ON THE HYPER-ORDER OF ANALYTIC SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS NEAR A FINITE SINGULAR POINT

Meryem Chetti, Karima Hamani, Mostaganem
Received May 09, 2023. Published online March 21, 2024.
Communicated by Grigore Sălăgean

Abstract

We study the hyper-order of analytic solutions of linear differential equations with analytic coefficients having the same order near a finite singular point. We improve previous results given by S. Cherief and S. Hamouda (2021). We also consider the nonhomogeneous linear differential equations.

Keywords: linear differential equation; hyper-order; a finite singular point; Nevanlinna theory

MSC 2020: 34M10, 30D35

1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna value distrubition theory of meromorphic function in the complex plane \mathbb{C} and in the unit disc $D=\{z \in \mathbb{C}$: $|z|<1\}$ (see [2], [3], [8], [10]). We denote the order of growth of a meromorphic function f in \mathbb{C} by $\sigma(f)$.

Recently the authors in [4], [6], [7] have investigated the growth of solutions of linear differential equations near a finite singular point. They studied the order and the hyper-order of analytic solutions of different types of linear differential equations with analytic coefficients near a finite singular point by using an adapted definitions and properties of Nevanlinna theory. In this paper, we continue this investigation near a finite singular point.

First, we recall the appropriate definitions. Set $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ and suppose that f is meromorphic in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, where $z_{0} \in \mathbb{C}$. Define the counting function near z_{0} by

$$
N_{z_{0}}(r, f)=-\int_{\infty}^{r} \frac{n(t, f)-n(\infty, f)}{t} \mathrm{~d} t-n(\infty, f) \log r
$$

where $n(t, f)$ counts the number of poles of f in the region $\left\{z \in \mathbb{C}: t \leqslant\left|z_{0}-z\right|\right\} \cup\{\infty\}$, each pole according to its multiplicity, and the proximity function by

$$
m_{z_{0}}(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(z_{0}-r \mathrm{e}^{\mathrm{i} \varphi}\right)\right| \mathrm{d} \varphi .
$$

The characteristic function of f is defined in the usual manner by

$$
T_{z_{0}}(r, f)=m_{z_{0}}(r, f)+N_{z_{0}}(r, f) .
$$

In addition, the order of a meromorphic function f near z_{0} is defined by

$$
\sigma_{T}\left(f, z_{0}\right)=\limsup _{r \rightarrow 0} \frac{\log ^{+} T_{z_{0}}(r, f)}{-\log r}
$$

For an analytic function f in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, we have also the definition

$$
\sigma_{M}\left(f, z_{0}\right)=\limsup _{r \rightarrow 0} \frac{\log ^{+} \log ^{+} M_{z_{0}}(r, f)}{-\log r}
$$

where $M_{z_{0}}(r, f)=\max _{\left|z_{0}-z\right|=r}|f(z)|$.
When the order is infinite, we introduce the notion of a hyper-order near z_{0} that is defined as

$$
\begin{aligned}
\sigma_{2, T}\left(f, z_{0}\right) & =\limsup _{r \rightarrow 0} \frac{\log ^{+} \log ^{+} T_{z_{0}}(r, f)}{-\log r}, \\
\sigma_{2, M}\left(f, z_{0}\right) & =\limsup _{r \rightarrow 0} \frac{\log ^{+} \log ^{+} \log ^{+} M_{z_{0}}(r, f)}{-\log r} .
\end{aligned}
$$

Remark 1.1 ([4]). It is shown in [6] that if f is a non-constant meromorphic function in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$ and $g(\omega)=f\left(z_{0}-1 / \omega\right)$, then $g(\omega)$ is meromorphic in \mathbb{C} and we have

$$
T(R, g)=T_{z_{0}}\left(\frac{1}{R}, f\right)
$$

where $R>0$ and so $\sigma_{T}\left(f, z_{0}\right)=\sigma(g)$. Also, if f is analytic in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, then $g(\omega)$ is entire and thus $\sigma_{T}\left(f, z_{0}\right)=\sigma_{M}\left(f, z_{0}\right)$ and $\sigma_{2, T}\left(f, z_{0}\right)=\sigma_{2, M}\left(f, z_{0}\right)$. Then we can use the notations $\sigma\left(f, z_{0}\right)$ and $\sigma_{2}\left(f, z_{0}\right)$ without any ambiguity.

Many authors [1], [2], [3], [9], [10] have studied the linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+A(z) \mathrm{e}^{a z} f^{\prime}+B(z) \mathrm{e}^{b z} f=0 \tag{1.1}
\end{equation*}
$$

where $A(z)$ and $B(z)$ are entire functions and a, b are complex numbers. Kwon in [9] proved that if $a b \neq 0$ and $\arg a \neq \arg b$ or $a=c b$ with $0<c<1$, then every solution $f \not \equiv 0$ of the equation (1.1) is of infinite order.

