
proved by Onneweer in [11]. For an unbounded group G, a proof of Corollary 3.4 can
be given similarly to the proof of Theorem 3.1 in [15], now considering ¢(k) = S nd|f|
and applying Holder’s inequality. T

Our next theorem is formulated in terms of the n-th integral modulus of continuity
of order p over the cosets, which is a Vilenkin group analogous of Theorem 2 of [9].

Theorem 3.2. Let f and {a,} be as in Theorem 3.1. Then we have

%) jo%s) m,,l,—l r/p
(39) D anlf(m)|" <27 m;’”Affl( > @ fom2 + Gu))p> ;
n=1

n=0 k=0
where £ is from (2.14) corresponding toy =p/(p —rp + 7).
Our next result is formulated in the following theorem, which is an analogue of

Theorem 3 of [6] for any (unbounded) Vilenkin group.

Theorem 3.3. Let f be a measurable function on G. If 1 < p’ < oo, 1/p’ +
1/¢ =1,1< 8 <2, Flg(f,G) < o0, and

(3.10) {an} € R}3/2—)(G) for some 0 < 7 < 2,

then

(3.11) Zaﬂf(n)‘r < 277«/2/{(}75(‘/”, G))Br/(2p’)
n=1 o
x Do my AT O U (1 O GO AL
pn=0

where k is from (2.14) corresponding to v = 2/(2 —r). In particular, if the series on
the right-hand side of (3.11) converges, then (3.3) holds.

Our next result is a Vilenkin group analogue of Theorem 3 of [9].

Theorem 3.4. If f is a measurable function on G, f € BF4(G) for some0 < s < 2,
and if {a,} satisfies (3.10), then

(312) D anlf)l" < 2TR(FL(L, G Y my AL (W )P,
n=1

pn=0

where £ is from (2.14) corresponding to v = 2/(2 — r) and Fls(f,G) is as in Def-
inition 2.1. In particular, if the series on the right-hand side of (3.12) converges,
then (3.3) holds.
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We formulate Theorem 3.4 in the particular case when f € Lip (o, G)NBF4(G), G is
bounded, and a, = 1, and obtain a Vilenkin group analogue of [9], Corollary 3.

Corollary 3.5. If f € Lip(«a,G) N BF(G) for some o > 0, 0 < s < 2, G is
bounded, and if

2

(3.13) > m7

then (3.6) is satisfied.

Finally, we formulate Theorem 3.4 in the particular case when G is bounded,
r =1, and a,, = n°, and obtain a Vilenkin group analogue of [9], Corollary 4.

Corollary 3.6. If f € Lip (o, G) N BF4(G) for some o« > 0, 0 < s < 2, G is
bounded, and if § € R is such that

a2 —s)

(3.14) b < =5,

then (3.8) is satisfied.

3.2. Double Vilenkin-Fourier series. For a double Vilenkin-Fourier series, our
first result is the following theorem which is a Vilenkin-Fourier series analogue of a
result of Mdricz and Veres (see [10], Theorem 1) and a two-dimensional analogue of
Theorem 1 of Section 3.1.

Theorem 3.5. Suppose f € LP(G x H) for some 1 < p < 2. If
(315) {amn} S Ql;/(p—Tp-i—T)(G X H)

for some 0 < r < q, where 1/p+1/q =1, then

316 Zzam"Um n HZZ m#nl’ T/QA: 1,v— 1( p)(fa,ufay))ra

m=1n=1 pn=0v=0

where k is from (2.29) corresponding toy = p/(p—rp+r). In particular, if the series
on the right-hand side of (3.16) converges, then

(3.17) i i G| f (M, )| < 0.

m=1n=1
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When G and H are bounded, we have the following corollaries, analogous to [10],
Corollaries 1 and 2.

Corollary 3.7. Suppose G and H are bounded, f € Lip (a, 8,p; G x H) for some
a,f>0,and 1 <p<2. If

q
(3.18) m <r<g,
then
(3.19) >N 1ftmn)|” < .

m=1n=1

Corollary 3.8. Suppose G and H are bounded, f € Lip («, 8, p; G x H) for some
a,f>0,and 1 < p<2. If 61,62 € R are such that

1 1
(3.20) i<a—— and 6 <fB— -,
p p
then
(3.21) Z Zm‘sln‘;?\f(m,nﬂ < 0.
m=1n=1

Our next result is the following theorem, which is a Vilenkin group analogue of a
result of Mdricz and Veres (see [10], Theorem 2) and a two-dimensional analogue of
Theorem 3.2 of Section 3.1.

Theorem 3.6. Let f and {amn} be as in Theorem 3.5. Then we have
(322) > amnlf(m,n)["

m=1n=1
(o] o0
-r —7 A*
<2 ”E E (mymny,) AM—1,V—1

pn=0rv=0

my—1ln,—1 r/p
x ( S S @O (i (o G x L +Hy>>>ff) ,

k1=0 ko=0

where k is from (2.29) corresponding toy = p/(p—rp+r). In particular, if the series
on the right-hand side of (3.22) converges, then (3.17) holds.
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Our next result is a two-dimensional analogue of Theorem 3.3 of Section 3.1.

Theorem 3.7. Let f be a measurable function on G x H. If 1 <p’ < o0, 1/p’ +
1/¢ =1,1< 8 <2, Flg(f,GxH) < o0, Flg(f(-,0),G) < oo, Flg(f(0,-), H) < o0,
and

(3.23) {amn} € A3/ 5_,)(G x H) for some 0 <1 < 2,

then

(3.24)

n ng
! HM8

(1, x )P
X ZZ(munu)—r/@p’)—r/?( B+R=F)(f, 1, v)) =P/ (21))14” L1
pn=0r=0
where k is from (2.29) corresponding to v = 2/(2 —r). In particular, if the series on

the right-hand side of (3.24) converges, then (3.17) holds.

Our next result is a Vilenkin group analogue of Theorem 3 of [10] and a two-
dimensional analogue of Theorem 3.4 of Section 3.1.

