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1. Introduction

Various mathematical problems with nonstandard growth conditions have been

investigated by many authors in the last two decades. We refer to the overview

paper [24] and the books [4], [13] and [31] .

Partial differential equations and variational problems with nonstandard growth

conditions arise from elastic mechanics, electro-rheological fluids and image restora-

tion; see, e.g., [7], [32], [33], [40]. Many results on the regularity for the nonstandard

growth problems have been obtained (see, e.g., [2], [8], [15], [17], [18], [23], [25], [26],

[29], [30], [34], [37], [39]). In particular, in [1], [5], [9]–[11], [16], [19], [20], [36], [38] the

authors have obtained the C1,α regularity results for integral functionals or elliptic

equations with nonstandard growth conditions. In this paper we deal with the C1,α

regularity of bounded solutions to the quasilinear elliptic equation

(1.1) − divA(x, u,∇u) +B(x, u,∇u) = 0 in Ω

c© The author(s) 2023. This is an open access article under the CC BY-NC-ND licence cbnd

DOI: 10.21136/MB.2023.0055-23 1

https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.21136/MB.2023.0055-23


with the Dirichlet boundary condition

(1.2) u = g in ∂Ω,

where Ω is a bounded domain of Rn, n > 2, and ∂Ω is its boundary.

We assume that A and B satisfy the variable exponent growth conditions (see

Assumptions (H2) and (H3)), where the variable exponent p : Ω → R satisfies the

condition

(1.3) 1 < p− := inf
Ω

p(x) 6 p+ := sup
Ω

p(x) < ∞.

As well known, assuming that the variable exponent p(x) is log-Hölder continuous,

allows to prove Hölder continuity of weak solutions and minima. However, C1,α

regularity results in fact require that p(x) is Hölder continuous rather than merely

log-Hölder continuous; see for example [24], Theorem 8.1. The following assumptions

will be used.

(H1) The function p is Hölder continuous on Ω, which is denoted by p ∈ C0,β1(Ω),

that is, there exist a positive constant L1 and exponent β1 ∈ (0, 1) such that

|p(x1)− p(x2)| 6 L1|x
1 − x2|β1 for x1, x2 ∈ Ω.

(H2) A = (A1, A2, . . . , An) ∈ C(Ω×R×R
n,Rn). For every (x, z) ∈ Ω×R, A(x, z, ·) ∈

C1(Rn \{0},Rn) and there exist a non-negative constant k > 0, non-increasing

continuous function λ : [0,∞) → (0,∞) and non-decreasing continuous func-

tion Λ: [0,∞) → (0,∞) such that for all x, x1, x2 ∈ Ω, z, z1, z2 ∈ R, η =

(η1, η2, . . . , ηn) ∈ R
n \ {0} and ξ = (ξ1, ξ2, . . . , ξn) ∈ R

n the following condi-

tions are satisfied:

(1.4) |A(x, z, 0)| 6 Λ(|z|)b(x),

where b is a non-negative function in the appropriate variable exponent

Lebesgue space, see (1.10) for details,

n
∑

i,j=1

∂Aj

∂ηi
(x, z, η)ξiξj > λ(|z|)(k + |η|2)(p(x)−2)/2|ξ|2,(1.5)

n
∑

i,j=1

∣

∣

∣

∂Aj

∂ηi
(x, z, η)

∣

∣

∣
6 Λ(|z|)(k + |η|2)(p(x)−2)/2,(1.6)

|A(x1, z1, η)−A(x2, z2, η)|(1.7)

6 Λ(max{|z1|, |z2|})(|x1 − x2|β1 + |z1 − z2|β2)

× [((k + |η|2)(p(x
1)−2)/2 + (k + |η|2)(p(x

2)−2)/2)

× (1 + | log(k + |η|2)|)|η|+ 1],

where β1, β2 ∈ (0, 1) are given numbers.
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(H3) B : Ω × R × R
n → R is a Carathéodory function satisfying the structural

condition

(1.8) |B(x, z, η)| 6 Λ(|z|)(|η|p(x) + d(x)),

where Λ is as in Assumption (H2) and d is a non-negative Lebesgue measurable

function satisfying some assumption; see (1.10) for details.

Without loss of generality we may assume that L1 > 1, 0 6 k 6 1, λ(z) 6 1 and

Λ(z) > 1 for all z ∈ [0,∞) in Assumptions (H1)–(H3).

A typical example of the function A satisfying Assumption (H2) is

A(x, z, η) = a(x, z)(k + |η|2)(p(x)−2)/2η + f(x, z),

where a : Ω×R → R and f : Ω×R → R
n are Hölder continuous in (x, z) and satisfy

the inequalities

λ(|z|) 6 a(x, z) 6 Λ(|z|) and |f(x, z)| 6 Λ(|z|)b(x) for (x, z) ∈ Ω× R.

The equation (1.1) with the structure conditions (H1)–(H3) is considered in [16]

by Fan, while he proved the Hölder continuity of gradients of the bounded weak

solutions of (1.1) under the conditions b = 0, d = const, that is, A(x, z, 0) = 0 and

|B(x, z, η)| 6 Λ(|z|)(|η|p(x) + 1) instead of (1.4) and (1.8), respectively.

Zhang and Zhou (see [38]) and Yao (see [36]) have obtained local Hölder continuity

for the gradients of weak solutions of (1.1), where the forms of A and B considered

in [38] are A(x, z, η) = |η|p(x)−2η and B(x, z, η) = |η|p(x)−2 log(|η|)η∇p(x) but in [36]

they are A(x, z, η) = (a(x)η · η)(p(x)−2)/2a(x)η − |f(x)|p(x)−2f(x), where f(x) =

(f1(x), . . . , fn(x)), fi ∈ C0,α
loc (Ω) is a vector field and a(x) = (aij(x)), aij ∈ C0,α

loc (Ω),

is a symmetric matrix satisfying

Λ−1|η|2 6 a(x)η · η 6 Λ|η|2

with a positive constant Λ, and B(x, z, η) = 0. To the best of the authors’ knowledge,

nothing is known on C1,α regularity for the elliptic Dirichlet problem (1.1), (1.2)

which satisfies Assumptions (H2) and (H3) when b and d are Lebesgue measurable

functions. The aim of the present paper is to find the sharp conditions on b(x)

and d(x) in (1.4) and (1.8) so as to ensure the Hölder continuity of gradients of the

bounded weak solutions of (1.1). In this paper we use the variable exponent spaces

Lp(·)(Ω), W 1,p(·)(Ω), W
1,p(·)
0 (Ω) of which the definitions will be given in Section 2.

The symbols of some common spaces used in this paper such as L∞(Ω), W 1,∞(Ω),

C1
0 (Ω), C

∞
0 (Ω), C(Ω), Ck,α(∂Ω), Ck,α

loc (Ω) and Ck,α(Ω) with k = 0, 1 are standard.
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Definition 1.1. (1) The function u ∈ W 1,p(·)(Ω) is called a bounded weak solu-

tion of (1.1) if u ∈ L∞(Ω) and

(1.9)

∫

Ω

(A(x, u,∇u)∇ϕ+B(x, u,∇u)ϕ) dx = 0 for every ϕ ∈ W
1,p(·)
0 (Ω)∩L∞(Ω).

(2) The function u ∈ W 1,p(·)(Ω) is called a bounded weak solution of the Dirich-

let problem (1.1), (1.2) if u ∈ L∞(Ω), u − g ∈ W
1,p(·)
0 (Ω) with g ∈ W 1,p(·)(Ω)

and (1.9) holds.

Our main results in this paper are the following Theorems 1.2 and 1.3.

Theorem 1.2. Let p satisfy (1.3) and (H1), and let u ∈ W 1,p(·)(Ω) ∩ C0,α1

loc (Ω)

be a bounded weak solution of (1.1) with sup
Ω

|u| 6 M , where M is a given positive

constant. Suppose that A and B satisfy Assumptions (H2) and (H3) with non-

negative functions b and d such that

(1.10) b ∈ Lp′(·)m(·)(Ω), d ∈ Lm(·)(Ω)

with m ∈ C(Ω) satisfying

(1.11) m(x) >
2n

β
∀x ∈ Ω,

where

(1.12) β = min{β1, α1β2}

and β1, β2 are as in Assumption (H2), and p′(x) = p(x)/(p(x)− 1). Then u ∈

C1,α
loc (Ω) and for any open set Ω

′ ⋐ Ω the inequality

(1.13) ‖u‖C1,α(Ω′) 6 C

holds, where α ∈ (0, 1) and C depends on n, p(·), m(·), λ(M), Λ(M), M , α1, β1

and β2, and, moreover, C depends also on ‖b‖p′(·)m(·), ‖d‖m(·) and dist(Ω′, ∂Ω).

Theorem 1.3. Let Ω be a bounded domain of Rn with C1,α0 boundary ∂Ω.

Suppose that g ∈ C1,α0(∂Ω) and u ∈ W 1,p(·)(Ω) ∩ C0,α1(Ω) is a bounded weak

solution of the Dirichlet problem (1.1), (1.2) with sup
Ω

|u| 6 M. Let p, A and B

satisfy all the conditions of Theorem 1.2. Then u ∈ C1,α(Ω) and the inequality

(1.14) ‖u‖C1,α(Ω) 6 C

holds, where α ∈ (0, 1) and C depend on n, p(·), m(·), λ(M), Λ(M), M , α1, β1,

β2, ‖g‖C1,α0 (∂Ω) and Ω, and, moreover, α depends also on α0, C depends also on

‖b‖p′(·)m(·) and ‖d‖m(·).
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The proofs of Theorems 1.2 and 1.3 are similar to those of Fan (see [16]) who

adapted the ideas used by Acerbi and Mingione in [1] for the C1,α regularity of mini-

mizer of the integral functional. However, in order to employ methods of [16], we need

new results on the Hölder continuity and the higher integrability for bounded weak

solutions of the Dirichlet problem (1.1), (1.2) satisfying (2.1), (2.2) with appropri-

ate measurable functions a2 and b1 which arise from the conditions (1.4) and (1.8)

because there are no such regularity results in literature. Indeed, Fan and Zhao

in [17] and Fan in [16] obtained the Hölder continuity and the higher integrability

for bounded weak solutions when a2 and b1 are constants, and Ri and Yu (see [37])

proved the boundedness and Hölder continuity for weak solutions of (1.1), (1.2) under

the stronger structural conditions on A and B:

A(x, z, η)η > a0|η|
p(x) − a1(x)|z|

q(x) − a2(x),

|A(x, z, η)| 6 b0(|η|
p(x)−1 + b1(x)|z|

q(x)/p′(x) + b2(x)),

|B(x, z, η)| 6 c0(x)|η|
p(x)/q′(x) + c1(x)|z|

q(x)−1 + c2(x),

where

p(x) 6 q(x) < p∗(x) :=







np(x)

n− p(x)
if p(x) < n,

∞ if p(x) > n

and a0, b0 are given positive constants, and a1, a2, b1, b2, c0, c1, c2 are appropriate

non-negative measurable functions; see [37] for details.

