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Abstract. A specially multiplicative arithmetic function is the Dirichlet convolution of two
completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly
that two mathematical objects, namely (a, b)-Fibonacci sequences and specially multiplica-
tive prime-independent arithmetic functions, are equivalent in the sense that each can be
reconstructed from the other. Replacing one with another, the exploration space of both
mathematical objects expands significantly.

Keywords: Fibonacci sequence; multiplicative arithmetic function; Binet’s formula;
Busche-Ramanujan identities; Möbius inversion

MSC 2020 : 11B39, 11A25

1. Introduction and preliminaries

Horadam in [8] and [9] introduced and studied the second-order linear recurrence

sequence {un}n>1 (u0 is omitted for later reasons) defined by

un+2 = aun+1 + bun

with given u1 and u2 and n > 0. If u1 = u2 = a = b = 1 then {un}n>1 is the

sequence of Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, . . . The authors of [12] denote by

R(a, b) the set of all second-order linear recurrence sequences for fixed a and b real

(even complex) numbers. In every R(a, b) there is an element {un}n>1 that begins

with u1 = 1 and u2 = a and this is the (a, b)-Fibonacci sequence for R(a, b) (see the

section Generalized Fibonacci and Lucas numbers in [12]). In mathematics the well

known Lucas sequences of the first kind {un}n>1 (we again omit u0 = 0) are integer

sequences and in their definition the same recurrence relations lie: u1 = 1, u2 = a

and un+2 = aun+1 + bun for n > 0, where a and b are fixed integers.
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1. a = k, b = 1 1, k, k2 + 1, k3 + 2k, . . . k-Fibonacci sequence (see [6])

1.1. a = 1, b = 1 1, 1, 2, 3, 5, 8, 13, . . . Fibonacci sequence

1.2. a = 2, b = 1 1, 2, 5, 12, 29, 70, . . . Pell sequence

1.3. a = −1, b = 1 1, −1, 2, −3, 5, −8, 13, . . . negaFibonacci sequence

2. a = k, b = 2 1, k, k2 + 2, k3 + 4k, . . . k-Jakobsthal sequence (see [11])

2.1. a = 1, b = 2 1, 1, 3, 5, 11, 21, 43, . . . Jakobsthal sequence

2.2. a = −1, b = 2 1, −1, 3, −5, 11, −21, . . . negaJakobsthal sequence

3. a = k, b = −1 1, k, k2 − 1, k3 − 2k, . . . k-Sastry sequence

3.1. a = 1, b = −1 1, 1, 0, −1, −1, 0, 1, 1, . . . Sastry sequence (see [16])

3.2. a = 2, b = −1 1, 2, 3, 4, 5, 6, 7, 8, . . . sequence of positive integers

3.3. a = 3, b = −1 1, 3, 8, 21, 55, 144, . . . even-numbered Fib. sequence

4. a = 3, b = −2 1, 3, 7, 15, 31, 63, . . . Mersenne sequence (2n − 1)

5. a = 11, b = −10 1, 11, 111, 1111, . . . sequence of repunits

6. a = 2, b = k 1, 2, 4 + k, 8 + 4k, . . . k-Pell sequence (see [4])

Table 1. u1 = 1, u2 = a, un+2 = aun+1 + bun (u0 = 0).

Table 1 shows important sequences (all are Lucas sequences of the first kind only

if k is an integer), many of them intensively studied in mathematics over the years.

In the following we will keep the real (or even complex) hypothesis for a and b, and

the (a, b)-Fibonacci sequence name, as it was used in [12].

Haukkenen in [7], McCarthy and Sivaramakrishnan in [14], and the present au-

thors in [16] pointed out that there exists a connection between specially multiplica-

tive arithmetic functions and Fibonacci numbers. In Section 2 we express explicitly

that (a, b)-Fibonacci sequences and specially multiplicative prime-independent arith-

metic functions are equivalent mathematical objects in the sense that each can be

reconstructed from the other (see Theorems 2.1, 2.2 and 2.3). This purpose and the

fact that arithmetic functions are defined as complex valued functions on the set of

positive integers have led us to the considerations:

(1) the first two (a, b)-Fibonacci numbers are u1 = 1 and u2 = a (u0 = 0 being

omitted);

(2) a and b are even complex numbers.

An arithmetic function f is called multiplicative if f(1) = 1 and f(mn) =

f(m)f(n) whenever m and n are relatively prime (i.e., (m,n) = 1). A multiplicative

arithmetic function f is said to be completely multiplicative if f(mn) = f(m)f(n)

for all m and n. A multiplicative arithmetic function f is uniquely determined by its

values f(pn) at prime power arguments and a completely multiplicative arithmetic

function is completely determined by its values at the primes. If f is multiplicative

and f(pn) = f(qn) for all prime pairs (p, q) and all n, then f is said to be prime-

independent. If Ω denotes the arithmetic function defined by Ω(n) (the number of
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prime factors of n counted with multiplicity) and c is a nonzero complex number

then cΩ is a completely multiplicative prime-independent arithmetic function.