Theorem 3.8. If f is a measurable function on G x H, f € BF,(G x H), f(-,0) €
BF,(G), and f(0,-) € BF,(H) for some 0 < s < 2, and if {a,, } satisfies (3.23), then

(3.25) Z Zamn|fm n

m=1 n=1

277 R(FL(f,G x H))2 YN (myumy) " (w(fo )B4,

pn=0r=0

where & is from (2.29) corresponding to v = 2/(2 —r). In particular, if the series on
the right-hand side of (3.25) converges, then (3.17) holds.

We formulate Theorem 3.8 in the particular case when G and H are bounded,
f € Lip (e, 8;G x H) NBF,(G x H), and a,, = 1, and obtain a Vilenkin group
analogue of [10], Corollary 3.

Corollary 3.9. If f € Lip(a,8;G x H) N BF4(G x H), f(-,0) € BFs(G), and
f(0,-) € BFs(H) for some o, > 0,0 < s <2, G and H are bounded, and if

2

(3.26) = + min{a, }(2 —s)’

then (3.19) is satisfied.
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Finally, we formulate Theorem 3.8 in the particular case when G and H are
bounded, r = 1, and @, = m?'n®, and obtain a Vilenkin group analogue of [10],

Corollary 4.

Corollary 3.10. If f € Lip (o, 3;G x H) N BF4(G x H), f(-,0) € BF4(G), and
f(0,-) € BF4(H) for some o, 3 > 0,0 < s <2, G and H are bounded, and if

B2 —s)
2 ’

a2 —s)

(327) 0 < and 89 <

then (3.21) is satisfied.

Our last result is the following theorem, which is an analogue of [13], Theorem 6
for any (unbounded) Vilenkin group.

Theorem 3.9. Let p',¢' > 1, 1/p"+1/¢ =1,1 < 8 <p' +1, f be measurable
onGxH, fe( AMO)Fly(GxH),0<r <2, and {am,} € A*(2/(2—r),2). If the

series

(W @B +B)(f [ 1))2P' =P )T/(Zp’)

(3.28) ZZ( T

k=11=1

—r/2 g%
mgng) Ak—l,l—l

0o 00 .
converges, then the series Y. > amn|f(m,n)|" also converges.
m=1n=1

4. PROOF OF RESULTS

4.1. Single Vilenkin-Fourier series. We need the following lemma, which gives
examples of certain sequences in 2, (G). This lemma is already known (see, e.g. [13]).

Lemma 4.1. If G is bounded, then {k°} € 2, (G) for all 3 € R and v > 1.

Proof of Example 3.1. Let G be any unbounded group. Then there is an
increasing sequence {ry} of natural numbers such that p,, — co. Now, we consider
the ordered sets A = {ry € N: r iseven} and B = {r; € N: ry is odd}. Then
either A is infinite or B is infinite.

Case I. A is infinite. Rename the elements of A by n1,ns, ... Then each ny is even
and pp, — o0 as k — co. Let {a,} be defined as follows. For my < n < my1, that
is, for n € DY, k € NU {0}, let

1

(Prv2 — DY 2 (mpq1 — my)
1

MEg41 — Mg

if k is even,
(4.1) an =
if k is odd.
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Note that for any p € NU {0} we have

(4.2) Yooa= ) !

(P2ﬂ+2 - 1)1/2(m2u+1 - mm)

kEDgL k=mg
1 may+1 )
a (P2ﬂ+2 - 1)1/2(m2ﬂ+1 - mzu) k=ma,
1
N (p2H+2 - 1)1/2(m2u+1 - mm) (m2u+1 - mQM)
_ 1
B (p2/L+2 - 1)1/2
and
maup2—1 maup2—1 1
(4.3) Z ap — Z ap — Z S —
keDrfM+1 k=ma, 41 k=map+t1 Mapt2 = M2ptl

may+2—1

:;21

m —-m
Zut2 2putl k=mazyt1
1
= —(m2u+2 - m2u+1) =1
may+2 — M2y41

As n,, is even for each p € N and p,,, — 00 as 1 — o0, in view of (4.2) and (4.3), we

have
ZkEDg"“/%l)“ o = 1 =(p DY2 5 00 as p— 0o
— = (pn, — .
ZkeDf(n“/%l) ak 1/(p2(nu/2—1)+2 - 1)1/2 '

Hence, there cannot exist any « such that Y ap <k > ag forall g > 0. Thus,
keDS keDG

{an} ¢ 21(G). Now, we show that {a,} € >2(G). Note that

(4.4) < Z ai)l/g = (mil (ps — 1)1/21m1 _ m0)2)1/2

keD§ k=mg
1 1/2
- ((p2 —1)(m1 —mg)? (m1 = mO))
_ 1
(2 = 1)Y2(my —mg)1/2
9 1
(2 = 1)Y/2(m1 —mo)
= (=D = -1 Y
keD%,

= (m1 —mo)"/
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Next, for ;4 € N, in view of (4.3), we have

@ (5 ’“>/ (k:; <<p2u+z—1)1/2<1m%—mzﬂ>>2)1/2

keDg,
( 1 ( )>1/2
= m —-m x 1
(P2p+2 — 1) (maut1 — may)? el o
1
= >
(p2ut2 — 1)1/2my 2 o (pop — 1Y/2 keDg, |
1 1-2)/2
<l Y a<m-p el Y
M2u keDG,_, keDS,
and for p € NU {0}, in view of (4.2), we have
1/2 Mmapt2—1 1 1/2
a (X @) (X ;)
keDg, ., fmmmmy (M2pt2 = Mapy1)
1 1/2
B ((mz +2 — M2 +1)2(m2#+2 - mQ#H)) <1
I I
1
= n 1/2 (P2s2 = D* D
m2u+1(P2u+2 -1) keD,
1
e Tt 0 T e
M2p+1 keDg, keDS,
From (4.4)—(4.6) it follows that {a,} € A2(G).
Case II. B is infinite. Rename the elements of B as nq,ns,... Then each ny is

odd and p,,, — o0 as k — oo. Let {a,} be defined as follows. For my < n < my41,
that is, for n € DY, k € NU {0}, let

1

_ if k is even,

Mpr1 — M
(4.7) ap =4 TP )

if k& is odd.

(Prt2 — D)V2 (g1 — mi)

Note that for any p € NU {0} we have
maoy+1—1 mapu41—1 1
(4.8) o= Y a= Y, ———— =1
kEDQGH k=ma, k=ma,, 2p+l 2p
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and
mout2—1 1 1

(4.9) Z ai = Z = )1/2.