We prove in the next sections that if (2.1), (2.2) and (2.4) are satisfied and p is

log-Hölder continuous in Ω, that is, there exists a constant Clog such that

−|p(x)− p(y)| log |x− y| 6 Clog ∀x, y ∈ Ω with |x− y| 6
1

2
,

then a bounded weak solution of (1.1), (1.2) is Hölder continuous (see Theorems 2.5

and 2.8) and higher integrable (see Lemmas 3.1 and 4.1). Besides, our procedure

for deriving the same estimates required for using Campanato’s theorem to prove

Hölder continuity of the gradients is slightly more difficult and sharper than that

of [16] (see Lemmas 3.2–3.3 and Proposition 3.4).

R e m a r k 1.4. We emphasize a sufficient condition for the Hölder continuity of

bounded weak solutions to (1.1) or (1.1), (1.2) assumed in Theorems 1.2 and 1.3:

Let A and B satisfy (H2) (here we do not require (1.7)) and (H3) with b and d

satisfying (1.10) for some m ∈ C(Ω) such that

(1.15) m(x) > max
{

1,
n

p(x)

}

for any x ∈ Ω.
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Then the bounded weak solution of (1.1) belongs to C0,α1

loc (Ω) with some α1 ∈ (0, 1).

Moreover, if Ω satisfies a uniform exterior cone condition on ∂Ω and u is a bounded

weak solution of (1.1), (1.2) with g ∈ C0,α0(∂Ω), then u belongs to C0,α1(Ω) with

some α1 ∈ (0, 1).

The assertion of Remark 1.4 follows from Theorems 2.5, 2.8 and Remark 2.10.

R e m a r k 1.5. It is clear that the constants b and d satisfy (1.10) for any m ∈

C(Ω) such as in (1.15). Therefore, it follows from Theorem 1.3 that bounded weak

solutions of (1.1), (1.2) belong to C1,α(Ω) under the conditions of Theorem 1.3 (but

we need not assume (1.10)–(1.12)). This shows that the results of the present paper

generalize the C1,α regularity results not only of [16] and [36] in the variable exponent

case but also of [6], [27], [28], [35] in the constant exponent case where the authors

assumed that b and d are all non-negative constants.

The rest of this paper is organized as follows. In Section 2, we introduce some

known basic properties on the variable exponent Lebesgue space and Sobolev space,

and prove the Hölder continuity of bounded weak solutions of (1.1) or (1.1), (1.2)

by using the generalized De Giorgi classes introduced in [37] and the localization

method. We prove the local C1,α regularity for (1.1) in Section 3 and the global

C1,α regularity for the Dirichlet problem (1.1), (1.2) in Section 4. In the following

sections the symbol C will be used as a generic symbol for a constant that may

change from line to line or even within a line.

2. Preliminaries

Let E be a bounded open set in R
n, n > 2, and p : E → [1,∞) be a Lebesgue

measurable function.

Define the variable exponent Lebesgue space Lp(·)(E) by

Lp(·)(E) :=

{

u : u : E → R is a measurable function and

∫

E

|u|p(x) dx < ∞

}

with the norm

‖u‖p(·),E := ‖u‖Lp(·)(E) = inf

{

λ > 0:

∫

E

∣

∣

∣

u

λ

∣

∣

∣

p(x)

dx 6 1

}

and the variable exponent Sobolev space W 1,p(·)(E) by

W 1,p(·)(E) := {u ∈ Lp(·)(E) : |∇u| ∈ Lp(·)(E)}

with the norm

‖u‖W 1,p(·)(E) = ‖∇u‖p(·),E + ‖u‖p(·),E ,

where ‖∇u‖p(·),E := ‖|∇u|‖p(·),E .
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Define W
1,p(·)
0 (E) as the closure of C∞

0 (E) in W 1,p(·)(E). We point out that,

when p is log-Hölder continuous in E, ‖∇u‖p(·),E is an equivalent norm onW
1,p(·)
0 (E).

All the spaces Lp(·)(E), W 1,p(·)(E) and W
1,p(·)
0 (E) are Banach spaces.

For a measurable function f : E → R, we put

sup
E

f(x) := ess sup
E

f(x), inf
E

f(x) := ess inf
E

f(x),

osc
E

f(x) := sup
E

f(x)− inf
E

f(x), ‖f‖∞,E = ‖f‖L∞(E)

and sometimes

f+
E := sup

E
f(x), f−

E := inf
E

f(x).

We denote by |E| the n-Lebesgue measure of E. If 1 6 p−E 6 p+E < ∞ and u ∈

Lp(·)(E), then there hold the inequalities

min{‖u‖
p−

E

p(·),E , ‖u‖
p+
E

p(·),E} 6

∫

E

|u|p(x) dx 6 max{‖u‖
p−

E

p(·),E , ‖u‖
p+
E

p(·),E}

and if 0 6 a−E 6 a+E < ∞, r ∈ L∞(E), 1 6 a(x)r(x), r(x) > 1 for a.e. x ∈ E and

u ∈ La(·)r(·)(E) then there holds the inequality

‖|u|a(x)‖r(·),E 6 max{‖u‖
a−

E

a(·)r(·),E , ‖u‖
a+
E

a(·)r(·),E}.

Moreover, if u ∈ Lr(·)(E) and 1 6 p(x) 6 r(x) for a.e. x ∈ E then

‖u‖p(·),E 6 (1 + |E|)‖u‖r(·),E .

We refer to [12], [13] for the elementary properties of the spaces Lp(·)(E), W 1,p(·)(E)

and W
1,p(·)
0 (E).

Let B̺(x0) be an open ball in R
n of radius ̺ centered at x0 ∈ R

n and put

ωn := |B1(x0)|, Ω̺(x0) := Ω ∩B̺(x0), (∂Ω)̺(x0) := ∂Ω ∩B̺(x0).

Now, we prove the Hölder continuity results of bounded weak solutions of (1.1) under

Assumption (H3) and the condition that the coefficient A : Ω × R × R
n → R

n is a

Carathéodory function satisfying the structural conditions

A(x, z, η)η > a0(|z|)|η|
p(x) − a1(|z|)a2(x),(2.1)

|A(x, z, η)| 6 b0(|z|)(|η|
p(x)−1 + b1(x))(2.2)

for a.e. x ∈ Ω and all (z, η) ∈ R × R
n, where a0 : [0,∞) → (0,∞) is a non-

increasing continuous function and a1, b0 : [0,∞) → (0,∞) are non-decreasing con-

tinuous functions, and a2, b1 are non-negative measurable functions. Hölder conti-

nuity results for the bounded weak solutions of (1.1) have been obtained by Fan and
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Zhao (see [17]) when a2, b1 and d in (2.1), (2.2) and Assumption (H3) are all con-

stants. Recall the generalized De Giorgi’s classes Bp(·)(BR(y),M, γ, γ1, δ, 1/r) and

Bp(·)((∂Ω)R(z),M, γ, γ1, δ, 1/r) introduced in [37] to obtain the Hölder continuity of

weak solutions.

Definition 2.1 (see [37]). Let M , γ, γ1, δ, r be positive constants with

δ 6 2, r > 1 and BR(y) ⊂ Ω. We say that a function u belongs to class

Bp(·)(BR(y),M, γ, γ1, δ, 1/r) if u ∈ W 1,p(·)(BR), ‖u‖∞,BR
6 M and the functions

ω(x) = ±u(x) satisfy the inequalities

∫

Ak,τ

|∇ω|p(x) dx 6 γ

∫

Ak,t

∣

∣

∣

ω − k

t− τ

∣

∣

∣

p(x)

dx+ γ1|Ak,t|
1−1/r

for arbitrary 0 < τ < t 6 R and k such that k > sup
Bt(y)

ω − δM, where Ak,t =

{x ∈ Bt : ω(x) > k}.

Definition 2.2 (see [37]). Let M , γ, γ1, δ, r, R be positive constants with

δ 6 2, r > 1 and z ∈ ∂Ω. We say that a function u belongs to the class

Bp(·)((∂Ω)R(z),M, γ, γ1, δ, 1/r) if u ∈ W 1,p(·)(ΩR), ‖u‖∞,ΩR
6 M , sup

(∂Ω)R

|u(x)| < ∞

and the functions ω(x) = ±u(x) satisfy the inequalities

∫

Ak,τ

|∇ω|p(x) dx 6 γ

∫

Ak,t

∣

∣

∣

ω − k

t− τ

∣

∣

∣

p(x)

dx+ γ1|Ak,t|
1−1/r

for arbitrary 0 < τ < t 6 R and k such that k > max
{

sup
Ωt

ω − δM, sup
(∂Ω)t

ω
}

, where

Ak,t = {x ∈ Ωt : ω(x) > k}.

As mentioned in Introduction, the Hölder continuity results for weak solutions

already known in literature do not allow us to use them to get the C1,α regularity

of bounded weak solutions of (1.1) or (1.1), (1.2). Therefore, we should study the

Hölder continuity of bounded weak solutions under the conditions (2.1), (2.2).

LetM be a positive constant. If p ∈ C(Ω), then there exists a radius R1 such that

M
osc
ΩR1

p

6 2 for any BR1
with ΩR1

6= ∅. Note that if p is log-Hölder continuous in Ω

then there exists a constant L2 > 0 such that

(2.3) R
−osc

ΩR

p
6 L2 ∀BR with ΩR 6= ∅;

see, e.g., [13], Lemma 4.1.6 for details.