Recently, Fettouch and Hamouda (see [6]) proved the following result.

Theorem 1.1 ([6]). Let $z_{0} a, b$ be complex constants, such that $\arg a \neq \arg b$ or $a=c b$ with $0<c<1$ and $n \in \mathbb{N} \backslash\{0\}$. Let $A(z), B(z) \not \equiv 0$ be analytic functions in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$ with $\max \left\{\sigma\left(A, z_{0}\right), \sigma\left(B, z_{0}\right)\right\}<n$. Then every solution $f \not \equiv 0$ of the differential equation

$$
f^{\prime \prime}+A(z) \exp \left\{\frac{a}{\left(z_{0}-z\right)^{n}}\right\} f^{\prime}+B(z) \exp \left\{\frac{b}{\left(z_{0}-z\right)^{n}}\right\} f=0
$$

satisfies $\sigma\left(f, z_{0}\right)=\infty$ and $\sigma_{2}\left(f, z_{0}\right)=n$.
In [4], Cherief and Hamouda have extended Theorem 1.1 to higher order linear differential equations and proved the following two results.

Theorem $1.2([4])$. Let $n \in \mathbb{N} \backslash\{0\}, k \geqslant 2$ be an integer and $A_{j}(z)(j=$ $0, \ldots, k-1)$ be analytic functions in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, such that $\sigma\left(A_{j}, z_{0}\right)<n$ and $A_{0}(z) \not \equiv 0$. If $a_{j}(j=0, \ldots, k-1)$ are distinct complex numbers, then every solution $f \not \equiv 0$ of the differential equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) \exp \left\{\frac{a_{k-1}}{\left(z_{0}-z\right)^{n}}\right\} f^{(k-1)}+\ldots+A_{0}(z) \exp \left\{\frac{a_{0}}{\left(z_{0}-z\right)^{n}}\right\} f=0 \tag{1.2}
\end{equation*}
$$

that is analytic in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, satisfies $\sigma\left(f, z_{0}\right)=\infty$.

Theorem 1.3 ([4]). Let $n \in \mathbb{N} \backslash\{0\}, k \geqslant 2$ be an integer and $A_{j}(z)(j=$ $0, \ldots, k-1)$ be analytic functions in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, such that $\sigma\left(A_{j}, z_{0}\right)<n$ and $A_{0}(z) \not \equiv 0$. Let $a_{j}(j=0, \ldots, k-1)$ be complex constants. Suppose that there exist nonzero numbers a_{s} and a_{l}, such that $0<s<l \leqslant k-1, a_{s}=\left|a_{s}\right| \mathrm{e}^{\mathrm{i} \theta_{s}}, a_{l}=\left|a_{l}\right| \mathrm{e}^{\mathrm{i} \theta_{l}}, \theta_{s}, \theta_{l} \in[0,2 \pi)$, $\theta_{s} \neq \theta_{l}$. Let $A_{s} A_{l} \not \equiv 0$ and for $j \neq s, l$, a_{j} satisfy either $a_{j}=d_{j} a_{s}\left(0<d_{j}<1\right)$ or $a_{j}=d_{j} a_{l}\left(0<d_{j}<1\right)$. Then every solution $f \not \equiv 0$ of the equation (1.2) that is analytic in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, satisfies $\sigma\left(f, z_{0}\right)=\infty$.

In this paper, we continue to consider the above theorems and investigate the hyper-order of analytic solutions of the equation (1.2). We also consider the nonhomogeneous equation. We prove the following results.

Theorem 1.4. Let $n \in \mathbb{N} \backslash\{0\}, k \geqslant 2$ be an integer and $A_{j}(z), a_{j}(j=0, \ldots, k-1)$ satisfy the additional hypotheses of Theorem 1.2. Then every solution f of the equation (1.2) that is analytic in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$ satisfies $\sigma_{2}\left(f, z_{0}\right)=n$, where z_{0} is an essential singular point for f.

Example1.1. Consider the differential equation

$$
\begin{equation*}
f^{\prime \prime \prime}+\frac{3}{z}\left(2+\frac{1}{z}\right) f^{\prime \prime}-\frac{1}{z^{4}} \exp \left\{\frac{2}{z}\right\} f^{\prime}-\frac{2}{z^{4}}\left(3+\frac{3}{z}+\frac{1}{z^{2}}\right) \exp \left\{\frac{1}{z}\right\} f=0 . \tag{1.3}
\end{equation*}
$$

Obviously, the conditions of Theorem 1.4 are satisfied. Hence every solution f of the equation (1.3) that is analytic in $\overline{\mathbb{C}} \backslash\{0\}$ satisfies $\sigma_{2}(f, 0)=1$, where 0 is an essential singular point for f.

Let us remark that the function $f(z)=\exp \{\exp (1 / z)\}$ is a solution of the equation (1.3) that is analytic in $\overline{\mathbb{C}} \backslash\{0\}$ with $\sigma_{2}(f, 0)=1$.