Do [ (P2p+s — 1)V2(magpy2 —mapy1)  (Peus1y42 — 1

2041
As n,, is odd for each p € N and p,,, — 00 as u — oo, in view of (4.8) and (4.9), for
= 2, we have

ZkeDQ((M_lm) ak _ 1

Y keDS ag  (Pa((n,-1)/2)-142 — 1)

2((np—1)/2)—-1

:(pn#—1)1/2—>oo as [ — oo.

—1/2

Hence, there cannot exist any « such that Y ap <k >, ag for all g > 0. Thus,

keDG keDS_,
{an} ¢ A1(G). Now, proceeding as in Case I, we can show that {a, } € A2(G). Thus,
in any case, we have a sequence {a,} € 22(G) such that {a,} ¢ A1 (G). O

Proof of Theorem 3.1. Fix € NU{0}, by € G, \ G,11, and set

(4.10) g(x) = flx+h) — f(z), zed.

Then for n € N we have
(411)  g(n) = / 9(2) X () dz = /G (F(&+ hy) — £(2)) X () da
/f )X — hy) da — f /f )% (2% (— ) dz — F(n)

= X (1) f(n) = f(n) = (xu(l1) = D f(n).

Note that
o(G/Gyi1) _ Myt

O(GM/GH‘Fl) = O(G/GM) - m,u, = pH+1'

Since p,,41 is prime, it follows that G, /G 1 is cyclic and that every element other
than the identity element is its generator. That is,

GH/G}H‘l = <h0 +GM+1> Vho € GH\GM‘H'

Since hy € G, \ Guy1, h1 + Gy is a generator of the group G, /G, +1. We shall
show that if x € X, 11\ X, then x(h1) # 1. Let x € X,,+1\X,,. If possible, suppose
X(h1) =1. Let z € G,. Then 2+ G,41 € G/Guq1 = (hi + Guy1). So, there is an
integer k depending on z such that z + G, 1 = k(h1 + Guy1) = khi + G41. That
is, z — kh1 € G,4+1. Hence, there exists 2z’ € G, 11 such that z — khq = 2’. Therefore

x(2) = x(kh1 + 2') = x(h1)"x (") = 1¥x(2') = x(2)).
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Now, as x € X,41 and 2z’ € G441, by definition of G,41, x(2') = 1. Therefore
x(z) = 1. Since z € G, was arbitrary, x(z) = 1 for all z € G,,. Hence, by definition
of G, x € X,. This is a contradiction. So, if x € X, 11 \ Xy, then x(h1) # 1.

Note that for x € X1, XX, € Xut1/X, Also, o(X,11/X,) = mys1/my, =
Pu+1. Therefore

XP“HXH = (XXu)pwl = (XX#)O(X“H/X“) = xoX, = X,

and hence xP#+' € X,,. Since hy € G, by definition of G/, we have xP#+'(hy) = 1.
Therefore

(4.12) x(hy) = /e
for some 1 < k < p,41 and k depends on x. Let
T;?H =X+ \Xu = {XmuaXmqula . 7Xm“+171} ={xXn: n€ DE}

and m be such that

1 1 | log ppu+1
<< — ie, m= A
gl S p o Sgme M T e
Then for any y € THG_H, as 1 <k < pui1 — 1, we have
1 1 ko pup—1 1 1
4.13 < g =£ =1- <1l- .
(4.13) 270 T puin  Putl . Putd Du+1 2m+l1
Now define 1 i 3
¢ :{ eTq : ~ < <f}
u+1,1 X plt g Pt 4
and for [ =2,3,...,m,
1 k 1 1 k 1
¢ :{ eTl | — < — < — 1——<—<1——}.
w1l X P+l o Do o or o1 Pt ST
Also, for [ =1,2,...,m, let
G G G
DNJ = {TLEDM : XTL ETN-’F].J}
Then Df is the disjoint union
m
G G
(4.14) D¢ = Jpg,.
=1
Since p,11 is prime, k/p,,+1 cannot be equal to 1/2° or 1—1/2 for any i = 2,3,...,m,

and hence in view of (4.13), Tlﬁ_l is the disjoint union
m
G _ a
L= U Tl
=1

20 Online first



Since hy € G\ G41, it follows that 2h1,3h1, ..., (puy1 —1)h1 € G\ Gpy1. Indeed,
if possible, suppose for some 2 < t < py41 — 1, thy ¢ G, \ Guy1. Since hy € G,
and G, is a group, thy € G,. Since th; ¢ G, \ G1, it follows that th; € G 1.
Therefore for x € X,11 \ X,, 1 = x(th1) = x'(h1) = e*™*¥/Put1. But then p,4,
divides kt. Since p,1 is a prime, either p,1; divides k or p,y1 divides ¢, which is
not true as 1 < k,t < pyq1. Thus, thy € G, \ Guyq for t =2,3,...,pyp1 — 1. For
l1=1,2,...,m,put t; :== 271 Then 1 < ¢, =271 <271 < 2™ —1 < pyy1 — 1,
that is, t; € {1,2,...,pu4+1 — 1}. Therefore, as seen above, t;h; € G, \ G,41. Thus

(4.15) Xn(tih1) #1 for any x,, € X1 \ X,

So, using (4.11) replacing hy by t;h;, we get

f(n _ g(n)

(4.16) = k) =T

Also, in view of (4.12), for x € X, 41 \ X, we have

(417) |X(tlh'1) — 1| — |e2nitzk/p“+1 o 1|

it ke —rityk
— |ajeritib/man € e — Tk _ 9 sin T2 ’
21 pu_t,_]_
Note that for 1 <1 < m we have
1 k 1
G
xeT > < — < —
pt1,0 9l+1 Dus1 9l
1 k 1 -t gr2itt o it
or 1_?<m<1_2l+1:>2l+1<pﬂ+1 < 2l
ol-1 n2l=t 2ttt o it on k2l n
or T — T < pu_,’_l < T — 2H‘1 1 pu_,'_l < 5
or m2l7t— I < 2! <ml-t— E.
2 Pu+1 4
Observe that
x kn2li-t < T N kn2t—1 LT 1
- — = sin sin — = —.
4 pun 2 Pur1 4 V2
Next, for [ = 1 we have
o1 km2i7t 1 © m _ kn27l o 3n . kn2t—t . 3m 1
2= < <2 ——-= - < < — = sin >8in— = —,
2 pun 4 2 pun 4 Du+1 4 V2
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and for | > 2, as sine is increasing in (n2!~! — %n, 21 — in), we have

k 2[—1 k -1 1
2t — T < T <m2lt - T = sin i < sin(chl_1 — E) =——
2 Pu+1 4 Pu+1 4 V2
kn2!—t 1
= ‘sm ’ > —.
Pu+1 2
Therefore for y € T L1, we have
. Tttlk 1
(4.18) sin ’>4<
Pu+1 - \@

(We note that instead of this inequality, Golubov and Volosivets use the inequality
Ix;(1/my41) —1| > 2sin /N, where N is such that p; < N forall ¢ = 1,2,..., which
actually depends on boundedness of {p;} and hence the corresponding bound appear
in the final conclusion, too.)