We first provide the following interior Hölder continuity.

Lemma 2.3. Let p ∈ C(Ω) satisfy (1.3) and be log-Hölder continuous in Ω and

letM be a positive constant. Further, let R0 ∈ (0, 1) be a number satisfying R0 6 R1

and ε0 > 0 and r > 1 be numbers such that p0r > n+ ε0, where p0 = p−ΩR0
(x0)
and
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x0 ∈ Ω. Let BR′(y) ⊂ ΩR0
(x0) and u ∈ W 1,p(·)(BR′) ∩ L∞(BR′), and sup

BR′

|u| 6 M .

Suppose that u ∈ Bp(·)(BR(y),M, γ, γ1, δ, 1/r) for any R ∈ (0, R′]. Then there exists

a constant s = s(n, γ, p+, p−, L2, ε0) > 2 such that, for arbitrary 0 < R 6 R′,

osc
BR(y)

u 6 CR′−α1Rα1 ,

where L2 is as in (2.3) and

C = 4max
{ (ωn + 1)(γ + 1) + γ1

γ
l2sR′ε0/(n+ε0), osc

BR′

u
}

,

α1 = min
{ ε0
n+ ε0

,− log4(1− l−12−s)
}

, l = max
{

2,
2

δ

}

.

The proof of Lemma 2.3 is the same as that of Lemma 4.5 in [37], the only difference

being that we must now replace p0σ0 by n+ε0 and use the inequalityM
p+
BR

−p−

BR 6 2

with R 6 R0.

Lemma 2.4. Let p ∈ C(Ω) satisfy (1.3). Suppose that A and B satisfy (2.1),

(2.2) and (1.8) with non-negative measurable functions a2, b1 and d such that

(2.4) a2, d ∈ Lm(·)(Ω), b1 ∈ Lp′(·)m(·)(Ω),

where m ∈ C(Ω) is as in (1.15). If u is a bounded weak solution of (1.1) such that

sup
Ω

|u| 6 M , then

u ∈ Bp(·)

(

BR(y),M, γ, γ1, δ,
1

m−
BR

)

for any ball BR(y) ⋐ Ω with |BR| 6 1,

where

δ = min
{

2,
a0(M)

3MΛ(M)

}

, γ = γ(p+, a0(M), b0(M)),

γ1 = γ1(p
+, p−, a0(M), a1(M), b0(M), ‖a2‖m(·), ‖b1‖p′(·)m(·), ‖d‖m(·)).

P r o o f. Let 0 < τ < t 6 R. Let η ∈ C1(Rn) be a function such that

0 6 η(x) 6 1, |∇η(x)| 6 2/(t− τ) for x ∈ R
n, η(x) = 1 for x ∈ Bτ (x0) and

supp η ⊂ Bt(x0). Set ω
(k) = max{ω− k, 0} with ω = ±u and k > sup

Bt

ω− δM. Then

ϕ = ηp
+

ω(k) ∈ W
1,p(·)
0 (Bt) ∩ L∞(Bt), so we can take ϕ as a test function in (1.9).

Substituting ϕ into (1.9) we have

(2.5)

∫

Ak,t

ηp
+

A(x, u,∇u)∇ω dx = − p+
∫

Ak,t

ηp
+−1∇ηA(x, u,∇u)(ω − k) dx

−

∫

Ak,t

B(x, u,∇u)(ω − k)ηp
+

dx.
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Recalling (2.1), (2.2), (2.4), (1.8) and using the Young inequality and Hölder inequal-

ity and taking ε such that 2p+b0(M)ε = 1
3a0(M), we have

(2.6) ±

∫

Ak,t

ηp
+

A(x, u,∇u)∇ω dx > a0(M)

∫

Ak,t

ηp
+

|∇ω|p(x) dx

− 2a1(M)‖a2‖m(·) |Ak,t|
1−1/m−

BR ,

where the upper or lower sign be taken according to whether ω is +u or −u, respec-

tively,

(2.7)

∣

∣

∣

∣

p+
∫

Ak,t

ηp
+−1∇ηA(x, u,∇u)(ω − k) dx

∣

∣

∣

∣

6 2p+b0(M)

∫

Ak,t

(

εηp
+

|∇ω|p(x) + (ε1−p(x) + 1)
∣

∣

∣

ω − k

t− τ

∣

∣

∣

p(x)

+ b
p′(x)
1 (x)

)

dx

6
a0(M)

3

∫

Ak,t

ηp
+

|∇ω|p(x) dx+ C(p+, a0(M), b0(M))

∫

Ak,t

∣

∣

∣

ω − k

t− τ

∣

∣

∣

p(x)

dx

+ C(p+, p−, b0(M), ‖b1‖p′(·)m(·))|Ak,t|
1−1/m−

BR

and using the fact that 0 6 ω(x)− k 6 δM 6 a0(M)/(3Λ(M)) for x ∈ Ak,t,

(2.8)

∣

∣

∣

∣

∫

Ak,t

B(x, u,∇u)(ω − k)ηp
+

dx

∣

∣

∣

∣

6
a0(M)

3

∫

Ak,t

ηp
+

|∇ω|p(x) dx

+ C(a0(M), ‖d‖m(·))|Ak,t|
1−1/m−

BR
.

Combining (2.6)–(2.8) with (2.5), we get

∫

Ak,τ

|∇ω|p(x) dx 6 γ

∫

Ak,t

∣

∣

∣

ω − k

t− τ

∣

∣

∣

p(x)

dx+ γ1|Ak,t|
1−1/m−

BR
.

The lemma is proved. �

Let m satisfy (1.15). Then, obviously, p(x)m(x) > n holds for any x ∈ Ω . There-

fore, if p and m are both continuous on Ω, then there exists a positive constant ε0
such that

p(x)m(x) > n+ 2ε0

for any x ∈ Ω and so we can take a R2 > 0 satisfying

(2.9) p−ΩR2
m−

ΩR2
> n+ ε0

for any ΩR2
with ΩR2

6= ∅.
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Theorem 2.5. Suppose that p ∈ C(Ω) is log-Hölder continuous in Ω. Let A

and B satisfy all the conditions of Lemma 2.4 and let u be a bounded weak solution

of (1.1) such that sup
Ω

|u| 6 M . Then u ∈ C0,α1

loc (Ω) and for any open set Ω′ ⋐ Ω the

estimate

‖u‖C0,α1 (Ω′) 6 C

holds, where α1 ∈ (0, 1) and C depend on n, p(·), m(·), a0(M), b0(M) and M .

Moreover, C depends also on a1(M), ‖a2‖m(·), ‖b1‖p′(·)m(·), ‖d‖m(·) and dist(Ω
′, ∂Ω).

P r o o f. Let R0 ∈ (0, 1) be so small that R0 6 min{R1, R2}, R0 < dist(Ω′, ∂Ω)

and |BR0
| 6 1. Then we have p−ΩR0

m−
ΩR0

> n+ ε0 with ε0 as in (2.9). Let 0 < R 6
1
8R0 and Ω′

R 6= ∅, where Ω′
R = Ω′ ∩ BR(y). Since BR(y) ⋐ Ω and |BR(y)| 6 1, from

Lemma 2.4 it follows that u ∈ Bp(·)(BR(y),M, γ, γ1, δ, 1/m
−
BR

), where γ, γ1 and δ

are as in Lemma 2.4. Therefore, using Lemma 2.3 with R′ = 1
8R0, we get

osc
Ω′

R(y)
u 6 osc

BR(y)
u 6 C

(R0

8

)−α1

Rα1 ,

where α1 and C are as in Lemma 2.3. The theorem is proved. �

We next establish the global Hölder continuity. We say that Ω satisfies an exterior

cone condition at a point z ∈ ∂Ω if there exists a finite right circular cone Vz with a

vertex z such that Ω ∩ Vz = z, in particular, say that Ω satisfies a uniform exterior

cone condition on ∂Ω if Ω satisfies an exterior cone condition at every z ∈ ∂Ω and

the cones Vz are all congruent to some fixed cone V (see [21] or [37]). We can obtain

the following lemma by the same method used in the proof of Lemma 4.10 in [37],

but with only minor modification as in Lemma 2.3.

Lemma 2.6. Let a variable exponent p and numbers p0, R0, ε0 and r be

as in Lemma 2.3 and let Ω satisfy an exterior cone condition at z ∈ ∂Ω. Let

BR′(z) ⊂ BR0
(x0) and u ∈ W 1,p(·)(ΩR′(z))∩L∞(ΩR′(z)) with sup

ΩR′

|u| 6 M. Suppose

that, for any R 6 R′, u ∈ Bp(·)((∂Ω)R(z),M, γ, γ1, δ, 1/r) and osc
(∂Ω)R(z)

u 6 β0R
α0 ,

where α0 and β0 are given positive constants. Then there exists a constant

s = s(n, γ, p+, p−, L2, ε0, Vz) > 2 such that, for arbitrary 0 < R 6 R′,

osc
ΩR(z)

u 6 CR′−α1Rα1 ,

where L2 is as in (2.3) and

C = 4max
{ (ωn + 1)(γ + 1) + γ1

γ
l2sR′ε, osc

ΩR′

u, 4β0R
′ε
}

, ε = min
{

α0,
ε0

n+ ε0

}

,

α1 = min
{

α0,
ε0

n+ ε0
,− log4(1− l−12−s)

}

, l = max
{

4,
2

δ

}

.
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Analogously to Lemma 2.4 we have the following lemma.

Lemma 2.7. Let p ∈ C(Ω) satisfy (1.3) and be log-Hölder continuous in Ω

and let Ω satisfy a uniform exterior cone condition on ∂Ω. Let A and B sat-

isfy all the conditions of Lemma 2.4. If u is a bounded solution of the Dirich-

let problem (1.1), (1.2) with g ∈ L∞(∂Ω) such that sup
Ω

|u| 6 M , then u ∈

Bp(·)((∂Ω)R(z),M, γ, γ1, δ, 1/(m
−
ΩR(z))) for any R > 0 with |BR(z)| 6 1 and for

all z ∈ ∂Ω, where γ, γ1, δ are the same as in Lemma 2.4.