Theorem 1.5. Let $n \in \mathbb{N} \backslash\{0\}, k \geqslant 2$ be an integer and $A_{j}(z), a_{j}(j=0, \ldots, k-1)$ satisfy the additional hypotheses of Theorem 1.3. Then every solution f of the equation (1.2) that is analytic in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, satisfies $\sigma_{2}\left(f, z_{0}\right)=n$, where z_{0} is an essential singular point for f.

Theorem 1.6. Let $n \in \mathbb{N} \backslash\{0\}, k \geqslant 2$ be an integer and $A_{j}(z), a_{j}(j=0, \ldots, k-1)$ satisfy the hypotheses of Theorem 1.3 or those of Theorem 1.4. Let $F \not \equiv 0$ be analytic function in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$ of order $\sigma=\sigma\left(F, z_{0}\right)<n$. Then every solution f of the equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) \exp \left\{\frac{a_{k-1}}{\left(z_{0}-z\right)^{n}}\right\} f^{(k-1)}+\ldots+A_{0}(z) \exp \left\{\frac{a_{0}}{\left(z_{0}-z\right)^{n}}\right\} f=F \tag{1.4}
\end{equation*}
$$

that is analytic in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$ satisfies $\sigma\left(f, z_{0}\right)=\infty$ and $\sigma_{2}\left(f, z_{0}\right)=n$, where z_{0} is an essential singular point for f, with at most one exceptional analytic solution f_{0} of finite order in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$.

2. Preliminary lemmas

Lemma 2.1 ([6]). Let f be a non-constant meromorphic function in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$. Let $\alpha>0$ be a given real constant and $j \in \mathbb{N}$. Then there exists a set $E_{1} \subset(0,1)$ of finite logarithmic measure, that is $\int_{0}^{1} \chi_{E_{1}}(t) \mathrm{d} t / t<\infty$, and a constant $A>0$, that depends on α and j, such that for all $r=\left|z-z_{0}\right|$ satisfying $r \notin E_{1}$, we have

$$
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leqslant A\left[\frac{1}{r^{2}} T_{z_{0}}(\alpha r, f) \log T_{z_{0}}(\alpha r, f)\right]^{j},
$$

where $\chi_{E_{1}}$ is the characteristic function of the set E_{1}.

Lemma 2.2 ([10]). Let g be a transcendental entire function, let $0<\eta_{1}<\frac{1}{4}$ and ω_{R} be a point such that $\left|\omega_{R}\right|=R$ and $\left|g\left(\omega_{R}\right)\right|>M(R, g) V(R)^{-1 / 4+\eta_{1}}$ holds. Then there exists a set $F_{1} \subset(1, \infty)$ of finite logarithmic measure, that is $\int_{1}^{\infty} \chi_{F_{1}}(t) \mathrm{d} t / t<\infty$, such that

$$
\frac{g^{(j)}\left(\omega_{R}\right)}{g\left(\omega_{R}\right)}=\left(\frac{V(R)}{\omega_{R}}\right)^{j}(1+o(1)), \quad j \in \mathbb{N}
$$

holds as $R \rightarrow \infty$ and $R \notin F_{1}$, where $V(R)$ is the central index of g and $M(R, g)=$ $\max _{|\omega|=R}|g(\omega)|$.

Remark $2.1([7])$. Let f be a non-constant analytic function in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$. Then the function $g(\omega)=f\left(z_{0}-1 / \omega\right)$ is entire in \mathbb{C} and $V_{z_{0}}(r)=V(R)$, where $R=1 / r$, $R>0, V(R)$ is the central index of g in \mathbb{C} and $V_{z_{0}}(r)$ is the central index of f near the singular point z_{0}.

By using Lemma 2.2, Remark 2.1 and similar arguments as in the proof of Theorem 8 in [7], we can obtain the following lemma.

Lemma 2.3. Let f be a non-constant analytic function in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$. Let $0<\eta_{1}<\frac{1}{4}$ and z_{r} be a point such that $\left|z_{0}-z_{r}\right|=r$ and $\left|f\left(z_{r}\right)\right|>M_{z_{0}}(r, f) V_{z_{0}}(r)^{-1 / 4+\eta_{1}}$ holds. Then there exists a set $E_{2} \subset(0,1)$ of finite logarithmic measure, such that

$$
\frac{f^{(j)}\left(z_{r}\right)}{f\left(z_{r}\right)}=\left(\frac{V_{z_{0}}(r)}{z_{0}-z_{r}}\right)^{j}(1+o(1)), \quad j \in \mathbb{N}
$$

holds as $r \rightarrow 0, r \notin E_{2}$, where $V_{z_{0}}(r)$ is the central index of f near a singular point z_{0} and $M_{z_{0}}(r, f)=\max _{\left|z_{0}-z\right|=r}|f(z)|$.