In view of (4.16), (4.17) and (4.18), we have

¢ q _ L G(n)]4 = 1 5(n) |4
Z |f(n)| - Z ‘Xn(tlhl)_llq‘g( )‘ ZG 2‘1|Sin(ntlk/pu+1)|‘1|g( )|

nEDil neDfl neDT,
24/2 1
_— A q
< Y Sl =g Y0 e
neDC neDC

il sl

So, for p € NU {0} we have

aw ()" = (% S o)< (S5 T wor)

neDg neDS, neDS,
1/q
- (S 5 )= (5 o)

neD¢, neD§

Therefore, for 1 < p < 2, by virtue of the Hausdorfl-Young inequality (see, e.g. [2],
equation (4.28)), and (4.10), (4.19) becomes

(ijwﬂw<:g(iww) ([ wera)”

nEDf n=

1/p
(4.20) —1<Gf@+m%-(WM>

(4.21) < —=wP(f, p)
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for all 4 € NU{0}. Since 1/(q/r)+1/(q/(q—71)) =7/q+ (¢—7)/q = 1, applying
Holder’s inequality with exponents

q p q p
4.22 g_ d _
(422 rorp-1) U = Tt
it follows from (2.14), (3.1) and (4.21) that
423) > anlfm)" = > |f(n
neD¢ ne€DS
) r/q (p—rp+r)/p
< ( > If(n)Iq) (X o)
ne€DZ ne€DS
1 - - T T T
< 2T/2( P)(f, )" ,{ml(tl p/(p=rp+r))/(p/(p—rp+7)) Z a,
nGDf 1
@ ()4
27"/2 )y ’im p—1
for all 1 € NU{0}. Summing (4.23) over x € NU {0} yields
oo R . o0 R i oo 1 .,
doanlfm) =32 > anlf)l" <Y s @0 (f ) ey, AT
n=1 n=0neD§ pn=0
=27k AT (WP ()
pn=0
which is (3.2) to be proved. This completes the proof of Theorem 3.1. g

Proof of Corollary 3.1. Since the hypotheses of Theorem 3.1 hold, we have
equation (4.23). Therefore by (2.9) and the fact that for n < m,, E®(f,n) >
E®)(f,m,), we have

(4.24) S aulim) <

neD¢

o (WO (f ) w1 AG

1 R
< T—/Q(2E(P)(f,mu)) Km, /a Z G,

neDC

=1
C(EP(f,m,))" Z apn="/
71€DH N
= S ED ()
nGDS 1

Summing up the inequality in (4.24) over u, we get the statement of Corollary 3.1.
O
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Proof of Corollary 3.2. We shall put a, = 1 in Theorem 3.1. Since G is
bounded, setting 8 = 0 in Lemma 4.1, we see that {a,} € A, (G) for every v > 1.
In particular, {a,} satisfies (3.1) for 1 < p < 2 and 0 < r < ¢, so for p = 2 and
r = 1. Also, as f € L?*(G), all the conditions of Theorem 3.1 hold. Therefore by
Theorem 3.1, we have (3.2) with a,, = 1, p = ¢ = 2 and r = 1. This means we have
the inequality

(4.25) Z n) <2 U%Zm—l/?AG w3 (f, ),

n=0

where & is from (2.14) corresponding to v = 2/(2 — 2 4+ 1) = 2. Further, in this case,

we have

(426)

ul_ Z Ay = Z l=m,—mu_1 <my,, penN, A(_;lzalzlém
neDS neDS

Therefore (4.25) becomes

Z n)| <27 1/2/12771 Pmw® (f,p) = 2_1/2,%Zmi/2w(2)(f, ).

n=0

Hence, if > m;l/2w(2)(f, 1) < oo then, S |f(n)| < co. This completes the proof.
pn=0 n=1 0

Proof of Corollary 3.3. We shall put a,, = 1 in Theorem 3.1. Since G is
bounded, setting 8 = 0 in Lemma 4.1, we see that {a,} € A, (G) for every v > 1. In
particular, {a,} satisfies (3.1) for 1 < p < 2and 0 < r < ¢. Also, as f € Lip (o, p, G),
f € LP(G) for 1 < p < 2. Therefore, by Theorem 3.1, we have (3.2) with a,, = 1.
This means we have the inequality

oo

(4.27) > 1wl <2 P23 mAG (P ()

n=1 pn=0

where the constant x is from (2.14) corresponding to vy =p/(p—rp+7r), 0 <r < gq.
Finally, as f € Lip (o, p, G), we have

(4.28) w®(f,p) < Cm,, peNU{0}.