P r o o f. Let 0 < τ < t 6 R and z ∈ ∂Ω. Setting ϕ = ηp
+

ω(k), from the

conditions on p and Ω we have ϕ ∈ W
1,p(·)
0 (Ωt(z))∩L

∞(Ωt(z)) for k > max
{

sup
Ωt(z)

ω−

δM, sup
(∂Ω)t(z)

ω
}

, where η is a function as in the proof of Lemma 2.4 when x0 = z.

Then we can take ϕ as a test function in (1.9) and the lemma is proved similarly to

proof of Lemma 2.4. �

Next, by combining Theorem 2.5, Lemmas 2.6 and 2.7 we have the following global

Hölder continuity for bounded weak solutions of the Dirichlet problem (1.1), (1.2).

Theorem 2.8. Let all the conditions of Lemma 2.7 be satisfied and Ω satisfy a

uniform exterior cone condition on ∂Ω. If u is a bounded solution of the Dirichlet

problem (1.1), (1.2) with g ∈ C0,α0(∂Ω), then u ∈ C0,α1(Ω) and

‖u‖C0,α1 (Ω) 6 C,

where α1 and C depend on n, p(·), m(·), ‖u‖∞,Ω, a0(‖u‖∞), b0(‖u‖∞) and Ω and,

moreover, α1 depends also on α0, and C depends also on ‖g‖C0,α0 (∂Ω), a1(‖u‖∞),

‖a2‖m(·), ‖b1‖p′(·)m(·) and ‖d‖m(·).

According to [35], we have the following lemma.

Lemma 2.9. Let A satisfy Assumption (H2) except (1.7) and p satisfy (1.3).

Then we have the inequalities (2.1), (2.2) with

a0(|z|) =
1

2
4−p+

λ(|z|),

a1(|z|) =
(

2
( 4p

+

λ(|z|)
+ 1

))p+

+
(

2
( 4p

+

λ(|z|)
+ 1

))1/(p−−1)

(Λ(|z|))p
−/(p−−1),

a2(x) = bp
′(x)(x) + 1,

b0(|z|) = max
{ 1

(p− − 1)
, 2p

+−2
}

Λ(|z|), b1(x) = b(x) + 1,
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and

(2.10) (A(x, z, η)−A(x, z, η′))(η − η′)

>

{

λ1(|z|)|η − η′|p(x) if p(x) > 2,

λ1(|z|)(k + |η|2 + |η′|2)(p(x)−2)/2|η − η′|2 if 1 < p(x) < 2

with λ1(|z|) = 4−p+

λ(|z|).

P r o o f. We first prove (2.10) similarly to the proof of [35], Lemma 1. Without

loss of generality, we may suppose that |η| 6 |η′|. From (1.5) we have

A(x, z, η)−A(x, z, η′)(η − η′)

=

∫ 1

0

n
∑

i,j=1

∂Aj

∂ηi
(x, z, η′ + t(η − η′))(ηi − η′i)(ηj − η′j) dt

> λ(|z|)

∫ 1/4

0

(k + |η′ + t(η − η′)|2)(p(x)−2)/2|η − η′|2) dt.

Therefore, using

1

16
|η − η′|2 6 k + |η′ + t(η − η′)|2 6 k + |η|2 + |η′|2 ∀ t ∈

[

0,
1

4

]

,

we arrive at

(A(x, z, η)−A(x, z, η′))(η − η′)

>















(1

4

)p(x)−1

λ(|z|)|η − η′|p(x) if p(x) > 2,

1

4
λ(|z|)(k + |η|2 + |η′|2)(p(x)−2)/2|η − η′|2 if 1 < p(x) < 2,

from which follows (2.10) with λ1(|z|) = min{( 14 )
p+−1, 1

4}λ(|z|). In order to

prove (2.1), putting η′ = 0 in (2.10), we have

A(x, z, η)η >

{

λ1(|z|)|η|
p(x) +A(x, z, 0)η if p(x) > 2,

λ1(|z|)(k + |η|2)(p(x)−2)/2|η|2 +A(x, z, 0)η if 1 < p(x) < 2.

Using (1.4) and the Young inequality, for any ε > 0 we get

|A(x, z, 0)η| 6 ε|η|p(x) + ε−1/(p(x)−1)(Λ(|z|))p
−/(p−−1)bp

′(x)(x).

Therefore, we have

A(x, z, η)η > (λ1(|z|)− ε)|η|p(x) − ε−1/(p(x)−1)(Λ(|z|))p
−/(p−−1)bp

′(x)(x)
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when p(x) > 2, and using the Young inequality,

A(x, z, η)η > λ1(|z|)(1 + |η|2)(p(x)−2)/2|η|2 − ε|η|p(x)

− ε−1/(p(x)−1)(Λ|z|)p
−/(p−−1)bp

′(x)(x)

> λ1(|z|)|η|
p(x) |η|

√

1 + |η|2
− ε|η|p(x)

− ε−1/(p(x)−1)(Λ(|z|))p
−/(p−−1)bp

′(x)(x)

> λ1(|z|)|η|
p(x) − λ1(|z|)

|η|p(x)
√

1 + |η|2
− ε|η|p(x)

− ε−1/(p(x)−1)(Λ(|z|))p
−/(p−−1)bp

′(x)(x)

> (λ1(|z|)(1− ε)− ε)|η|p(x) − ε−(p(x)−1)

− ε−1/(p(x)−1)(Λ(|z|))p
−/(p−−1)bp

′(x)(x)

where 1 < p(x) < 2. Taking ε such that λ1(|z|)(1− ε)− ε = 1
2λ1(|z|), from the above

inequalities we arrive at (2.1). Using the equality

Aj(x, z, η)−Aj(x, z, 0) =

∫ 1

0

n
∑

i=1

∂Aj

∂ηi
(x, z, tη)ηi dt,

condition (1.4), the Schwarz inequality and (1.6), we have

|A(x, z, η)| 6 Λ(|z|)b(x) +

∫ 1

0

n
∑

i,j=1

∣

∣

∣

∂Aj

∂ηi
(x, z, tη)

∣

∣

∣
dt|η|

6 Λ(|z|)b(x) + Λ(|z|)|η|

∫ 1

0

(k + t2|η|2)(p(x)−2)/2 dt

6 max
{ 1

p− − 1
, 2p

+−2
}

Λ(|z|)(|η|p(x)−1 + b(x) + 1),

since
∫ 1

0

(k + t2|η|2)(p(x)−2)/2 dt|η| 6

∫ 1

0

tp
−−2 dt|η|p(x)−1 =

|η|p(x)−1

p− − 1

when 1 < p(x) < 2 and

∫ 1

0

(k + t2|η|2)(p(x)−2)/2 dt|η| 6

∫ 1

0

(1 + t2|η|2)(p(x)−2)/2 dt(1 + |η|2)1/2

6 (1 + |η|2)(p(x)−1)/2
6 (1 + |η|)p(x)−1

6 2p
+−2(|η|p(x)−1 + 1)

when p(x) > 2. Therefore, we obtain (2.2) and the lemma is proved. �
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R em a r k 2.10. Let Assumption (H2) except equation (1.7) be satisfied with b ∈

Lp′(·)m(·)(Ω). Then Lemma 2.9 shows that the coefficient A satisfies the conditions

(2.1)–(2.4) with a0, a1, a2, b0 and b1 as in Lemma 2.9.

R e m a r k 2.11. For given δ > 0, from

lim
t→∞

log t

tδ
= 0 where lim

t→0+
tδ log t = 0

it follows that there is a positive constant C(δ) depending only on δ such that for

every |η| > 0

(2.11) | log(k + |η|2)| 6 C(δ) + (k + |η|2)δ + (k + |η|2)−δ.

Therefore, by (1.7) and (2.11) we obtain

(2.12) |A(x1, z1, η)−A(x2, z2, η)|

6 Λp(max{|z1|, |z2|})(|x1 − x2|β1 + |z1 − z2|β2)(1 + |η|p−1+2δ),

where Λp(t) = C(p−)Λ(t), p = max{p(x1), p(x2)} and δ > 0 is a number such that

δ < 1
2 (p

− − 1).

3. Proof of Theorem 1.2

To prove Theorem 1.2, we first need a new result on the higher integrability for the

bounded weak solutions of (1.1), which is stated in the following lemma, since the

known results in this field are not applicable for the case of the conditions (2.1)–(2.2)

and (2.4).

Lemma 3.1. Let p be log-Hölder continuous in Ω and satisfy (1.3) and let the

coefficients A and B satisfy (2.1), (2.2), (2.4) and (H3). Let u be a bounded weak

solution of (1.1) with sup
Ω

|u| 6 M . Then, given an open set Ω′ ⋐ Ω, there ex-

ist positive constants R0 = R0(n, p(·), a0(M),Λ(M), dist(Ω′, ∂Ω)), C = C(n, p(·),

a0(M), a1(M), b0(M),Λ(M),M) and δ0 = δ0(n, p(·),m(·), a0(M),Λ(M),M) ∈

(0,m− − 1] such that for every ball B2R ⊂ Ω′ with R ∈ (0, R0] and for any

δ ∈ (0, δ0] it holds

(3.1) −

∫

BR

|∇u|(1+δ)p(x) dx 6 C

((

−

∫

B2R

|∇u|p(x) dx

)1+δ

+ −

∫

B2R

|f |1+δ dx

)

,

where −
∫

E

ω dx = |E|−1
∫

E

ω dx, f(x) = a2(x) + b
p′(x)
1 (x) + d(x) + 1.
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P r o o f. Since u is continuous on Ω′ by Theorem 2.5, there is R1 > 0 such that

(3.2) |u(x1)− u(x2)| 6
a0(M)

3Λ(M)
∀x1, x2 ∈ Ω′ with |x1 − x2| < 4R1.