Lemma 2.4. Let f be a non-constant analytic function in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$. For $\left|z_{0}-z\right|=r$ sufficiently small, let $z_{r}=z_{0}-r \mathrm{e}^{\mathrm{i} \theta_{r}}$ be a point satisfying $\left|f\left(z_{r}\right)\right|=\max _{\left|z_{0}-z\right|=r}|f(z)|$. Then there exist a constant $\delta_{r}>0$ and a set $E_{3} \subset(0,1)$ of finite logarithmic measure, such that for all z satisfying $\left|z_{0}-z\right|=r \notin E_{3}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in$ $\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have

$$
\frac{f^{(j)}(z)}{f(z)}=\left(\frac{V_{z_{0}}(z)}{z_{0}-z}\right)^{j}(1+o(1)), \quad j \in \mathbb{N}
$$

where $V_{z_{0}}(z)$ is the central index of f near a singular point z_{0}.

Proof. If $z_{r}=z_{0}-r \mathrm{e}^{\mathrm{i} \theta_{r}}$ is a point satisfying $\left|f\left(z_{r}\right)\right|=M_{z_{0}}(r, f)$, since $|f(z)|$ is continuous in $\left|z_{0}-z\right|=r$, then there exists a constant $\delta_{r}(>0)$, such that for all z satisfying $\left|z_{0}-z\right|=r, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have

$$
\left\|f(z)|-| f\left(z_{r}\right)\right\|<\varepsilon
$$

that is

$$
|f(z)|>\frac{1}{2}\left|f\left(z_{r}\right)\right|=\frac{1}{2} M_{z_{0}}(r, f)>M_{z_{0}}(r, f) V_{z_{0}}(r)^{-1 / 4+\eta_{1}} .
$$

By Lemma 2.3,

$$
\frac{f^{(j)}(z)}{f(z)}=\left(\frac{V_{z_{0}}(z)}{z_{0}-z}\right)^{j}(1+o(1)), \quad j \in \mathbb{N}
$$

holds for all z satisfying $\left|z_{0}-z\right|=r \notin E_{2}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$.

Lemma 2.5. Let f be a non-constant analytic function in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$. For $\left|z_{0}-z\right|=r$, let $z_{r}=z_{0}-r \mathrm{e}^{\mathrm{i} \theta_{r}}$ be a point satisfying $\left|f\left(z_{r}\right)\right|=\max _{\left|z_{0}-z\right|=r}|f(z)|$. Then there exist a constant $\delta_{r}>0$ and a set $E_{4} \subset(0,1)$ of finite logarithmic measure, such that for all z satisfying $\left|z_{0}-z\right|=r \notin E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have

$$
\left|\frac{f(z)}{f^{(j)}(z)}\right| \leqslant 2 r^{j}, \quad j \in \mathbb{N}
$$

where z_{0} is an essential singular point for f.
Proof. Let $z_{r}=z_{0}-r \mathrm{e}^{\mathrm{i} \theta_{r}}$ be a point satisfying $\left|f\left(z_{r}\right)\right|=\max _{\left|z_{0}-z\right|=r}|f(z)|$. Then by Lemma 2.4 there exist a constant $\delta_{r}>0$ and a set $E_{3} \subset(0,1)$ of finite logarithmic measure, such that for all z satisfying $\left|z_{0}-z\right|=r \notin E_{3}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in$ $\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have

$$
\begin{equation*}
\frac{f^{(j)}(z)}{f(z)}=\left(\frac{V_{z_{0}}(z)}{z_{0}-z}\right)^{j}(1+o(1)), \quad j \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

Since $g(\omega)=f\left(z_{0}-1 / \omega\right)$ is a transcendental entire function, it follows that $V(R) \rightarrow \infty$ as $R \rightarrow \infty$. On the other hand, $V(R)=V_{z_{0}}(r)(R=1 / r)$. Hence $V_{z_{0}}(r) \rightarrow \infty$ as $r \rightarrow 0$. Then by (2.1), for all z satisfying $\left|z_{0}-z\right|=r \notin E_{3}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have

$$
\left|\frac{f^{(j)}(z)}{f(z)}\right| \geqslant \frac{1}{2} r^{-j}
$$

that is,

$$
\left|\frac{f(z)}{f^{(j)}(z)}\right| \leqslant 2 r^{j}, \quad j \in \mathbb{N}
$$

Lemma 2.6 ([6]). Let $A(z)$ be an analytic function in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$ with $\sigma\left(A, z_{0}\right)<n$ $(n \in \mathbb{N} \backslash\{0\})$. Set $g(z)=A(z) \exp \left\{a /\left(z_{0}-z\right)^{n}\right\}$, where $a=\alpha+\mathrm{i} \beta \neq 0$ is a complex number, $z_{0}-z=r \mathrm{e}^{\mathrm{i} \varphi}, \delta_{a}(\varphi)=\alpha \cos (n \varphi)+\beta \sin (n \varphi)$, and $H=\{\varphi \in[0,2 \pi)$: $\left.\delta_{a}(\varphi)=0\right\}$ (obviously, H is a finite set). Then for any given $\varepsilon>0$ and for any $\varphi \in[0,2 \pi) \backslash H$, there exists $r_{0}>0$, such that for $0<r<r_{0}$, we have
(i) if $\delta_{a}(\varphi)>0$, then