Using (4.26) and (4.28) in (4.27), we have
(o) . [e¢} e}

(4.29) Z |f(n)|" < 27"/2kC" Z m;r/qmum;m =2 "2kC" Z m;r/qﬂ_m.
n=1 pn=0 u=0
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Now in view of (3.5), we have ¢ < r(1 + «q), so 1 < r/q + ra, and hence —r/q +
1 —ra < 0. Also, as m, > 2", it follows that m;r/qH*m < ou=r/a+1-ra) g
from (4.29) we get

o0

(4.30) Z n)|" < 27/2kCT Z(W%)#
=0

Since r/qg — 1+ ra > 0,0 < 1/2”‘1*1”0‘ < 1 and hence the geometric series on
the right-hand side of (4.30) converges. So we get (3.6), completing the proof of
Corollary 3.3. O

Proof of Corollary 3.4. Suppose f € Lip (o, p, G) for some o« > 0and 1 < p < 2,
and § < a — 1/p. Since G is bounded, in view of Lemma 4.1, {n°} € 21, (G) for all
v = 1. So, we can put a,, = n’ in Theorem 3.1 to get (3.2) with a,, = n?, that is,

Yonllfm)m <27 PRy m AT (WP (f, )
n=1 pn=0

where the constant x is from (2.14) corresponding to vy =p/(p —rp+1r), 0 <r < gq.
Now, setting » = 1, in the above inequality we get

(4.31) S onflfm) <2728y m AT W@ (f, ).
n=1 n=0
Also, when 6 > 0, we have
AC_;I =ay = 1 < m‘SH
A,le— Z n® < Z m My — My 1)<m‘smu—mé+1 weN,
nED‘CL'Ll rLEDu71

and for § < 0 we have

AG =q; = 15 1+6
b b
Z n? Z m,_;=m _1(mu —Mmy—1) = mu_lmu_l(pu -1
neDS 4 neDg )
S+1 S+l 641 =6 _ o 5+1 -5 5+1
<Smyipy =myTip, T p,0 =my, P’ <pp’mit, peN.

So, in either case,

(4.32) AT = > n<omith

nEDG 1
Since f € Lip («, p, G), we have (4.28). Using (4.32) and (4.28) in (4.31), we get
(o) N oo o0
(4.33) Z n®|f(n)| < 272k Z m;l/quZ“Cm;a <C Z m;l/‘ﬁ"ﬂ'l_o‘.
= ©n=0 p=0
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Now, in view of (3.7), we have 6 < o —1/p,so & > d+1/p =0+ 1—1/q, and
hence —1/¢+ 6 +1—a < 0. Also, as m, > 2*, it follows that m, Slattl-a o
ou(=1/ato+1=0) Qo from (4.33) we get

(4.34) i °If(n) |\CZ(21/q = 1+a)#'

Since 1/¢g—d—1+a>0,0< 1/21/‘1’5’“”‘ < 1, and hence the geometric series on

the right-hand side of (4.34) converges. So we get (3.8) to be proved. O
Proof of Theorem 3.2. Proceeding as in the proof of Theorem 3.1, for hy €
Gu\ Gut1, p =0, we get (4. 20) So, in view of the fact that G is the disjoint union
of the cosets zk +Gu, k= ...,my — 1, each of measure 1/m,, we get
R 1 1/p
s (X 1w ) ( [ e+ ) - s@pas )
V2
nEDE
1 mu_l 1/p
103 / e+n) = )P az)
2 E38 M—&-G
11 1/p
2( mi‘u (p)(f7/’b7zky+G))> ’

=0

by definition of w® (f, u,zﬁu + G,). Now, applying Holder’s inequality with the
exponents in (4.22), it follows from (2.14), (3.1), and (4.35) that
(4.36)

S afor = 3 ooren < (3 17e0r) (5 o

e} €] €] G
neDu nED nED“ neDu

)(p—rp+r)/p

myu 1 /p
- 1
(3 m<w@><f,u,zsu+0u>>”>
k=0 ~H
~ ,{m(l p/(p—rp+7))/(p/(P—TP+T)) Z an
neD§ |

my—1

r/p
= 2T/2m#r/p( Z (WP (f, s Zgﬂ + G#))p> Hm;T/qu,l
k=0
my—1

r/p
_ 2-’“/2nm;TAfl( S @O (ol Gmp)

k=0

for all 4 > 0. Summing (4.36) over u € N U {0} yields (3.9). This completes the
proof of Theorem 3.2. O
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Proof of Theorem 3.3. We prove this theorem by proceeding similarly to the
proof of Theorem 3 of [6]. Since Flz(f,G) < oo, it follows that f is bounded.
Therefore, as f is measurable, it follows that f € L?(G). So, proceeding as in
Theorem 3.1, for hy € G, \ G,41, 1 = 0, we have (4.20) with p = ¢ = 2. Therefore,
for 1 < p’ < oo we have

(137 (T |f<n>2>p, <

G
neDF

’

o ([ 15+ - foPar)

Now, writing
2-08)¢ +
(4.38) 2= g ) Bq),q &

and applying the integral form of Holder’s inequality with the exponents p’ and ¢’
yields

s (2 |f<n>|2)p/ <

’

p
T < / |f(z + hy) — f()|B/P+(@2=B)d'+B)/d dx)
G

neDZ
1 o\
S o (( / |f (2 + ha) = f()| P00 dm)
1/a'\p
</ If(z 4 hy) — ()‘((2 ﬂ)q+5)/qqu> )
— g [ I+ h) = f@) do
v/d
(/ F@+ he) — £()|C ﬁ>q+5dx> .
Now, in view of the fact that G is the disjoint union of the cosets z TG 1<g<

my, — 1, each of measure 1/m,,, (4.39) becomes

(4.40) ( > |f(n)|2> (mz /ZG o, f(x +ha) = f(2))7 dx)

neD¢
x (w(G=R)+B) (£ 1)) /a)((2=F)d'+5)

my—1

< (% [ L (sl G,)* da
q=0 YR uTn

~ (w((2*ﬂ)q’+ﬁ)(f’ ,u))QPI**B
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my,—1

o ( S (ose(f, 5, + Gu>>5m;1)

q=0
™ (W((2—B)q/+ﬁ)(f7 ,u))2p/—/3

my—1
= 2p/mﬂl< Z (osc(f, zgﬂ + G#))ﬁ>

q=0
~ (w((2*5)q’+ﬁ)(f’ 'u))2p’ﬂ3

<2 (Fla(f.G) (@ GO (f, ),

Since %T‘ + %(2 —r) =1, applying Holder’s inequality with the exponents 2/r and
2/(2 =), in view of (4.40), (3.10) and (2.14), we have

) ¥ alfolr < (3 1 ) (z ai/@—”)@_m

HEDE EDG nEDS
< (2—1m;1/p’ (Fls(f, G))B/p’ (W((2—/3)q’+5)(f7 N))2—B/p/)r/2
« ,im&l%/(?fr))/(?/(?fr)) Z a,

