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Abstract. Two new assertions characterizing analytically disks in the Euclidean plane R2

are proved. Weighted mean value property of positive solutions to the Helmholtz and modi-
fied Helmholtz equations are used for this purpose; the weight has a logarithmic singularity.
The obtained results are compared with those without weight that were found earlier.
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1. Introduction

This note is a tribute to Ivan Netuka—a colleague with whom the author shared

interest in potential theory and boundary value problems. Netuka’s surveys [12]

and [13] (the latter one joint with J. Veselý) motivated him to begin (in his late 70s!!)

studies in the vast field of mean value properties. These surveys were very helpful in

discovering a gap in this area; it concerned the mean value properties over spheres

and balls and the corresponding converse theorems for solutions of them-dimensional

Helmholtz and modified Helmholtz equations (these solutions are also known as meta-

and panharmonic functions, respectively). Thus, the author’s initial papers in this

area (see [7] and [9]) deal with filling in this gap; see also the article [10], where

investigations of mean value properties of panharmonic functions are summarized.

Subsequently, the results reviewed in Sections 7 and 8 of the survey [13] attracted

the author’s attention. In these sections, the so-called inverse mean value properties

(the term, presumably, coined by Hansen and Netuka in [3] and [4]) of harmonic func-
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tions are considered. They characterize open sets by quadrature identities valid for

some particular class of functions. The best known result of this kind is the following.

Theorem 1.1 (Kuran [5]). Let D be a domain (= connected open set) of finite

(Lebesgue) measure in the Euclidean space Rm where m > 2. Suppose that there

exists a point P0 in D such that, for every function h harmonic in D and integrable

over D, the volume mean of h over D equals h(P0). Then D is an open ball (disk

when m = 2) centred at P0.

However, it was unknown for a long time whether an assertion similar to this

theorem is true if solutions of other partial differential equations are used instead of

harmonic functions; of course, the identity for the arithmetic mean over balls must

be adjusted to these solutions. Thus, it was interesting to investigate this question.

Indeed, it occurs that a characterization of m-dimensional balls by solutions to

the modified Helmholtz equation

(1.1) ∇2u− µ2u = 0, µ ∈ R \ {0},

is possible as was shown in [6]. (Here and below, ∇ = (∂1, . . . , ∂m), ∂i = ∂/∂xi,

denotes the gradient operator.) In what follows, instead of the cumbersome ‘solution

of the modified Helmholtz equation’ the term ‘µ-panharmonic function’ is used; this

convenient abbreviation was introduced by Duffin (see [1]). Since this characteriza-

tion is related to a result obtained in this note, we reproduce it, but prior to that we

introduce some notation and terminology used below.

The open ball Br(x) = {y : |y − x| < r} centred at x = (x1, . . . , xm) ∈ R
m and

having radius r is called admissible with respect to a domain D provided Br(x) ⊂ D.

By Dr the union of D and
⋃

x∈∂D

Br(x) (the r-neighbourhood of a domain D ⊂ R
m)

is denoted. If D has a finite Lebesgue measure and a function f is integrable over D,

then

M(f,D) =
1

|D|

∫

D

f(x) dx

is its volume mean value over D; here |D| denotes the domain’s volume. The function

(1.2) a(t) = Γ
(m
2

+ 1
) Im/2(t)

( 12 t)
m/2

,

where Iν stands for the modified Bessel function of the first kind of order ν, arises

in the m-dimensional mean value formula for balls

(1.3) a(µr)u(x) = M(u,Br(x)), x ∈ D.

This identity holds if u is µ-panharmonic in a domain D ⊂ R
m and Br(x) is admis-

sible; see [7], pages 676, 677.
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Now we are in a position to formulate the following theorem.

Theorem 1.2 (Kuznetsov [6]). Let D ⊂ R
m, m > 2, be a bounded domain, and

let r > 0 be such that |Br(0)| = |D|. Suppose that there exists x0 ∈ D such that for

some µ > 0 the identity a(µr)u(x0) = M(u,D) holds for every positive function u

which is µ-panharmonic in Dr, then D = Br(x0) \A, where A is a closed set of zero

Lebesgue measure such that x0 /∈ A.

Unfortunately, the formulations of this theorem in [6] and [10], § 4.1 miss out the

fact that its assumptions imply that the domain D coincides with a ball only up to

a closed set of zero measure.

For solutions of the Helmholtz equation (it differs from (1.1) by the sign on the

left-hand side), also referred to as µ-metaharmonic functions, the following analogue

of the mean value identity (1.3) is valid for every admissible ball Br(x):

(1.4) am(µr)u(x) = M(u,Br(x)), am(t) = Γ
(m
2

+ 1
) Jm/2(t)

( 12 t)
m/2

.