Consider the concentric balls BR(x0) ⊂ B2R(x0) ⊂ Ω′ with R 6 R1. Take ζ ∈

C1
0 (B2R) such that ζ = 1 on BR and 0 6 ζ 6 1, |∇ζ| 6 4/R on B2R. Set (u)2R =

|B2R|
−1

∫

B2R
u dx. Putting ϕ = ζp

+

(u− (u)2R) and using (2.1), (2.2), (2.4) and the

Young inequality, we obtain

∫

B2R

A(x, u,∇u)∇ϕdx

=

∫

B2R

(ζp
+

A(x, u,∇u)∇u+ p+ζp
+−1(u− (u)2R)∇ζA(x, u,∇u)) dx

> a0(M)

∫

B2R

ζp
+

|∇u|p(x) dx− a1(M)

∫

B2R

a2(x) dx

− p+b0(M)
4

R

∫

B2R

|u− (u)2R|ζ
p+−1|∇u|p(x)−1 dx

− p+b0(M)
4

R

∫

B2R

|u− (u)2R|b1(x) dx

> a0(M)

∫

B2R

ζp
+

|∇u|p(x) dx− a1(M)

∫

B2R

a2(x) dx

− 4p+b0(M)

∫

B2R

(

εζp
+

|∇u|p(x) + ε−(p(x)−1)
∣

∣

∣

u− (u)2R
R

∣

∣

∣

p(x))

dx

− 4p+b0(M)

∫

B2R

(
∣

∣

∣

u− (u)2R
R

∣

∣

∣

p(x)

+ b
p′(x)
1 (x)

)

dx.

Choosing ε so that 4p+b0(M)ε = 1
3a0(M), we get

(3.3)

∫

B2R

A(x, u,∇u)∇ϕdx

>
2

3
a0(M)

∫

B2R

ζp
+

|∇u|p(x) dx− C(p+, p−, a0(M), a1(M), b0(M))

×

∫

B2R

(

1 + a2(x) + b
p′(x)
1 (x) +

∣

∣

∣

u− (u)2R
R

∣

∣

∣

p(x))

dx.

By (1.8) and (3.2), we have

(3.4)

∣

∣

∣

∣

∫

B2R

B(x, u,∇u)ϕdx

∣

∣

∣

∣

6

∫

B2R

ζp
+

|u− (u)2R|Λ(M)(|∇u|p(x) + d(x)) dx

6
1

3
a0(M)

(
∫

B2R

ζp
+

|∇u|p(x) dx+

∫

B2R

d(x) dx

)

.
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Taking the above ϕ as a test function in (1.9), by (3.3) and (3.4), we obtain

(3.5) −

∫

BR

|∇u|p(x) dx 6 C −

∫

B2R

(
∣

∣

∣

u− (u)2R
R

∣

∣

∣

p(x)

+ f(x)
)

dx.

Now, we choose ε > 0 so small that ε < min{p−−1, 1/(n− 1)}. By absolute continu-

ity of the Lebesgue integral there exists R0 ∈ (0, R1] such that for every ball B2R ⊂ Ω

with 0 < R 6 R0 it holds ‖∇u‖Lp(·)/(1+ε)(B2R
6 1, where R0 depends on n, p(·),

a0(M), Λ(M) and dist(Ω′, ∂Ω). Therefore, from Proposition 8.2.11 of [13] we have

(3.6) −

∫

B2R

∣

∣

∣

u− (u)2R
R

∣

∣

∣

p(x)

dx 6 C

(

−

∫

B2R

|∇u|p(x)/(1+ε) dx

)1+ε

+ C,

where C = C(n, p(·)). Substituting (3.6) into (3.5) we get

(3.7) −

∫

BR

|∇u|p(x) dx 6 C

(

−

∫

B2R

|∇u|p(x)/(1+ε) dx

)1+ε

+ C −

∫

B2R

f(x) dx,

where C = C(n, p(·), a0(M), a1(M), b0(M),Λ(M),M).

Since f ∈ Lm−

(Ω), by the Gehring lemma (see [14], Theorem 3.7) and (3.7) there

exists a number δ0 ∈ (0,m− − 1] depending on n, C, ε and m− such that

(

−

∫

BR

|∇u|(1+δ)p(x) dx

)1/(1+δ)

6 C −

∫

B2R

|∇u|p(x) dx+ C

(

−

∫

B2R

|f |1+δ dx

)1/(1+δ)

for all δ ∈ (0, δ0], all R ∈ (0, R0], which completes the proof of Lemma 3.1. �

In the rest of this section we suppose that Assumptions (H1)–(H3), (1.10) and (1.3)

are satisfied. Since u ∈ C0,α1

loc (Ω), for any open set Ω′ ⋐ Ω there is L3 > 0 depending

on n, p(·), m(·), λ(M), Λ(M), M , ‖b‖p′(·)m(·), ‖d‖m(·) and dist (Ω′, ∂Ω) such that

(3.8) |u(x1)− u(x2)| 6 L3|x
1 − x2|α1 ∀x1, x2 ∈ Ω′.

Let Ω′ ⋐ Ω and B4R1
(x0) ⊂ Ω′. Let R0 and δ0 be as in Lemma 3.1. Without loss of

generality, we may assume that |BR0
| 6 1 and R0 6 1. Let δ ∈ (0, δ0] and R1 be so

small that R1 6 1
2R0,

∫

B2R1
|∇u|p(x) dx 6 1 and

(3.9) p+B2R1
(x0)

(

1 +
δ

2

)

6 p−B2R1
(x0)

(1 + δ).

It is clear that R1 is non-decreasing in δ. We have |∇u| ∈ L
p+
B2R1

(x0)
(1+δ/2)

(B2R1
(x0))

from Lemma 3.1 and (3.9). Let BR := BR(xc) ⊂ B2R be two concentric balls in
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B2R1
(x0), not necessarily concentric with B2R1

(x0). Put p∗(R) = p+B2R
and let

x∗ ∈ B2R be such that p(x∗) = p∗(R). Define A(η) = A(x∗, u(x∗), η). Defining

h(t) = λ0(k + t2)(p(x∗)−2)/2t,

from (1.5) and (1.6) we have

n
∑

i,j=1

∂Aj

∂ηi
(η)ξiξj >

h(|η|)

|η|
|ξ|2,

n
∑

i,j=1

∣

∣

∣

∂Aj

∂ηi
(η)

∣

∣

∣
6

Λ0

λ0

h(|η|)

|η|
,

where λ0 = λ(M), Λ0 = Λ(M), and

min{p(x∗)− 1, 1} 6
th′(t)

h(t)
6 max{p(x∗)− 1, 1}.

Setting

H(t) =

∫ t

0

h(τ) dτ,

we have

H(t) =
λ0

p(x∗)
((k + t2)p(x∗)/2 − kp(x∗)/2).

So, from Lemma 3.1 and (3.9) it holds
∫

BR
H(|∇u|) dx < ∞ and u ∈ C0,α1(BR),

since u ∈ C0,α1

loc (Ω). Therefore, by Theorem 1.7 and Lemma 5.2 of [28] we have the

following result for Dirichlet problem,

(3.10)

{

divA(∇v) = 0 in BR,

v = u on ∂BR.

For brevity, we write p∗ instead of p(x∗).

Lemma 3.2. There is a unique solution v of the problem (3.10) such that v ∈

W 1,p∗(BR) ∩ C1,α2

loc (BR) ∩ C(BR) and

sup
BR/2

|∇v|p∗ 6 CR−n

(
∫

BR

|∇v|p∗ dx+Rn

)

,(3.11)

∫

B̺

|∇v − (∇v)̺|
p∗ dx(3.12)

6



































C̺n
(

( ̺

R

)α2p∗/2
(

−

∫

BR

|∇v − (∇v)R|
p∗ dx

)p∗/2

+
( ̺

R

)α2

−

∫

BR

|∇v − (∇v)R|
p∗ dx

)

if 1 < p∗ < 2,

C̺n
( ̺

R

)α2
(

−

∫

BR

|∇v − (∇v)R|
p∗ dx+ 1

)

if p∗ > 2
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for any ̺ ∈ (0, R),

∫

BR

|∇v|p∗ dx 6 C

∫

BR

(|∇u|p∗ + 1) dx,(3.13)

sup
BR

|u− v| 6 osc u
BR

,(3.14)

where α2 ∈ (0, 1) and C depends on n, p∗, λ0 and Λ0.

P r o o f. By Lemma 1.1, Theorem 1.7 and Lemma 5.2 of [28] there is a unique

solution v ∈ W 1,p∗(BR) ∩ C1,α2

loc (BR) ∩ C(BR) of (3.10), which satisfies

sup
BR/2

((k + |∇v|2)(p∗−2)/2|∇v|2) 6 CR−n

∫

BR

(k + |∇v|2)(p∗−2)/2|∇v|2 dx,(3.15)

−

∫

B̺

(k + |∇v − (∇v)̺|
2)(p∗−2)/2|∇v − (∇v)̺|

2 dx(3.16)

6 C
( ̺

R

)α2

−

∫

BR

(k + |∇v − (∇v)R|
2)(p∗−2)/2

× |∇v − (∇v)R|
2 dx for 0 < ̺ < R,

∫

BR

(k + |∇v|2)(p∗−2)/2|∇v|2 dx 6 C

∫

BR

(1 + (k + |∇u|2)(p∗−2)/2|∇u|2) dx,(3.17)

and (3.14), where α2 and C depend on n, p∗, λ0, and Λ0. In order to prove (3.11)

we first assume that 1 < p∗ < 2. Obviously,

(3.18)

∫

BR

(k + |∇v|2)(p∗−2)/2|∇v|2 dx 6

∫

BR

|∇v|p∗ dx.

Since 1 < p∗ < 2, we get

sup
BR/2

((k + |∇v|2)(p∗−2)/2|∇v|2) > sup
BR/2

((1 + |∇v|2)(p∗−2)/2|∇v|2)

= sup
BR/2

( 1 + |∇v|2

(1 + |∇v|2)(2−p∗)/2
−

1

(1 + |∇v|2)(2−p∗)/2

)

> sup
BR/2

(1 + |∇v|2)p∗/2 − 1 > sup
BR/2

|∇v|p∗ − 1.

Therefore we arrive at (3.11) by (3.15) and (3.18) when 1 < p∗ < 2. Next, suppose

that p∗ > 2. Obviously,

(3.19) sup
BR/2

|∇v|p∗ 6 sup
BR/2

((k + |∇v|2)(p∗−2)/2|∇v|2).
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Putting B1
R = {x ∈ BR : |∇v(x)| > 1}, we have

(3.20)

∫

BR

(k + |∇v|2)(p∗−2)/2|∇v|2 dx

6

∫

B1
R

(

1 +
1

|∇v|2

)(p∗−2)/2

|∇v|p∗ dx+

∫

BR\B1
R

2(p∗−2)/2 dx

6 2(p∗−2)/2

(
∫

BR

|∇v|p∗ dx+ |BR|

)

.