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{a}(\varphi) \frac{1}{r^{n}}\right\} \leqslant|g(z)| \leqslant \exp \left\{(1+\varepsilon) \delta_{a}(\varphi) \frac{1}{r^{n}}\right\} \tag{2.2}
\end{equation*}
$$

(ii) if $\delta_{a}(\varphi)<0$, then

$$
\begin{equation*}
\exp \left\{(1+\varepsilon) \delta_{a}(\varphi) \frac{1}{r^{n}}\right\} \leqslant|g(z)| \leqslant \exp \left\{(1-\varepsilon) \delta_{a}(\varphi) \frac{1}{r^{n}}\right\} . \tag{2.3}
\end{equation*}
$$

Lemma 2.7 ([4]). Let $k \geqslant 2$ be an integer and $A_{j}(z)(j=0, \ldots, k-1)$ be analytic functions in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, such that $\sigma\left(A_{j}, z_{0}\right) \leqslant \alpha<\infty$. If f is a solution of the equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\ldots+A_{1}(z) f+A_{0}(z) f=0 \tag{2.4}
\end{equation*}
$$

that is analytic in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, then $\sigma_{2}\left(f, z_{0}\right) \leqslant \alpha$.
Lemma 2.8 ([7]). Let f be a non-constant analytic function in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$. Then there exists a set $E_{5} \subset(0,1)$ of finite logarithmic measure, such that

$$
\frac{f^{(j)}\left(z_{r}\right)}{f\left(z_{r}\right)}=(1+o(1))\left(\frac{V_{z_{0}}(z)}{z_{0}-z_{r}}\right)^{j}, \quad j \in \mathbb{N}
$$

holds as $r \rightarrow 0, r \notin E_{5}$, where z_{r} is a point on the circle $\left|z_{0}-z\right|=r$ that satisfies $\left|f\left(z_{r}\right)\right|=M_{z_{0}}(r, f)=\max _{\left|z_{0}-z\right|=r}|f(z)|$.

Lemma 2.9 ([5]). Let f be a non-constant analytic function in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$ of infinite order with the hyper-order $\sigma_{2}\left(f, z_{0}\right)=\sigma$ and $V_{z_{0}}(r)$ be the central index of f. Then

$$
\limsup _{r \rightarrow 0} \frac{\log ^{+} \log ^{+} V_{z_{0}}(r)}{-\log r}=\sigma .
$$

Lemma 2.10. Let $k \geqslant 2$ be an integer, $A_{j}(z)(j=0, \ldots, k-1)$ and $F \not \equiv 0$ be analytic functions in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, such that $\max \left\{\sigma\left(A_{j}, z_{0}\right), \sigma\left(F, z_{0}\right)\right\} \leqslant \alpha<\infty$. If f is an infinite order solution of the equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{k-1}+\ldots+A_{1}(z) f^{\prime}+A_{0}(z) f=F \tag{2.5}
\end{equation*}
$$

that is analytic in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, then $\sigma_{2}\left(f, z_{0}\right) \leqslant \alpha$.

Proof. Assume that f is an infinite analytic solution in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$ of the equation (2.5). By (2.5), we have

$$
\begin{equation*}
\left|\frac{f^{(k)}}{f}\right| \leqslant\left|A_{k-1}(z)\right|\left|\frac{f^{(k-1)}}{f}\right|+\ldots+\left|A_{1}(z)\right|\left|\frac{f^{\prime}}{f}\right|+\left|\frac{F}{f}\right|+\left|A_{0}(z)\right| . \tag{2.6}
\end{equation*}
$$

By Lemma 2.8, there exists a set $E_{5} \subset(0,1)$ of finite logarithmic measure, such that for all $j=0,1, \ldots, k$, we have

$$
\begin{equation*}
\frac{f^{(j)}\left(z_{r}\right)}{f\left(z_{r}\right)}=(1+o(1))\left(\frac{V_{z_{0}}\left(z_{r}\right)}{z_{0}-z_{r}}\right)^{j} \tag{2.7}
\end{equation*}
$$

as $r \rightarrow 0, r \notin E_{5}$, where z_{r} is a point on the circle $\left|z_{0}-z\right|=r$ that satisfies $\left|f\left(z_{r}\right)\right|=M_{z_{0}}(r, f)=\max _{\left|z_{0}-z\right|=r}|f(z)|$. For any given $\varepsilon>0$, there exists $r_{0}>0$, such that for all $0<r=\left|z_{0}-z\right|<r_{0}$ we have

$$
\begin{equation*}
\left|A_{j}(z)\right| \leqslant \exp \left\{\frac{1}{r^{\alpha+\varepsilon}}\right\}, \quad j=0,1, \ldots, k-1 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
|F(z)| \leqslant \exp \left\{\frac{1}{r^{\alpha+\varepsilon}}\right\} . \tag{2.9}
\end{equation*}
$$