The Dirichlet convolution f ∗ g of two arithmetic functions f and g is defined by

(f ∗ g)(n) =
∑

d|n

f(d)g
(n

d

)

,

where the summation is over positive divisors d of n. It is both commutative and

associative. The arithmetic function 1 defined by 1(n) = 1 if n = 1 and 1(n) = 0

otherwise, is the identity element for the Dirichlet convolution. The set of all multi-

plicative arithmetic functions with this operation is a commutative group. We denote

this group by (M, ∗).
A specially multiplicative arithmetic function is the Dirichlet convolution of two

completely multiplicative arithmetic functions.

The Bell series of an arithmetic function f modulo a prime p is defined by

f(p, x) =
∞
∑

m=0

f(pm)xm.

For any prime p, the Bell series of the completely multiplicative function cΩ is the

geometric series
∞
∑

n=0
cnxn, therefore

cΩ(p, x) =
1

1− cx
.

Obviously, two multiplicative arithmetic functions are identical if all their Bell series

are equal. For any two arithmetic functions f and g, we have (see [2], Theorem 2.25)

(f ∗ g)(p, x) = f(p, x) · g(p, x)

for every prime p.

2. The main theorems

Theorem 2.1. Given an (a, b)-Fibonacci sequence u = {un}n>1, the multiplica-

tive arithmetic function fu, defined by

fu(p
n) = un+1 for all primes p and all n > 0,

is a specially multiplicative prime-independent arithmetic function.

Theorem 2.2. If f is a specially multiplicative prime-independent arithmetic

function and p is a prime, then the sequence uf = {f(pn)}n>0 is an (a, b)-Fibonacci

sequence with a = f(p) and b = f(p2)− f(p)2.
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Theorem 2.3. The constructions of Theorems 2.1 and 2.2 are inversions of each

other. That is, the following statements are true:

f = fuf and u = ufu .

P r o o f of Theorem 2.1. If b = 0 and a = 0 then fu = 1 and fu = 1 ∗ 1. If b = 0

and a 6= 0 then u = {1, a, a2, . . .} and fu = aΩ ∗ 1.
If b 6= 0, since

fu(p, x) =

∞
∑

n=0

un+1x
n = u1+u2x+

∞
∑

n=2

(aun+bun−1)x
n = 1+axfu(p, x)+bx2fu(p, x),

it follows that

fu(p, x) =
1

1− ax− bx2
=

1

1− c1x
· 1

1− c2x
= cΩ1 (p, x) · cΩ2 (p, x),

that is,

fu = cΩ1 ∗ cΩ2 ,
where c1 and c2 are the solutions of the quadratic equation x2 − ax− b = 0, i.e.,

c1 =
a+

√
a2 + 4b

2
and c2 =

a−
√
a2 + 4b

2
.

The proof of Theorem 2.1 is complete. �

P r o o f of Theorem 2.2. If f is specially multiplicative prime-independent and

f = g ∗ h where g and h are completely multiplicative then

f(p0) = 1, a = f(p) = g(p) + h(p),

b = f(p2)− f(p)2 = g(p2) + g(p)h(p) + h(p2)− (g(p) + h(p))2 = −g(p)h(p)

for all primes p, and

af(pn−1) + bf(pn−2)

= (g(p) + h(p))

n−1
∑

i=0

g(pi)h(pn−1−i)− g(p)h(p)

n−2
∑

i=0

g(pi)h(pn−2−i)

=
n−1
∑

i=0

g(pi+1)h(pn−1−i) +
n−1
∑

i=0

g(pi)h(pn−i)−
n−2
∑

i=0

g(pi+1)h(pn−1−i)

= g(pn) +

n−1
∑

i=0

g(pi)h(pn−i) =

n
∑

i=0

g(pi)h(pn−i) = f(pn).