G
neD“ 1

- Q—T/Zml:r/@p’)(_7.76(]07 G))Pr/ )

~ (w((2—/3)q’+,3)(f’ M))T_BT/(ZP,)Hm;r/2A571
= 27"2k(Fly(f, G))Br/@p’)m;r/?—ﬂ(?z’/)

~ (w((276)q/+ﬂ)(f7 M))T*ﬂr/@p’)Af_l

for all 4 > 0. Summing (4.41) over all u € NU {0}, we get (3.11). This completes
the proof of Theorem 3.3. O

Proof of Theorem 3.4. Suppose f is measurable on G, f € BF4(G) for some
0 < s <2, and {a,} satisfies (3.10). As Fl,(f,G) < o0, it follows that f is bounded.
Since f is measurable, it follows that f € L?(G). Now, proceeding as in Theorem 3.1,
for hy € G, \ Gut1, p = 0, we get (4.20). Setting p = ¢ = 2 in (4.20), in view of
Parseval’s formula (see [7], Chapter VI, §23), (4 10) of the definition of g, and the
fact that G is the disjoint union of the cosets zk +G,, k=0,1,...,m, — 1, each
of measure 1/m,,, we have

@) (X 17w )mé\}i(/If(ar+h1)—f(m)l2dm>

neD
1/2
x+hy) — f(z)]? dx)

1/2

(5 e
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-1

1 1/2
(Zm f7MaZkH+G)))
=0 Mu

<Z w(f, 25, + G)) )1/2.
k=

Now, applying Holder’s inequality with the exponents 2/r and 2/(2 — r), it follows
from (2.14), (3.10) and (4.42) that
(4.43)

> anlf(m)

neDE

r/2 (2-r)/2
- ¥ e < (X wr) (X @)
nEDS

neDg neDE
) mu—1 /2
< 2/2/2< > @lfom =, +Gu))2> pmyy~2EENEIET) S an
k=0 nebi
' -1 r/2
- W( Z (w(fnu,zlgu + Gu))278(w(f7ﬂvzl§,u + G“))S> Km;r/zAf_l
I k=0
my,—1 r/2
< 2T/2/<;murz4§—1< Z (w(f, u))%s(w(f,u,zﬁu + G”))S>
k=0
mu—l T/Q
<27 P A )2 (3 (e 5+ G’
k=0

<27 Rmy AT (w(f, ) BT (FL(FL Q).

Summing (4.43) over u € N U {0} yields (3.12). This completes the proof of Theo-
rem 3.4. (]

Proof of Corollary 3.5. We shall put a, = 1 in Theorem 3.4. Since G is
bounded, setting § = 0 in Lemma 4.1, we see that {a,} € A, (G) for every v > 1. In
particular, {a, } satisfies (3.10) for 0 < r < 2. Also, by our assumption, f € BF,(G)
for 0 < s < 2. Therefore, by Theorem 3.4, we have (3.12) with a,, = 1. This means

we have

(444) i |T <2° r/2 (].'l (f G rs/2 Z _rAffl(w(f, u))(2—s)r/27

n=0

where the constant x is from (2.14) corresponding to v = 2/(2 — r). Since a,, = 1,
from (4.26) we have A,,_1 = m,_1(p,—1). Further, by our hypothesis, f € Lip (o, G)
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and hence w(f, ) < Cm,“. So, (4.44) becomes

(445) Y1) <27 PR(FLLC)™2 S my my (p — 1)(Cmy @) =972
n=1

n=0

< 27T/2H(-Fls (fa G))TS/z Z m;TmIL—lp/L (Cm;a)(275)r/2
pn=0

< 2_T/2fi(~7:ls(f7 G))rs/QC Z m;rmu(m;a)@—s)rﬂ
pn=0

_ 27r/2ﬂ(]_-ls(f’ G))rs/ZC Z m;r+1far(2fs)/2.
pn=0

Now, in view of (3.13), we have 2r + ar(2 — s) > 2. So, r + ar(2 —s) > 1, and
hence —r+1— ar(2—s) < 0. Also, as m,, > 2", it follows that m,, Srtl-ar(2- S)/Q
gu(—r+1-ar(2=5)/2) Qo from (4.45) we get

(4.46) Z_: n)[" <27 PR(FL(f, G) TS/QCZ(W)H'

Since r— 1+%ar(2—s) > 0,0 < 1/2r—1+a7(2=9)/2 < 1 and hence the geometric series
on the right-hand side of (4.46) converges. This completes the proof of Corollary 3.5.
O

Proof of Corollary 3.6. Suppose f € Lip(«a,G) N BF(G) for some o > 0,

0 < s < 2, Gis bounded, and § < Za(2 — s). Then, in view of Lemma 4.1,

{n°} € 2A,(G) for all v > 1. So, we can put a, = n° in Theorem 3.4 to get (3.12)
with a,, = n’, that is,

Z |r<2 r/2 (]'-l (fG rs/QmerAG’ ( (f, ))2 sr/2

pn=0

where the constant  is from (2.14) corresponding to v = 2/(2 — r). Now, setting
r=1, we get

CEURD S R S IR S MU

=0
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Since a,, = n%, from (4.32) we have Aff_l < Cmffl. Further, as f € Lip (a, G), we
have w(f, ) < Cm,*, p € NU{0}. Therefore, from (4.47) we get

(4.48) Z n)| < 27V2k(Fly(f, G))*/? Zm‘10m5+1(0m o) (2-1)/2

p,(]

< 27'26(Fl(£,G) Wch —/2,
pn=0

Since § < /Za(2 s), we have § — (2 — 5) < 0. Also, as m,, > 2", it follows that
md T2 ou(6=a(2-9)/2) S0 from (4.48) we get

00 . . 1 H
(4.49) > nllf(n)| < 27V 2k(FI(f,G)) /2CZ(WS)/2> :
n=1 pn=0
Since —§+ 1a(2—s) > 0,0 < 1/279+*(2=9)/2 < 1 and hence the geometric series on
the right-hand side of (4.49) converges. So, we get (3.8). This proves Corollary 3.6.
(]

2. Double Vilenkin-Fourier series. Almost all results of Section 3.2 can
be proved using similar techniques to the case of one variable. For the readers’
convenience, we shall give a complete proof of Theorem 3.5 and an outline of proofs
for the remaining results. First, we state the following lemma, which is a two-
dimensional analogue of Lemma 4.1 and easily follows from it.