Since $M_{z_{0}}(r, f) \geqslant 1$ as $r \rightarrow 0$, it follows from (2.9) that

$$
\begin{equation*}
\frac{|F(z)|}{M_{z_{0}}(r, f)} \leqslant \exp \left\{\frac{1}{r^{\alpha+\varepsilon}}\right\} \quad \text { as } r \rightarrow 0 . \tag{2.10}
\end{equation*}
$$

By substituting (2.7), (2.8) and (2.10) into (2.6), we obtain

$$
\begin{equation*}
\left(\frac{V_{z_{0}}(r)}{r}\right)^{k}|1+o(1)| \leqslant(k+1)\left(\frac{V_{z_{0}}(r)}{r}\right)^{k-1}|1+o(1)| \exp \left\{\frac{1}{r^{\alpha+\varepsilon}}\right\} \tag{2.11}
\end{equation*}
$$

for all $\left|z_{0}-z_{r}\right|=r \notin E_{5}, r \rightarrow 0$ and $\left|f\left(z_{r}\right)\right|=M_{z_{0}}(r, f)$. By (2.11) and Lemma 2.9, we get

$$
\sigma_{2}\left(f, z_{0}\right) \leqslant \alpha
$$

3. Proof of theorems

Pro of of Theorem 1.4. Assume that f is an analytic solution of (1.2) in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, where z_{0} is an essential singular point for f. By Lemma 2.1, there exist a set $E_{1} \subset(0,1)$ of finite logarithmic measure and a constant $\lambda>0$, such that for all $r=\left|z_{0}-z\right|$ satisfying $r \notin E_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leqslant \lambda\left[\frac{1}{r} T_{z_{0}}(\alpha r, f)\right]^{2 j}, \quad j=1, \ldots, k \tag{3.1}
\end{equation*}
$$

For each sufficiently small $\left|z_{0}-z\right|=r$, let $z_{r}=z_{0}-r \mathrm{e}^{\mathrm{i} \theta_{r}}$ be a point satisfying $\left|f\left(z_{r}\right)\right|=\max _{\left|z_{0}-z\right|=r}|f(z)|$. By Lemma 2.5, there exist a constant $\delta_{r}>0$ and a set $E_{4} \subset(0,1)$ of finite logarithmic measure such that for all z satisfying $\left|z_{0}-z\right|=$ $r \notin E_{4}, r \rightarrow 0$, and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have

$$
\begin{equation*}
\left|\frac{f(z)}{f^{(j)}(z)}\right| \leqslant 2 r^{j}, \quad j=1, \ldots, k \tag{3.2}
\end{equation*}
$$

Set $a_{j}=\alpha_{j}+\mathrm{i} \beta_{j}, \delta_{a_{j}}(\theta)=\alpha_{j} \cos (n \theta)+\beta_{j} \sin (n \theta), z_{0}-z=r \mathrm{e}^{\mathrm{i} \theta}$,

$$
\begin{gathered}
H_{1}=\bigcup_{j=0}^{k-1}\left\{\theta \in[0,2 \pi): \delta_{a_{j}}(\theta)=0\right\} \\
H_{2}=\bigcup_{0 \leqslant i<j \leqslant k-1}\left\{\theta \in[0,2 \pi): \delta_{a_{j}-a_{i}}(\theta)=0\right\} .
\end{gathered}
$$

Since a_{j} are distinct complex numbers, then there exists only one $s \in\{0, \ldots, k-1\}$, such that for any given $\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{1} \cup H_{2}\right)$, we have

$$
\delta_{1}=\delta_{a_{s}}(\theta)=\max \left\{\delta_{a_{j}}(\theta): j=0, \ldots, k-1\right\}
$$

We have $\delta_{1}>0$ or $\delta_{1}<0$.
Case 1. $\delta_{1}>0$. Set $\delta_{2}=\max \left\{\delta_{a_{j}}(\theta): j \neq s\right\}$. Then $\delta_{2}<\delta_{1}$.
Subcase 1.1. If $\delta_{2}>0$ then $0<\delta_{2}<\delta_{1}$. Thus by Lemma 2.6, for any given ε $\left(0<2 \varepsilon<\left(\delta_{1}-\delta_{2}\right) /\left(\delta_{1}+\delta_{2}\right)\right)$, for all z satisfying $\left|z_{0}-z\right|=r, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=$ $\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{1} \cup H_{2}\right)$, we have

$$
\begin{equation*}
\left|A_{s}(z) \exp \left\{\frac{a_{s}}{\left(z_{0}-z\right)^{n}}\right\}\right| \geqslant \exp \left\{(1-\varepsilon) \frac{\delta_{1}}{r^{n}}\right\} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{j}(z) \exp \left\{\frac{a_{j}}{\left(z_{0}-z\right)^{n}}\right\}\right| \leqslant \exp \left\{(1+\varepsilon) \frac{\delta_{2}}{r^{n}}\right\}, \quad j \neq s \tag{3.4}
\end{equation*}
$$