As usual, Jν denotes the Bessel function of order ν; its nth positive zero is denoted

by jν,n (this standard notation is used below). Since Jm/2(t) is monotonic only on

a bounded interval adjacent to zero, an upper bound on the size of D is imposed in

the following analogue of Theorem 1.2.

Theorem 1.3 (Kuznetsov [8]). Let D ⊂ R
m, m > 2, be a bounded domain, and

let r > 0 be such that |Br(0)| = |D|. Suppose that for some µ > 0 and a point

x0 ∈ D the identity u(x0)am(µr) = M(u,D) holds for every u, which is µ-meta-

harmonic in Dr. If also

(1.5) Dr ⊂ Br0(x0), where µr0 = jm/2,1,

then D = Br(x0) \ A, where A is a closed set of zero Lebesgue measure and such

that x0 /∈ A.

Similar to Theorem 1.2, the formulation of this theorem in [8] misses out the fact

that its assumptions imply that D coincides with a ball only up to a closed set of

zero measure.

In the recent paper (see [11]), some weighted mean value properties of harmonic

functions were considered. (It must be pointed out that characterizations of balls

found in [11] require the same corrections as those discussed after Theorems 1.2

and 1.3.) For meta- and panharmonic functions in plane domains analogous prop-

erties involving a logarithm-type weight immediately follow from the representation
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valid for any w ∈ C2(D) and every admissible disk (see [2], § 2.1),

w(x) =
1

2πr

∫

∂Br(x)

w(y) dSy −
1

2π

∫

Br(x)

∇2w(y) log
r

|x− y|
dy,

and the expressions for the arithmetic mean over a circumference (the first term on

the right); see [7], Theorem 2.1.

Let us formulate these identities because the aim of this note is to obtain the

corresponding inverse properties and to compare them with Theorems 1.2 and 1.3.

We consider µ-panharmonic functions first.

Theorem 1.4. Let D be a domain in R
2. If u is µ-panharmonic in D, then

(1.6) â(µr)u(x) =
1

πr2

∫

Br(x)

u(y) log
r

|x− y|
dy, â(t) =

2[I0(t)− 1]

t2

for every admissible disk Br(x).

The behaviour of logarithmic-type weight in the identity (1.6) is quite simple: it

is a positive function of y within Br(x), growing from zero attained at y ∈ ∂Br(x)

to infinity as |x− y| → 0, and is negative when y /∈ Br(x).

Let us compare â(t) with a(t) = 2t−1I1(t), expressing (1.2) for m = 2. By the

definition of I0, we have that

â(0) = lim
t→+0

â(t) =
1

2
,

and â(t) increases monotonically from this value to infinity similar to a(t). Moreover,

a(t)− â(t) =
2[tI1(t)− I0(t) + 1]

t2

is positive for all t ∈ [0,∞). Indeed,

[tI1(t)− I0(t) + 1]′ = I1(t) + tI ′1(t)− I1(t) =
t[I2(t) + I0(t)]

2
,

which through straightforward calculations implies that a(t)−â(t) increases on (0,∞)

and

lim
t→+0

[a(t)− â(t)] = lim
t→+0

[tI1(t)− I0(t) + 1]′

t
=

1

2
.

For µ-metaharmonic functions, the analogue of Theorem 1.4 is the following.

Theorem 1.5. Let D be a domain in R
2. If u is µ-metaharmonic in D, then

(1.7) ã(µr)u(x) =
1

πr2

∫

Br(x)

u(y) log
r

|x− y|
dy, ã(t) =

2[1− J0(t)]

t2

for every admissible disk Br(x).
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The behaviour of ã is as follows: ã(0) = lim
t→+0

ã(t) = 1
2 , whereas ã(t) approaches

zero as t → ∞ decreasing nonmonotonically, but remaining positive. The latter

property of ã(t) distinguishes it from a2(t) = 2t−1J1(t)—the coefficient in the area

mean value identity (1.4). The latter coefficient has infinitely many zeros.

2. On analytic characterization of disks in R
2

The following analogue of Theorem 1.2 is based on the weighted mean value prop-

erty of µ-panharmonic functions.

Theorem 2.1. Let D ⊂ R
2 be a bounded domain, and let r > 0 be such that

|D| > πr2. Suppose that there exists x0 ∈ D such that for some µ > 0 the identity

(2.1) â(µr)u(x0) =
1

|D|

∫

D

u(y) log
r

|x0 − y|
dy

holds for every function u > 0, which is µ-panharmonic in Dr, then D = Br(x0) \A,

where A is a closed set of zero Lebesgue measure and such that x0 /∈ A.