Combining (3.15), (3.19) and (3.20), we get (3.11) when p∗ > 2. Using (3.16),

analogously above we obtain the inequality (3.12) in the case that p∗ > 2.

In order to prove (3.12) in the case that 1 < p∗ < 2, we first note the obvious

inequality

(3.21) −

∫

BR

(k+ |∇v− (∇v)R|
2)(p∗−2)/2|∇v− (∇v)R|

2 dx 6 −

∫

BR

|∇v− (∇v)R|
p∗ dx.

Putting B1
̺ = {x ∈ B̺ : |∇v(x) − (∇v)̺| > 1} and using (3.16), (3.21) and the

Hölder inequality, we have

∫

B̺

|∇v − (∇v)̺|
p∗ dx

=

∫

B1
̺

(

1 +
k

|∇v − (∇v)̺|2

)(2−p∗)/2

(k + |∇v − (∇v)̺|
2)(p∗−2)/2|∇v − (∇v)̺|

2 dx

+

∫

B̺\B1
̺

(k + |∇v − (∇v)̺|
2)(2−p∗)p∗/4

× (k + |∇v − (∇v)̺|
2)(p∗−2)p∗/4|∇v − (∇v)̺|

p∗ dx

6 2

∫

B1
̺

(k + |∇v − (∇v)̺|
2)(p∗−2)/2|∇v − (∇v)̺|

2 dx

+

(
∫

B̺\B1
̺

(k + |∇v − (∇v)̺|
2)p∗/2 dx

)1−p∗/2

×

(
∫

B̺\B1
̺

(k + |∇v − (∇v)̺|
2)(p∗−2)/2|∇v − (∇v)̺|

2 dx

)p∗/2

6 C|B̺|
( ̺

R

)α2

−

∫

BR

(k + |∇v − (∇v)R|
2)(p∗−2)/2|∇v − (∇v)R|

2 dx

+ C|B̺|
( ̺

R

)α2p∗/2
(

−

∫

BR

(k + |∇v − (∇v)R|
2)(p∗−2)/2|∇v − (∇v)R|

2 dx

)p∗/2
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6 C̺n
( ̺

R

)α2p∗/2
(

−

∫

BR

|∇v − (∇v)R|
p∗ dx

)p∗/2

×

((

( ̺

R

)α2

−

∫

BR

|∇v − (∇v)R|
p∗ dx

)1−p∗/2

+ 1

)

.

Since the proof of (3.13) is similar to that of (3.11), we omit it. �

Lemma 3.3. Let Assumptions (H1)–(H3) be fulfilled with b and d satisfying

(1.10)–(1.12) and p satisfy (1.3). Let v be as mentioned in Lemma 3.2 and let

0 < δ 6 δ0, where δ0 is as in Lemma 3.1. Then we have

(3.22)

∫

BR

|∇u−∇v|p∗ dx 6 CRβ/2

∫

B2R

(R−nδ|∇u|p(x) + |f |1+δ) dx

for BR ⊂ B2R ⊂ B2R1
(x0), where C = C(n, p+, p−, λ0,Λ0,M, dist(Ω′, ∂Ω)), and β, f

and B2R1
(x0) are as in (1.12), (3.1) and (3.9), respectively.

P r o o f. Put I =
∫

BR
(A(∇u) − A(∇v))(∇u − ∇v) dx. Since v is a solution

of (3.10), we have

I =

∫

BR

A(∇u)(∇u−∇v) dx

=

∫

BR

(A(∇u)−A(x, u,∇u))(∇u−∇v) dx+

∫

BR

A(x, u,∇u)(∇u−∇v) dx

= I1 + I2.

Taking δ1 ∈ (0, 1) such that δ1 < min{ 1
2 (p

− − 1), 1
4 (p

− − 1)δ}, by (3.9)

(3.23) p∗

(

1 +
2δ1

p∗ − 1

)

6 p−B2R1
(x0)

(1 + δ) 6 p(x)(1 + δ) ∀x ∈ B2R1
(x0).

By (2.12), (3.1), (3.8), (3.13) and (3.23), noting
∫

B2R1
(x0)

|∇u|p(x) dx 6 1, we have

I1 =

∫

BR

(A(x∗, u(x∗),∇u(x))−A(x, u(x),∇u(x)))(∇u(x)−∇v(x)) dx

6 CRβ

∫

BR

(1 + |∇u|p∗−1+2δ1)(|∇u|+ |∇v|) dx

6 CRβ

∫

BR

(|∇u|(1+δ)p(x) + 1) dx 6 CRβ

∫

B2R

(R−nδ|∇u|p(x) + |f |1+δ) dx.

Since u is a bounded weak solution of (1.1), from (1.9) we have

I2 =

∫

BR

A(x, u,∇u)(∇u−∇v) dx = −

∫

BR

B(x, u,∇u)(u− v) dx.
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Using (1.8), (3.8) and (3.14), we get

I2 6 Λ0

∫

BR

(|∇u|p(x) + d(x)) dx osc u
BR

6 CRα1

∫

BR

(|∇u|p(x) + |f |1+δ) dx,

and so

(3.24) I 6 CRβ

∫

B2R

(R−nδ|∇u|p(x) + |f |1+δ) dx.

However, by (2.10) it holds

(3.25) I >











λ1(M)

∫

BR

|∇u−∇v|p∗ dx if p∗ > 2,

λ1(M)

∫

BR

(k + |∇u|2 + |∇v|2)(p∗−2)/2|∇u−∇v|2 dx if 1 < p∗ < 2.

Thus, it is clear that (3.22) holds when p∗ > 2. Let 1 < p∗ < 2. By the Hölder

inequality, (3.1), (3.9), (3.13), (3.24) and (3.25) we have
∫

BR

|∇u−∇v|p∗ dx

6

(
∫

BR

(k + |∇u|2 + |∇v|2)(p∗−2)/2|∇u−∇v|2 dx

)1/2

×

(
∫

BR

(k + |∇u|2 + |∇v|2)(2−p∗)/2|∇u−∇v|2(p∗−1) dx

)1/2

6 CRβ/2

(
∫

B2R

(R−nδ|∇u|p(x) + |f |1+δ) dx

)1/2(∫

BR

(|∇u|(1+δ)p(x) + 1) dx

)1/2

6 CRβ/2

∫

B2R

(R−nδ|∇u|p(x) + |f |1+δ) dx.

The proof of Lemma 3.3 is complete. �

Proposition 3.4. Let A, B and p satisfy the conditions in Lemma 3.3. Let

B2R1
(x0) be as above and, moreover, R1 be a number satisfying (3.9) with δ ∈ (0, δ0]

such that

(3.26) δ < min
{β(2n+ α2)

4n(n+ α2)
,
βm−

2n
− 1

}

.

Then, given τ ∈ (0, n), there exist positive constants Rτ < 1
16R1 and Cτ depending

on τ , n, p(·), m(·), λ(M), Λ(M),M , α1, β1, β2, ‖b‖p′(·)m(·), ‖d‖m(·) and dist(Ω
′, ∂Ω),

such that
∫

B̺(xc)

|∇u|p∗(̺) dx 6 Cτ̺
n−τ ∀xc ∈ BR1/2(x0), ∀ ̺ ∈ (0, Rτ ,

where p∗(̺) = p+B2̺(xc)
.
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P r o o f. Let xc ∈ BR1/2(x0), 0 < ̺ 6 1
4R and R 6 1

4R1. Thus we have

B̺(xc) ⊂ BR/4(xc) ⊂ B4R(xc) ⊂ B2R1
(x0).

Using (3.11), (3.13) and (3.22), we get

(3.27)
∫

B̺

|∇u|p∗(̺) dx

6 2p
+−1

(
∫

B̺

(1 + |∇u−∇v|p∗(R)) dx+

∫

B̺

(1 + |∇v|p∗(R)) dx

)

6 C

(

̺n +Rβ/2

∫

B2R

(R−nδ|∇u|p(x) + |f |1+δ) dx+
( ̺

R

)n
∫

BR

(1 + |∇u|p∗(R)) dx

)

6 C

(

Rn +
(

Rβ/2−nδ +
( ̺

R

)n)
∫

B2R

(1 + |∇u|p∗(R)) dx+Rβ/2

∫

B2R

|f |1+δ dx

)

.

Since (3.26) is satisfied, it follows that (1 + δ)2n/β < m−. Therefore, by the Hölder

inequality we have
∫

B2R

|f |1+δ dx 6 C(n, ‖b‖p′(·)m(·), ‖d‖m(·))R
n−β/2.

From this inequality and (3.27), we arrive at

(3.28)

∫

B̺

|∇u|p∗(̺) dx 6 C
(

Rβ/2−nδ +
( ̺

R

)n)
∫

B2R

(1 + |∇u|p∗(R)) dx+ CRn.

From (3.26) it follows that 1
2β − nδ > 0. We proved (3.28) under the conditions

̺ 6 1
4R and R 6 1

4R1. Suppose that 0 < ̺ 6 1
8R and R 6 1

2R1. Setting R
′ = 1

2R,

then 0 < ̺ 6 1
4R

′ and R′ 6 1
4R1, and so by (3.28) we have

(3.29)

∫

B̺

|∇u|p∗(̺) dx 6 C
(

Rβ/2−nδ +
( ̺

R

)n)
∫

BR

(1 + |∇u|p∗(R)) dx+ CRn.

Now we define the function ϕ : (0, R1] → R as

ϕ(̺) :=

∫

B̺

(1 + |∇u|p∗(̺)) dx.