By (1.2), it follows that

$$
\begin{align*}
-A_{s}(z) \exp \left\{\frac{a_{s}}{\left(z_{0}-z\right)^{n}}\right\}= & \frac{f^{(k)}}{f^{(s)}}+\sum_{j=s+1}^{k-1} A_{j}(z) \exp \left\{\frac{a_{j}}{\left(z_{0}-z\right)^{n}}\right\} \frac{f^{(j)}}{f^{(s)}} \tag{3.5}\\
& +\sum_{j=0}^{s-1} A_{j}(z) \exp \left\{\frac{a_{j}}{\left(z_{0}-z\right)^{n}}\right\} \frac{f^{(j)}}{f} \frac{f}{f^{(s)}}
\end{align*}
$$

Online first

Substituting (3.1)-(3.4) into (3.5), for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{1} \cup H_{2}\right)$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \frac{\delta_{1}}{r^{n}}\right\} \leqslant M_{1} r^{s} \exp \left\{(1+\varepsilon) \frac{\delta_{2}}{r^{n}}\right\}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k}, \tag{3.6}
\end{equation*}
$$

where $M_{1}>0$ is a constant. Hence by (3.6), we obtain $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. On the other hand, by Lemma 2.7, we have $\sigma_{2}\left(f, z_{0}\right)=n$.

Subcase 1.2. Let $\delta_{2}<0$. By Lemma 2.6, for any given $\varepsilon(0<2 \varepsilon<1)$, for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash$ $\left(H_{1} \cup H_{2}\right)$, we have (3.3) and

$$
\begin{equation*}
\left|A_{j}(z) \exp \left\{\frac{a_{j}}{\left(z_{0}-z\right)^{n}}\right\}\right| \leqslant \exp \left\{(1-\varepsilon) \frac{\delta_{2}}{r^{n}}\right\}<1, \quad j \neq s \tag{3.7}
\end{equation*}
$$

Substituting (3.1)-(3.3), (3.7) into (3.5), for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}$, $r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{1} \cup H_{2}\right)$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \frac{\delta_{1}}{r^{n}}\right\} \leqslant M_{2} r^{s}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k}, \tag{3.8}
\end{equation*}
$$

where $M_{2}>0$ is a constant. Hence by (3.8), we obtain $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. On the other hand, by Lemma 2.7, we have $\sigma_{2}\left(f, z_{0}\right)=n$.

Case 2. Let $\delta_{1}<0$. By Lemma 2.6, for any given $\varepsilon(0<2 \varepsilon<1)$, for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{1} \cup H_{2}\right)$, we have

$$
\begin{equation*}
\left|A_{j}(z) \exp \left\{\frac{a_{j}}{\left(z_{0}-z\right)^{n}}\right\}\right| \leqslant \exp \left\{(1-\varepsilon) \frac{\delta_{1}}{r^{n}}\right\}<1, \quad j=0, \ldots, k-1 \tag{3.9}
\end{equation*}
$$

By (1.2), we get

$$
\begin{equation*}
-1=\sum_{j=1}^{k-1} A_{j}(z) \exp \left\{\frac{a_{j}}{\left(z_{0}-z\right)^{n}}\right\} \frac{f^{(j)}}{f} \frac{f}{f^{(k)}}+A_{0}(z) \exp \left\{\frac{a_{0}}{\left(z_{0}-z\right)^{n}}\right\} \frac{f}{f^{(k)}} . \tag{3.10}
\end{equation*}
$$

Substituting (3.1)-(3.3), (3.9) into (3.10), for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}$, $r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{1} \cup H_{2}\right)$, we obtain

$$
\begin{equation*}
1 \leqslant M_{3} r^{k} \exp \left\{(1+\varepsilon) \frac{\delta_{1}}{r^{n}}\right\}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k}, \tag{3.11}
\end{equation*}
$$

where $M_{3}>0$ is a constant. Hence by (3.11), we obtain $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. On the other hand, by Lemma 2.7, we have $\sigma_{2}\left(f, z_{0}\right)=n$.

Pro of of Theorem 1.5. Assume that f is an analytic solution of (1.2) in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$, where z_{0} is an essential singular point for f. By Lemma 2.1, there exist a set $E_{1} \subset(0,1)$ of finite logarithmic measure and a constant $\lambda>0$, such that for all $r=\left|z_{0}-z\right|$ satisfying $r \notin E_{1}$, we have (3.1).