Hence {f(pn)}n>0 is an (a, b)-Fibonacci sequence, where a = f(p) and b =

f(p2)− f(p)2. �
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P r o o f of Theorem 2.3. Given a specially multiplicative prime-independent

arithmetic function f , the (n+ 1)st term of the (a, b)-Fibonacci sequence uf (where

a = f(p) and b = f(p2) − f(p)2) is f(pn). So, fuf (pn) = f(pn) for all primes p and

all n. Now, if u = {un}n>1 is an (a, b)-Fibonacci sequence then u
fu = {fu(pn)}n>0 =

{un+1}n>0, and therefore u = ufu . �

3. Applications. Binet’s formula, Busche-Ramanujan identities

and Möbius inversion

The purpose of this section is to show how the field of exploration of (a, b)-

Fibonacci numbers can be extended by simply applying the results of the previous

section. We will get a new picture of them by applying the Dirichlet convolution,

Busche-Ramanujan identities, Möbius inversion, etc. to “these numbers”. Some of

the results can be found in [12] with different proofs. We keep the notations from

the previous section.

3.1. Binet’s formula.

un =
cn1 − cn2
c1 − c2

, c1 6= c2.

P r o o f.

un = fu(p
n−1) = (cΩ1 ∗ cΩ2 )(pn−1) =

n−1
∑

i=0

ci1c
n−1−i
2 =

cn1 − cn2
c1 − c2

.

�

Notice that if c1 = c2 = c (i.e., a2 + 4b = 0) then the Binet formula becomes

un = ncn−1.

3.2. Busche-Ramanujan’s identities. The Busche-Ramanujan identities state

that for every positive integers m and n,

(1.1) f(m)f(n) =
∑

d|(m,n)

f
(mn

d2

)

g(d)h(d)

and

(1.2) f(mn) =
∑

d|(m,n)

f
(m

d

)

f
(n

d

)

µ(d)g(d)h(d)

whenever the arithmetic function f is specially multiplicative, that is, f = g ∗ h

with g and h completely multiplicative (see [13], Chapter 1). In (1.2), µ denotes the

well known multiplicative Möbius arithmetic function: µ(p) = −1 and µ(pn) = 0 if

n > 1 for all primes p.
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In the next theorem, (1.1′) and (1.2′) are the Busche-Ramanujan identities asso-

ciated with f = fu.

Theorem 3.1. Given an (a, b)-Fibonacci sequence u = {un}n>1 with b 6= 0, we

have:

(i)

(1.1′) umun =

min{m,n}
∑

j=1

(−b)j−1um+n+1−2j ;

(i1) (Cassini’s identity) u
2
n − un−1un+1 = (−b)n−1;

(i2) (d’Ocagne’s identity) for m < n, um+1un − umun+1 = (−b)mun−m;

(i3) (Catalan’s identity) for m < n, u2
n − un−mun+m = (−b)n−mu2

m;

(i4) (Vajda’s identity) un+iun+j − unun+i+j = (−b)nuiuj .

(ii)

(1.2′) un = us+1ut+1 + busut

for any two positive integers s and t such that s+ t = n− 1;

(ii1) u2m+1 = u2
m+1 + bu2

m;

(ii2) um+n = unum+1 + bumun−1;

(ii3) u2m = um+1um + bumum−1;

(ii4) un = umun−m+1 + bum−1un−m.

P r o o f. (i)

umun = fu(p
m−1)fu(p

n−1) =
∑

d|min{pm−1,pn−1}

fu

(pm+n−2

d2

)

(c1c2)
Ω(d)

(d=pi)
===

min{m−1,n−1}
∑

i=0

(−b)ium+n−1−2i =

min{m,n}
∑

j=1

(−b)j−1um+n+1−2j .

(ii)

un = fu(p
s+t) =

min{s,t}
∑

i=0

fu(p
s−i)fu(p

t−i)(−b)iµ(pi) = us+1ut+1 + busut.

Now, (i1)–(i4) and (ii1)–(ii4) are specific cases of the Busche-Ramanujan identi-

ties (1.1′) and (1.2′), respectively. �
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3.3. The generalized Möbius function µa,b. The classical Möbius function µ,

µ(n) =











1 if n = 1,

0 if p2|n for some prime p,
(−1)ω(n) otherwise

(where ω(n) is the number of distinct prime factors of the positive integer n), is

central in multiplicative number theory.

It is well known that µ is the inverse in the group (M, ∗), µ = ζ−1, of the zeta

function ζ defined by ζ(n) = 1 for all positive integers n. But this ζ sequence

ζ : 1, 1, 1, 1, 1, 1, 1, . . .

is an (a, b)-Fibonacci sequence, namely with a = 1 and b = 0. So, the following

definition is a two-parameter generalization of the Möbius function.

Definition 3.1. We say that the inverse µa,b of fu in the group (M, ∗),

µa,b = f−1
u ,

is the generalized (a, b)-Möbius function, where u = {un}n>1 is the (a, b)-Fibonacci

sequence.

Then µ1,0 = µ and µ0,0 is the identity element 1 of the group (M, ∗). If u is the
ordinary Fibonacci sequence (i.e., a = b = 1) then

µ1,1(n) =











1 if n = 1,

0 if p3|n for some prime p,
(−1)ω(n) otherwise.