Lemma 4.2. If G and H are bounded, then {k"172} e A*(G x H) for all
B1,82 € Rand~ > 1

Proof of Theorem 3.5. Fix p, v € NU{0}, (h1,h2) € (G \Gps1) x (H,\Hy41),
and set

(4.50) g(z,y) = A1 f(z,y; e, ho), (z,y) € G x H.
Then for m,n € N we have
(4.51)
g(m,n) = / (%, 9) Xom (€) 8, () dm (@, y) = (Xan (h1) = 1) ($n(ha) — 1) f(m, ).
GxH

Since hy € G, \ Gj41, in view of (4.12), for x € X, 41 \ X, we have
(4.52) x(hy) = e F1/Put1 for some 1 < k1 < pyy1.
Similarly as he € H, \ H, 41, using (4.12) for H, for ¢ € Y, 11 \ Y, we have

(4.53) Y(hg) = e?™k2/avt1 for some 1 < ko < Qu41-
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As in the case of one variable, let m; = [logp,+1/log2] and ms = [log g,+1/1og2].
Now, using the notations of the proof of Theorem 3.1 for groups G and H, in view
of (4.51), (4.15), (4.17) and (4.18), for 1 < {; < my, ¢ = 1,2 we have

(454) > >

G H
meD I "EDV‘LQ

E E ! 19( )
m,m
|Xm tllhl — 1|q|wn(t12h2) — 1|q

mGDGl neDf,

Z Z 279 sin

mGD“ " ncDH

—q

ity k|4 N
—— |g(m,n)|?

Pu+1

Ttt12 kg
qv+1

279 sin

vilg

Qq/22q/2

< Y Y Tl =g Y Y

G H
mEDH " nEDV o mED“J1 ”eDu,12

Using (4.14) for G and H, and (4.54) for p,v € NU {0} we have

ass) (3 Z|f<m,n>|) (mzmz SOy )w

meDG neDH L=11>=1meDF, neD[,

033 SDS |g<m,n>|q>l/q

I1=112=1 'rn,EDEJ1 ’I’LEDL{—I’Z2

EE T Y wmnr)”

G
li=1lz= 1m6D " nEDul2

(T % m(m,nw)uq.

meDSG neDH

Therefore, for 1 < p < 2, by virtue of the Hausdorfl-Young inequality (see, e.g. [2],
equation (4.28)) and (4.50), (4.55) becomes

(5, 3 don) " <35 Smor)

meDG neD! m=1n=1

N

1 ) 1/p
<3([ ot ant.y)
1 1/p
(4.56) =3 (/ A1 f(z,y; by h)P dm(l‘,y)>
GxH
(4.57) < %w (f,p,v)
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for all p,v € NU{0}. As in the case of one variable, applying Hélder’s inequality
with exponents in (4.22), it follows from (2.29), (3.15) and (4.57) that

meDG neDH

v/
(T S ) (L% ago
mGDG neDH meD? neDH
1

< 27“( p)(fa,u’7 )) (mHnV) /qAZ 1,v—1

)(prJrT)/p

for all u,v € NU{0}. Summing (4.58) over u,v € NU {0} yields

S Sl fomn =35 S anlfon

m=1n=1 pu=0v= OmEDGnEDH

< 27"k Z Z(mﬂnl’)ir/qAZ—l,v—l(w(p)(fﬂ My V))Ta

pn=0rv=0
which is (3.16) to be proved. This completes the proof of Theorem 3.5. O

Substituting @, = 1 and @, = m?*n®? in Theorem 3.5 and proceeding as in the
proofs of Corollaries 3.3 and 3.4, respectively, we can write proofs of Corollaries 3.7
and 3.8. Also, the way we have proved Theorem 3.2 using Theorem 3.1 allows us to
prove Theorem 3.6 using Theorem 3.5.

Proof of Theorem 3.7. Since Flg(f,G x H), Flg(f(-,0),G) and Flg(f(0,-), H)
are finite, in view of Remark 2.1, f is bounded. Therefore, as f is measurable on
G x H, it follows that f € L?(G x H) So, proceeding as in Theorem 3.5, for
(h1,h2) € (Gu\ Guy1) x (Hy \ Hy11), p,v > 0, we have (4.56) with p = ¢ = 2, that

is, we have

s (X % |f<m,n>2)1/2<

mEDf neDH

1/2
(/ |A1,1f<x,y;hl,h2>|2dm<x,y>) |
GxH

DN | =

So, for 1 < p’ < co we have

a (¥ % |f<m,n>|2)p/<;,(/G XH|A1,1f<x,y;hl,h2>|2dm<x,y>)p'.

meDEG neD!

Now, proceeding as in the proof of Theorem 3.3, starting from (4.60) instead of (4.37),
we can complete the proof of Theorem 3.7. O
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Proof of Theorem 3.8. Suppose [ is measurable on G x H, f € BF,(G x H),
f(-,0) € BFs(G), f(0,-) € BFs(H) for some 0 < s < 2, and {amy} satisfies (3.23).

Vi(f,G x H) < Fls(f,G x H) < oo, in view of Remark 2.1, it follows that f
is bounded. Since f is measurable on G x H, it follows that f € L?(G x H). So,
proceeding as in the proof of Theorem 3.7, we get (4.59). Now, proceeding as in the
proof of Theorem 3.4, starting from (4.59) instead of (4.20) with p = ¢ = 2, we can
complete the proof of this theorem. O

Proof of Corollary 3.9. We shall put a,,,, = 1 in Theorem 3.8. Since G and H
are bounded, setting 3 = 0 in Lemma 4.2, we see that {a,,} € 2% (G x H) for every
~v = 1. In particular, {a,,,} satisfies (3.23) for 0 < r < 2. Also, by our assumption,
f € BF4(G x H), f(-,0) € BF4(G), and f(0,-) € BF,(H) for 0 < s < 2. Therefore,
by Theorem 3.8, we have (3.25) with a,,, = 1. This means we have

(4.61) > N |f(mn)|" <27R(FL(f,G x H))"/?