This is a positive function and by (3.9) and Lemma 3.1 it is also bounded. Moreover,

we observe that, since the function p∗(t) is non-decreasing, it readily follows that

ϕ(s) 6 2ϕ(t) whenever s 6 t and from (3.29) we have

ϕ(̺) 6 C0

(

Rβ/2−nδ +
( ̺

R

)n)

ϕ(R) + C0R
n

with 0 < C0 < ∞, whenever 0 < ̺ 6 1
8R. Therefore, by Lemma 3.2 of [1], for

any τ with 0 < τ < n there exist C and ε0 depending on n, λ(M), Λ(M), M , p(·),
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‖b‖p′(·)m(·), ‖d‖m(·), τ and dist(Ω
′, ∂Ω) such that ε0 6 1

2R1 and if R
β/2−nδ 6 ε0, then

(3.30) ϕ(̺) 6 C
( ̺

R

)n−τ

(ϕ(R) +Rn−τ )

whenever ̺ 6 1
16R.

Since 0 < 1
2β − nδ < 1, it holds ε1 := ε

1/(β/2−nδ)
0 < ε0 6 1

2R1. Set Rτ := 1
16ε1. It

follows that Rτ < 1
32R1 and if ̺ 6 Rτ , i.e., ̺ 6 1

16ε1, then from (3.30) it holds

ϕ(̺) 6 C
( ̺

ε1

)n−τ

(ϕ(ε1) + εn−τ
1 ).

In order to estimate ϕ(ε1), we use Lemma 3.1 and the inequality

p∗(ε1)
(

1 +
δ

2

)

6 p(x)(1 + δ) ∀x ∈ B2ε1(xc).

Then we conclude that

ϕ(ε1) 6 2|Bε1 |+

∫

Bε1

|∇u|(1+δ)p(x) dx 6 2 + C

(

|B2ε1 |
−δ +

∫

B2ε1

|f |1+δ dx

)

6 C(n, λ(M),Λ(M),M, p(·),m(·), ‖b‖p′(·)m(·), ‖d‖m(·), α1, β1, β2, τ, dist(Ω
′, ∂Ω)),

which completes the proof of Proposition 3.4. �

P r o o f of Theorem 1.2. Choose numbers τ ∈ (0, n), θ > 0 and δ ∈ (0, δ0] satis-

fying (3.26) such that

θα2 − τ > 0,(3.31)

β

2
− n(θ + δ)− τ > 0,(3.32)

β

2
− n

(

θ +
1 + δ

m−

)

> 0.(3.33)

Suppose that B2R1
(x0) is as above but R1 is a number satisfying (3.9) with this δ

and Rτ is as in Proposition 3.4.

Let xc ∈ BR1/4(x0) and ̺ < ( 14Rτ)1+θ. Set R = (2̺)1/(1+θ). Then 2̺ < R < 1
2Rτ.

Let v be the unique solution of the problem (3.10). It easily follows that

(3.34)
∫

B̺

|∇u− (∇u)̺|
p∗ dx 6 C(n, p+)

(
∫

B̺

|∇u−∇v|p∗ dx+

∫

B̺

|∇v − (∇v)̺|
p∗ dx

)

.

Now we estimate the integrals on the right-hand side of (3.34). By (3.13) and Propo-

sition 3.4 we obtain

−

∫

BR

|∇v − (∇v)R|
p∗ dx 6 C(n, p+)|BR|

−1

∫

BR

|∇v|p∗ dx

6 C|BR|
−1

∫

BR

(1 + |∇u|)p∗ dx 6 CR−τ .
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Therefore, using the inequalities (̺/R)α2R−τ < ̺(θα2−τ)/(1+θ) < 1 and
∫

B̺

|∇v − (∇v)̺|
p∗ dx

6















C̺n
(( ̺

R

)α2

R−τ
)p∗/2((( ̺

R

)α2

R−τ
)1−p∗/2

+ 1
)

if 1 < p∗ < 2,

C̺n
( ̺

R

)α2

R−τ if p∗ > 2,

which follow from (3.31) and (3.12), respectively, we have

(3.35)

∫

B̺

|∇v − (∇v)̺|
p∗ dx 6 C̺n+(θα2−τ)/(2(1+θ)).

On the other hand, by Lemma 3.3 and Proposition 3.4, we get

(3.36)

∫

B̺

|∇u−∇v|p∗ dx 6 CRβ/2

∫

B2R

(R−nδ|∇u|p(x) + |f |1+δ) dx

6 C̺n(̺(β/2−nθ−nδ−τ)/(1+θ) + ̺(β/2−nθ−n(1+δ)/m−)/(1+θ)).

Setting

ε = min
{ θα2 − τ

2(1 + θ)
,
1
2β − n(θ + δ)− τ

1 + θ
,
1
2β − n(θ + (1 + δ)/m−)

1 + θ

}

,

by (3.31)–(3.33) it follows that ε > 0. Thus, substituting (3.35), (3.36) into (3.34),

we have

∫

B̺

|∇u− (∇u)̺|
p−

dx 6 |B̺|
1−p−/p∗

(
∫

B̺

|∇u− (∇u)̺|
p∗ dx

)p−/p∗

6 C̺n−np−/p∗̺np
−/p∗+εp−/p∗ = C̺n+εp−/p∗ 6 C̺n+εp−/p+

,

which implies from Campanato’s theorem (Theorem 2.9 of [22]) u ∈ C1,α(BR1/8(x0))

with α = ε/p+. The proof of Theorem 1.2 is complete. �

R em a r k 3.5. Note that, for example, the numbers

θ =
β (βm− − 2n)

2nm−(n+ α2)
, τ =

βα2(βm
− − 2n)

4nm−(n+ α2)

and δ ∈ (0, δ0] such that

δ < min
{β(2n+ α2)

4n(n+ α2)
,
β(nm−α2 + (2n+ α2)(nm

− + 2n−m−β))

4n2m−(n+ α2)
,

(m−β − 2n)(n+ α2 − β)

2n(n+ α2)

}

satisfy all the conditions as assumed in the proof of Theorem 1.2 under the condi-

tion (1.11).
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4. Proof of Theorem 1.3

Theorem 1.2 gives the interior C1,α regularity for the bounded weak solutions.

Therefore, to prove Theorem 1.3 it is sufficient to prove only Hölder continuity of

the gradient in neighbourhood of the boundary.

First we give a result on the higher integrability for the Dirichlet problem (1.1),

and (1.2).

Lemma 4.1. Let Ω be a bounded Lipschitz domain of Rn, whose boundary is

denoted by ∂Ω. Let the variable exponent p, and the coefficients A and B satisfy

the conditions of Lemma 3.1. Suppose that g ∈ W 1,∞(Ω) with ‖g‖W 1,∞(Ω) 6 G

and u ∈ W 1,p(·)(Ω) is a bounded weak solution of the Dirichlet problem (1.1), (1.2)

and sup
Ω

|u| 6 M . Then, there exist positive constants R0, C and δ0 ∈ (0,m− − 1]

depending on n, p(·), a0(M), Λ(M), Ω and G, and C also on a1(M), b0(M) and M ,

and δ0 also on M and m(·) such that |∇u| ∈ L(1+δ0)p(·)(Ω) and for every z ∈ Ω,

R ∈ (0, R0) and δ ∈ (0, δ0], it holds

(4.1) −

∫

ΩR(z)

|∇u|(1+δ)p(x) dx 6 C

((

−

∫

Ω2R(z)

|∇u|p(x) dx

)1+δ

+ −

∫

Ω2R(z)

|f |1+δ dx

)

,

where ΩR(z) = Ω ∩BR(z) and f is as in Lemma 3.1.

P r o o f. From the Stein extension theorem (Theorem 5.24 of [3]) it is possible to

extend g to a W 1,∞(Rn) function with ‖g‖W 1,∞(Rn) 6 G. We define additionally

u = g on Rn \Ω and extend a2 and b1 as in Lemma 2.9 and f as in Lemma 3.1 to be

zero outside Ω. By [13], Proposition 4.1.7 the variable exponent p can be extended

to Rn without changing the fundamental properties. Let x0 ∈ ∂Ω and let us consider

the ball B2R1
(x0). We know that u ∈ C(Ω). Thus, we can choose a number R1

such that

(4.2) |(u− g)(x)| 6
a0(M)

3Λ(M)
∀x ∈ B2R1

(x0).

Now we prove that there exist positive constants R0 6 R1, ε ∈ (0, 1) and C0 such that

(4.3) −

∫

BR

|∇u−∇g|p(x) dx 6 C0

(

−

∫

B2R

|∇u−∇g|p(x)/(1+ε) dx

)1+ε

+C0 −

∫

B2R

f(x) dx

for all balls BR := BR(z) ⊂ B2R ⊂ B2R1
(x0) with R 6 R0. Let us consider the

following three cases.

Case (1): In the case when B3R/2 ⊂ B2R1
(x0) ∩Ω, take ζ ∈ C1

0 (B3R/2) such that

ζ = 1 on BR and 0 6 ζ 6 1, |∇ζ| 6 4/R on B3R/2. Taking ϕ = ζp
+

(u− (u)3R/2) as

a test function in (1.9) and arguing as in the proof of Lemma 3.1 by using (4.2), we
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conclude that for any ε > 0 with ε < min{p− − 1, 1/(n− 1)} there is R0 > 0 with

R0 6 R1 such that

−

∫

BR

|∇u|p(x) dx 6 C

(

−

∫

B3R/2

|∇u|p(x)/(1+ε) dx

)1+ε

+ C −

∫

B3R/2

f(x) dx

for every R ∈ (0, R0] with B3R/2 ⊂ Ω. Therefore, using the above inequality and the

obvious inequality

−

∫

BR

|∇u−∇g|p(x) dx 6 2p
+

(

−

∫

BR

|∇u|p(x) dx+ −

∫

BR

|∇g|p(x) dx

)

,

we obtain the desired inequality (4.3).

Case (2): In the case when B3R/2 ⊂ B2R1
(x0) \ Ω, the left-hand side of (4.3)

equals 0, and so (4.3) is obviously true.

Case (3): In the case when B3R/2 ∩ ∂Ω 6= ∅, let ζ ∈ C1
0 (B2R) be as in the proof

of Lemma 3.1 and take ϕ = ζp
+

(u− g) as a test function in (1.9). Proceeding as in

the proof of Lemma 3.1, we get

(4.4)

∫

Ω

A(x, u,∇u)∇ϕdx >
2a0(M)

3

∫

Ω2R

ζp
+

|∇u|p(x) dx

− C

∫

B2R

(

f(x) +
∣

∣

∣

u− g

R

∣

∣

∣

p(x))

dx,

where C = C (p+, p−, a0(M), a1(M), b0(M), G) .