This is precisely Cohen’s generalized Möbius function of order two (see [5]). But

more than that, µ1,−1 is Apostol’s generalized Möbius function of order two (see [1]),

µ−1,1 is Sastry’s generalized Möbius function of order two (see [15]), and µ2,−1 is the

generalized Möbius function µr of order two (r = 2) introduced by Hsu in [10] (see

also Brown at al. [3]). All these follow from the statement below.

Theorem 3.2. If a 6= 0 and b 6= 0 then

µa,b(n) =











1 if n = 1,

0 if p3|n for some prime p,
(−1)ω(n)aω(n)bω(n)−ω(n) otherwise,

where ω(n) is the number of square free prime divisors of n.
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P r o o f. If u is an (a, b)-Fibonacci sequence then for every prime p,

f−1
u (p, x) = 1− ax− bx2.

Therefore,

µa,b(p
m) =























1 if m = 0,

−a if m = 1,

−b if m = 2,

0 if m > 2.

Since µa,b is multiplicative, the proof is complete. �

Now, µa,b being a Dirichlet-convolution inverse, it follows:

Theorem 3.3. Let g and h be two arithmetic functions and let u = {un}n>1 be

an (a, b)-Fibonacci sequence. Then,

g = fu ∗ h if and only if h = µa,b ∗ g.

The full significance of the generalized Möbius function µa,b should become with

the above (Möbius inversion) theorem. We present below a sample of it.

Theorem 3.4. Let u = {un}n>1 be an (a, b)-Fibonacci sequence with the as-

sumption b± a 6= 1. Then

(i) (the running sum)
n
∑

i=1

ui =
un+1 + bun − 1

a+ b− 1
,

(ii) (the sum of the first n (a, b)-Fibonacci numbers with even indices)

n
∑

i=1

u2i =
(b− 1)u2n+2 − abu2n+1 + a

(b− 1)2 − a2
,

(iii) (the sum of the first n+ 1 (a, b)-Fibonacci numbers with odd indices)

n
∑

i=0

u2i+1 =
au2n+2 − b(b− 1)u2n+1 + b− 1

a2 − (b− 1)2
.
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P r o o f. (i) Put h = ζ in Theorem 3.3. Then g(pn) = (fu ∗ h)(pn) =
n+1
∑

i=1

ui for

all primes p and all n > 0. It follows

1 = ζ(pn+1) = (µa,b ∗ g)(pn+1) = µa,b(1)g(p
n+1) + µa,b(p)g(p

n) + µa,b(p
2)g(pn−1)

=
n+2
∑

i=1

ui − a

n+1
∑

i=1

ui − b

n
∑

i=1

ui = un+2 + (1− a)un+1 + (1− a− b)
n
∑

i=1

ui

= un+1 + bun + (1− a− b)

n
∑

i=1

ui.

The proof on running sum is complete.

(ii) and (iii) Let us use h, the multiplicative arithmetic function defined by

h(pm) =

{

1 if m is even,

0 if m is odd

for all primes p, and g = fu ∗ h again. It follows

g(p2n) =
n
∑

i=0

u2i+1, g(p2n+1) =
n+1
∑

i=1

u2i and g(p2n−1) =
n
∑

i=1

u2i.

Hence,

0 = h(p2n+1) = (µa,b ∗ g)(p2n+1) = u2n+2 + (1− b)
n
∑

i=1

u2i − a

n
∑

i=0

u2i+1,

and together with the running sum:

n
∑

i=1

u2i +

n
∑

i=0

u2i+1 =

2n+1
∑

j=1

uj =
u2n+2 + bu2n+1 − 1

a+ b− 1
,

the two desired formulas (ii) and (iii) follow immediately by solving the obtained

system of equations. �

3.4. Afterword. Many properties of Fibonacci numbers follow directly from the

recursive rule. Many properties can be established by induction. But that’s not all.

The world of Fibonacci numbers is wonderful for its diversity. The general tools

presented in [12] are the path to this world. Their origin derives from the fact that

R(a, b) is a two dimensional (if a2+4b 6= 0) subspace of R∞ with {{cn1}n>0, {cn2}n>0}
being a basis and which is the null space of a linear operator. So, difference operators,
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Binet formulas and matrix formulation were the three contexts explored extensively

in [12]. Applications and examples in [12] (the Binet formula on page 174, the running

sum on pages 176–177, Cassini’s formula on page 177) led us to the presentation of

our three applications: 3.1, 3.2 and 3.3. Our approach differs a lot from the one

in [12], but that was our goal in Section 3 after all.
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