m=1n=1

XZZ m[LnV fuu’ V))2 S)T/ZAZ l,v—1»

pn=0rv=0

where & is from (2.29) corresponding to v = 2/(2 — r). Now, proceeding as in the
proof of Corollary 3.5, starting with (4.61) instead of (4.44), we can complete the
proof of this corollary. O

Proof of Corollary 3.10. Suppose f € Lip (o, ;G x H)NBF4(G x H), f(-,0) €
BF(G), f(0,-) € BFs(H) for some o, 8 > 0,0 < s < 2, G and H are bounded, d; <
$a(2—s), and 0, < 38(2—s). Then, in view of Lemma 4.2, {m®'n°?} € A% (G x H)
for all v > 1. So, we can put @,,, = m®n’ and r = 1 in Theorem 3.8 to get (3.25)

With am, = m®nf and r = 1, that is,

(4.62) Z Zm51n52|f m,n)| < 27 K(Fl(f, G x H))*/?

m=1n=1

XZZ munu f,l% ))2 S)/QA:, 1,v—1>

pn=0rv=0

where the constant « is from (2.29) corresponding to v = 2. Now, proceeding as in
the proof of Corollary 3.6, starting from (4.62) instead of (4.47), we can complete
the proof of Corollary 3.10. O

The proof of Theorem 3.9 is similar to the proof of [13], Theorem 6. However, we
note that in the statement as well as in the proof of [13], Theorem 6, the authors
have identified G with [0, 1).
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Proof of Theorem 3.9. Since f € (A, U)FI,(G x H), it is bounded and hence,
being measurable, it follows that f € L*(G x H). Proceeding as in the proof of
Theorem 3.7, we get (4.59), that is, we have

> > fmn)P SE/G H\Amf(ﬂc,y;hl,h2)|2dm(x,y)~

meDS$ neDH

Now writing 2 as in (4.38) and applying the integral form of Holder’s inequality with
the exponents p’ and ¢’ yields
(4.63)

A 1 ’ _ ’ ’
S X WP < [ Iy ha) P ()
meDS neDH x
! 1 1/17/
([ s b P amey)
GxH

1/q
x ( / 1AL1f (2, y; by, )| (B0 +) dm<x,y))
GxH

1 1/p
<t( [ 18us i)l ant.y)
GxH
x (W @B +B) (£ 1)) 1/a)(2=F)a"+F)

Therefore

wey (X Z|f<m,n>|2)pl<4}, (f XH|A1,1f<x,y;hl,h2>|ﬁdm<x,y>)p//ﬂ

meDSG neDH

x (W =P HB) (f 1y p))P C=BHA/d)

1
— ([ 180asstn ) o))
GxH

X (w((2—l3)q’+ﬁ)(f, 1, )% P

Now multiplying the above inequality by ()\Z-Hl/)jﬂ)*l and, after that, summing the
resulting inequalities over i = 0,1,...,m, —1and j =0,1,...,n, — 1, we get

\I,n< DD f(m,n)|2> | mﬁflnf Azm/)m( > 2 If(m,n)l2>p,

meDG ne DY i=0 ;=0 meDG neDH
—1n,—1
A1,1f(33ay;h17h2)|ﬂdm($,y))
; JZO )\z+11/1g+1 47 (/GxH

X (w (2-B)d'+8) (f 1, V))%'*ﬁ
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my—1n,—1

= (w((2 Bq+ﬁ)(f'uy 2p' -3 Z Z S

i=0 j—=0 z+17/}]+1

1n,,71

/ |ALLf(z,y3 b, he)|? dm(z, y)
(qu wTGu)x (L, +Hy)

H
k 0 qr.v
—1n,—1 —1n,—1

4p(((2ﬁQ+ﬁ)(fuy2pﬁzZ)\ ZZI

i=0 =0 ’*1%“ k=0

N

x / (osc(f. (=8, +G) x (zE, + H,))) dm(z, )
(2§, 4G X (2, +H,)

= S Ty

4p’
muflny—l my—1n, — H
OSC f7 qku+Gu) X (qu,y+HV)))ﬁ
X
SETS e
X / 1dm(z,y)
(zG WG x (24 ,+Hy)
- ((2-B)d'+8) 20’ —B
“w e (f,11,))
1n,/71 —1n,— H
(osc(f, (= M+G ) (2q1 0 + H)))° ) 1
X
1 my—1n,—1
< m(w((zfﬁ)q Hi)(fa#v’/))zp - Z Z (VA,\IJ,ﬁ(faM’/))B
wv k=0 1=0
1 my—1n,—1
< = (@B +B) 2p'—p B 1
< 4p/muny (w (f7 My V)) (VAy‘lf,ﬁ(ﬁ Ky V)) kZ:O ;
1 _ ’ ’_
= W(W(@ Ble +ﬁ)(f>lhl/))2p ﬁ(VA&,ﬁ(f,,u’V))ﬂmpnu
< g @I ) PV (.G x H))P,
whence we obtain the inequality
(4.65)

( Z Z f(m,n)|2>p < (w((Q—ﬂ)q +B)(f7/1'7 V/)\ip\l_/i(VA,\Il,ﬁ(fv G x H))’87

mGDS neDH s v

which implies that

A Y,

mEDE neDH w v

S5 (fmmp < (W ) PO (1.6 H>>ﬁ>l/pl.
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Now for 0 < 7 < 2, as 1 = 2r + (2 —r), in view of (2.29), (4.65), and Holder’s
inequality, we have
(4.66)

Z Z amn‘f m,n)|"

meDG neDH

<(Z 3 Z/W)(M)/Q(Z 3 |f<m,n>|2)r/2

meDSG neDH meD§ neDH
r/2
<m0 S (S fim e
mEDG L, neDH | mEDGneDH

Ww(@=B)d+8) )(f, 1, V))QP “PVr v p(f, G x H))T/(2p)
A, W,

<H(mﬂnu) 7/2Au 1,v— 1((

Summing (4.66) over u,v € NU {0}, we get

(467)
>3 amalfonnl = 33" Y amlion )l
m=1n=1 pn=0rv= OmEDGnEDH
ZZ“ myny) ALy,
pn=0rv=0
y ((w(@*ﬁ)q/*ﬁ)(f,u,y))zp,’ﬁVAy,g(f,G x H) r/(2p")
A, Ya, '
This completes the proof. O
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