We estimate the integral
∫

B2R
|(u− g)/R|p(x) dx. Putting D := {x ∈ B2R : u −

g = 0}, it follows from the condition on the domain Ω that there is a constant C > 0

such that |D| > C|B2R|. Thus, by [13], Lemma 8.2.3 we have

(4.5) C1‖u− g‖p(·),B2R
6 ‖u− g − (u− g)2R‖p(·),B2R

6 C2‖u− g‖p(·),B2R
.

Without loss of generality we may assume that C1 < 1 and C2 > 1. If we choose

R0 > 0 so small that R0 6 R1 and C2‖u − g‖p(·),B2R
6 1 for any R ∈ (0, R0], it

follows that

(4.6) ‖u− g‖p(·),B2R
6 1, ‖u− g − (u− g)2R‖p(·),B2R

6 1.

By using (4.5) and (4.6) we obtain

(4.7)

∫

B2R

∣

∣

∣

u− g

R

∣

∣

∣

p(x)

dx 6 CR
−(p+

B2R
−p−

B2R
)(p+

B2R
+p−

B2R
)/(p+

B2R
)

×

(
∫

B2R

∣

∣

∣

u− g − (u− g)2R
R

∣

∣

∣

p(x)

dx

)p−

B2R
/p+

B2R
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Since p is log-Hölder continuous in Rn, it follows by (2.3) that there is a constant C

such that R
−(p+

B2R
−p−

B2R
)
6 C for any R > 0, from which by using (4.6) and (4.7) it

follows

(4.8)

∫

B2R

∣

∣

∣

u− g

R

∣

∣

∣

p(x)

dx 6 C

(
∫

B2R

∣

∣

∣

u− g − (u− g)2R
R

∣

∣

∣

p(x)

dx+ 1

)

.

Choosing R0 > 0 so small that for any R ∈ (0, R0] it holds ‖∇u−∇g‖p(·)/(1+ε),B2R
6 1

with ε < min{p−−1, 1/(n− 1)} and using [13], Proposition 8.2.11, from (4.8) we get

∫

B2R

∣

∣

∣

u− g

R

∣

∣

∣

p(x)

dx 6 C

(

|B2R|

(

−

∫

B2R

|∇u−∇g|p(x)/(1+ε) dx

)1+ε

+ 1

)

.

Therefore, from (4.4) we arrive at

(4.9)

∫

Ω

A(x, u,∇u)∇ϕdx >
2a0(M)

3

∫

Ω2R

ζp
+

|∇u|p(x) dx

− C|B2R|

(

−

∫

B2R

|∇u−∇g|p(x)/(1+ε) dx

)1+ε

− C

∫

B2R

f(x) dx.

On the other hand, by (1.8) and (4.2), we have

(4.10)

∫

Ω

B(x, u,∇u)ϕdx 6
a0(M)

3

∫

Ω2R

ζp
+

|∇u|p(x) dx+
a0(M)

3

∫

B2R

f(x) dx.

Substituting (4.9) and (4.10) into (1.9), we obtain

∫

ΩR

|∇u|p(x) dx 6 C|B2R|

(

−

∫

B2R

|∇u−∇g|p(x)/(1+ε) dx

)1+ε

+ C

∫

B2R

f(x) dx

and so
∫

BR

|∇u−∇g|p(x) dx =

∫

ΩR

|∇u−∇g|p(x) dx 6 2p
+

∫

ΩR

|∇u|p(x) dx+ C

6 C0|B2R|

(

−

∫

B2R

|∇u−∇g|p(x)/(1+ε) dx

)1+ε

+ C0

∫

B2R

f(x) dx

from which (4.3) follows.

By the Gehring lemma (see [14], Theorem 3.7), it follows from (4.3) that there is

a δ0 ∈ (0,m− − 1] such that

(4.11)

−

∫

BR

|∇u−∇g|(1+δ)p(x) dx 6 C

((

−

∫

B2R

|∇u−∇g|p(x) dx

)1+δ

+ −

∫

B2R

|f |1+δ dx

)
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holds for BR ⊂ B2R ⊂ B2R1
(x0) with R 6 R0 and δ ∈ (0, δ0]. Since Ω is a bounded

Lipschitz domain, there exists a constant σ ∈ (0, 1) such that

σ|BR(z)| 6 |ΩR(z)| 6 |BR(z)| ∀ z ∈ Ω and R ∈ (0, R0]

and so from (4.11) we get

−

∫

ΩR

|∇u−∇g|(1+δ)p(x) dx 6 C

((

−

∫

Ω2R

|∇u−∇g|p(x) dx

)1+δ

+ −

∫

Ω2R

|f |1+δ dx

)

.

Consequently (4.1) is proved. By the compactness of Ω, we can see that |∇u| ∈

L(1+δ0)p(·)(Ω). Lemma 4.1 is proved. �

Now we suppose that Assumptions (H1)–(H3) and (1.3) are satisfied. Since g ∈

C1,α0(∂Ω) and Ω is a C1,α0 domain, from the extension theory (Lemma 6.38 of [21])

we may assume that g ∈ C1,α0(Ω) and ‖g‖C1,α0 (Ω) 6 C‖g‖C1,α0 (∂Ω), where

C = C(Ω).

We use the notation ΩR = ΩR(z) = BR(z)∩Ω. Let R0 and δ0 be as in Lemma 4.1.

As proved above, we know that u ∈ C0,α1(Ω), u ∈ C1,α
loc (Ω) and |∇u| ∈ L(1+δ0)p(·)(Ω).

As in Section 3, we assume that |BR0
| 6 1 and R0 6 1. Let x0 ∈ ∂Ω and δ ∈ (0, δ0].

Let R1 > 0 be so small that R1 6 R0,
∫

Ω2R1
(x0)

|∇u|p(x) dx 6 1 and

(4.12) p+Ω2R1
(x0)

(

1 +
δ

2

)

6 p−Ω2R1
(x0)

(1 + δ).

Let ΩR = ΩR(xc) ⊂ Ω2R ⊂ Ω2R1
(x0). Put p∗(R) = p+Ω2R

and let x∗ ∈ Ω2R be such

that p(x∗) = p∗(R) = p∗. Define A(η) = A(x∗, u(x∗), η) and consider the problem

(4.13)

{

divA(∇v) = 0 in ΩR,

v = u on ∂ΩR.

The following result is taken from [27], see also [16], Lemma 4.2.

Lemma 4.2. There is a unique solution v of the problem (4.13) such that v ∈

C1,α2(ΩR/2) ∩W 1,p∗(ΩR) and

sup
ΩR/2

|∇v|p∗ 6 C

(

R−n

∫

ΩR

|∇v|p∗ dx+Gp∗

)

,(4.14)

osc
Ω̺

∇v 6 C
( ̺

R

)α2
(

sup
ΩR/2

|∇v|+GRα0

)

for 0 < ̺ <
R

2
,(4.15)

∫

ΩR

|∇v|p∗ dx 6 C

∫

ΩR

(|∇u|p∗ + 1) dx,(4.16)

sup
ΩR

|u− v| 6 osc
ΩR

u,

where α2 ∈ (0, 1) and C depends on n, p∗, λ(M), Λ(M) and α0.
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Analogously to Lemma 3.3 and Proposition 3.4, we have following Lemmas 4.3

and 4.4, the proof of which is similar to that of Lemma 3.3 and Proposition 3.4, and

is omitted here.

Lemma 4.3. Let v be the unique solution of the problem (4.13) and let 0 < δ 6 δ0,

where δ0 is as in Lemma 4.1. Let R and R1 be as above. Then we have

∫

ΩR

|∇u−∇v|p∗ dx 6 CRβ/2

∫

Ω2R

(R−nδ|∇u|p(x) + |f |1+δ) dx,

where C depends on n, p(·), λ(M), Λ(M), M , G and Ω, and β and f are as in (1.12)

and (3.1), respectively.

Lemma 4.4. Let Ω2R1
(x0) be as above and, moreover, let R1 be a number satis-

fying (4.12) with δ ∈ (0, δ0] as in (3.26). Then, given τ ∈ (0, n), there exist positive

constants Rτ < 1
16R1 and Cτ depending on τ , n, p(·), m(·), λ(M), Λ(M), α1, β1,

β2, ‖b‖p′(·)m(·), ‖d‖m(·) and G, such that

∫

Ω̺(xc)

|∇u|p∗(̺) dx 6 Cτ̺
n−τ ∀xc ∈ ΩR1/2(x0), ∀ ̺ ∈ (0, Rτ ),

where p∗(̺) = p+Ω2̺(xc)
.

P r o o f of Theorem 1.3. Let τ ∈ (0, n), θ > 0 and δ ∈ (0, δ0] be numbers

satisfying (3.26) and (3.31)–(3.33). Suppose that Ω2R1
(x0) is as above but R1 is a

positive number satisfying (4.12) with the above δ and Rτ is as in Lemma 4.4. Let

xc ∈ ΩR1/4(x0) and ̺ < ( 14Rτ )
1+θ. Set R = (2̺)1/(1+θ). Let v be the unique solution

of the problem (4.13). Noting that it follows from (4.14)–(4.16) that

−

∫

Ω̺

|∇v − (∇v)̺|
p∗ dx 6 C

( ̺

R

)α2

−

∫

ΩR

(1 + |∇u|p∗) dx 6 C̺(θα2−τ)/(1+θ)

and using same argument as was done in the proof of Theorem 1.2, we conclude that

∫

Ω̺

|∇u− (∇u)̺|
p−

dx 6 C̺n+εp−/p+

,

where, for example,

ε = min
{θα2 − τ

1 + θ
,
1
2β − n(θ + δ)− τ

1 + θ
,
1
2β − n(θ + (1 + δ)/m−)

1 + θ

}

and C depends on n, p(·), m(·), λ(M),Λ(M), M , α1, β1, β2, ‖b‖p′(·)m(·), ‖d‖m(·), G

and Ω. This implies that the conclusions of Theorem 1.3 hold. Theorem 1.3 is

proved. �
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