Prior to proving this theorem, we notice that the radially symmetric function

(2.2) Û(x) = I0(µ|x|), x ∈ R
2,

monotonically increases from Û(0) = 1 to infinity as |x| goes to infinity. Moreover,

it is µ-panharmonic in R
2; this follows by comparing the modified Bessel equation

for I0 (see [14], page 223) with (1.1) in polar coordinates.

P r o o f of Theorem 2.1. Without loss of generality, we suppose that the do-

main D is located so that x0 coincides with the origin. Let us consider the bounded

open set Gi = D \ Br(0) and the set Ge = Br(0) \D, and assume that there is no

set A′ of zero measure such that D = Br(0) \ A′. Combining this assumption and

the inequality |D| > πr2 (see the theorem’s formulation), one concludes that Gi is

not empty. Since a contradiction is obtained from this fact below, it is shown that

D = Br(0)\A
′, where A′ has zero measure. Since D is open, the set A = A′∪∂Br(0)

is closed and has zero measure; moreover, D = Br(0) \A. Taking into account that

Û(0) = 1, we write (2.1) for Û as

(2.3) |D|â(µr) =

∫

D

Û(y) log
r

|y|
dy.

Since the identity (1.4) holds for Û over Br(0), we write it in the same way,

(2.4) πr2â(µr) =

∫

Br(0)

Û(y) log
r

|y|
dy.
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Subtracting (2.4) from (2.3), we obtain

(2.5) [|D| − πr2]â(µr) =

∫

Gi

Û(y) log
r

|y|
dy −

∫

Ge

Û(y) log
r

|y|
dy.

Here the difference on the right-hand side is negative. Indeed, Û > 0 everywhere,

whereas log(r/|y|) < 0 on Gi 6= ∅, because |y| > r there. Hence, the first term

is negative. The second integral is nonnegative because log(r/|y|) > 0 provided

y ∈ Br(0) \ {0}. The obtained contradiction proves the theorem. �

Let us compare Theorems 1.2 and 2.1. It occurs that the proof of Theorem 1.2

for m = 2 involves the same equalities (2.3)–(2.5), but without the factor log(r/|y|)

in the integrands. (Notice that U stands in [6] for the function denoted here by Û .)

Therefore, the fact that Û(y) monotonically increases with |y| is essential for that

proof implying that this function is greater (less) than [Û(y)]|y|=r on Gi (Ge, respec-

tively). In its turn, this yields that the right-hand side is positive in the analogue

of (2.5), because |Gi| = |Ge| in view of the assumption that |D| = |Br(0)|, which,

therefore, is crucial for obtaining a contradiction in the proof of Theorem 1.2.

On the other hand, the weight function log(r/|y|) is crucial for demonstrating

that the difference is negative on the right-hand side of (2.5), whereas only the fact

that Û > 0 is of importance about this function. Therefore, the weaker assumption

|D| − πr2 > 0 is sufficient for obtaining a contradiction in the proof of Theorem 2.1.

Now, we turn to the inverse of the mean value property (1.7); it is worth re-

calling that the latter identity is analogous to (1.4), whose inverse is formulated in

Theorem 1.3.

Theorem 2.2. Let D ⊂ R
2 be a bounded domain, and let r > 0 be such that

|D| > πr2. Suppose that there exists x0 ∈ D such that for some µ > 0 the identity

ã(µr)u(x0) =
1

|D|

∫

D

u(y) log
r

|x0 − y|
dy

holds for every positive function u, which is µ-metaharmonic in Dr. If also

(2.6) Dr ⊂ Br0(x0), where µr0 = j0,1,

then D = Br(x0) \ A, where A is a closed set of zero Lebesgue measure and such

that x0 /∈ A.

Since ã > 0, the proof of Theorem 2.1 is applicable to this case, but with the

following essential distinction: indeed, it involves the radially symmetric function

Ũ(x) = J0(µ|x|), x ∈ R
2, instead of Û ; see (2.2). For this reason, the condition (2.6)
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is imposed to restrict the domain’s size because Ũ is not positive everywhere and this

condition describes the domain surrounding the origin, where Ũ(x) > 0. It must be

emphasized that (2.6) is more restrictive than (1.5) used in Theorem 1.3. However,

the weaker assumption |D| > πr2 replaces the strict equality.

A c k n ow l e d g e m e n t. The author is grateful to the anonymous referee,

whose comments and recommendations proved to be very helpful in improving

the manuscript.
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