For each sufficiently small $\left|z_{0}-z\right|=r$, let $z_{r}=z_{0}-r \mathrm{e}^{\mathrm{i} \theta_{r}}$ be a point satisfying $\left|f\left(z_{r}\right)\right|=\max _{\left|z_{0}-z\right|=r}|f(z)|$. By Lemma 2.5, there exist a constant $\delta_{r}>0$ and a set $E_{4} \subset(0,1)$ of finite logarithmic measure such that for all z satisfying $\left|z_{0}-z\right|=r \notin E_{4}$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have (3.2).

Set

$$
H_{3}=\left\{\theta \in[0,2 \pi): \delta_{a_{s}}(\theta)=0 \text { or } \delta_{a_{l}}(\theta)=0\right\}
$$

and

$$
H_{4}=\left\{\theta \in[0,2 \pi): \delta_{a_{s}}(\theta)=\delta_{a_{l}}(\theta)\right\}
$$

For any given $\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{3} \cup H_{4}\right)$, we have $\delta_{a_{s}}(\theta) \neq 0, \delta_{a_{l}}(\theta) \neq 0$ and $\delta_{a_{s}}(\theta)>\delta_{a_{l}}(\theta)$ or $\delta_{a_{s}}(\theta)<\delta_{a_{l}}(\theta)$.

Set $c_{1}=\delta_{a_{s}}(\theta)$ and $c_{2}=\delta_{a_{l}}(\theta)$.
Case 1. $c_{1}>c_{2}$. Here we also divide our proof in three subcases.
Subcase 1.1. $c_{1}>c_{2}>0$. Set $c_{3}=\max \left\{\delta_{a_{j}}(\theta): j \neq s\right\}$. Then $0<c_{3}<c_{1}$. Thus by Lemma 2.6, for any given $\varepsilon\left(0<2 \varepsilon<\left(c_{1}-c_{3}\right) /\left(c_{1}+c_{3}\right)\right)$, for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{3} \cup H_{4}\right)$, we have

$$
\begin{equation*}
\left|A_{s}(z) \exp \left\{\frac{a_{s}}{\left(z_{0}-z\right)^{n}}\right\}\right| \geqslant \exp \left\{(1-\varepsilon) \frac{c_{1}}{r^{n}}\right\} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{j}(z) \exp \left\{\frac{a_{j}}{\left(z_{0}-z\right)^{n}}\right\}\right| \leqslant \exp \left\{(1+\varepsilon) \frac{c_{3}}{r^{n}}\right\}, \quad j \neq s \tag{3.13}
\end{equation*}
$$

Substituting (3.1), (3.2), (3.12), (3.13) into (3.5), for all z satisfying $\left|z_{0}-z\right|=r \notin$ $E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{1} \cup H_{2}\right)$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \frac{c_{1}}{r^{n}}\right\} \leqslant M_{4} r^{s} \exp \left\{(1+\varepsilon) \frac{c_{3}}{r^{n}}\right\}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k} \tag{3.14}
\end{equation*}
$$

where $M_{4}>0$ is a constant. Hence by (3.14), we obtain $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. On the other hand, by Lemma 2.7, we have $\sigma_{2}\left(f, z_{0}\right)=n$.

Subcase 1.2. $c_{1}>0>c_{2}$. Set $\gamma_{1}=\max \left\{d_{j}: j \neq s, l\right\}$. Thus, by Lemma 2.6, for any given $\varepsilon\left(0<2 \varepsilon<\left(1-\gamma_{1}\right) /\left(1+\gamma_{1}\right)\right)$, for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}$, $r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{3} \cup H_{4}\right)$, we have

$$
\begin{equation*}
\left|A_{j}(z) \exp \left\{\frac{a_{j}}{\left(z_{0}-z\right)^{n}}\right\}\right| \leqslant \exp \left\{(1+\varepsilon) \frac{\gamma_{1} c_{1}}{r^{n}}\right\}, \quad j \neq s \tag{3.15}
\end{equation*}
$$

Online first

Substituting (3.1), (3.2), (3.12), (3.15) into (3.5), for all z satisfying $\left|z_{0}-z\right|=r \notin$ $E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{1} \cup H_{2}\right)$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \frac{c_{1}}{r^{n}}\right\} \leqslant M_{5} r^{s} \exp \left\{(1+\varepsilon) \frac{\gamma_{1} c_{1}}{r^{n}}\right\}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k} \tag{3.16}
\end{equation*}
$$

where $M_{5}>0$ is a constant. Hence by (3.16), we obtain $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. On the other hand, by Lemma 2.7, we have $\sigma_{2}\left(f, z_{0}\right)=n$.

Subcase 1.3. $0>c_{1}>c_{2}$. Set $\gamma_{2}=\min \left\{d_{j}: j \neq s, l\right\}$. By Lemma 2.6, for any given $\varepsilon(0<2 \varepsilon<1)$, for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{3} \cup H_{4}\right)$, we have

$$
\begin{equation*}
\left|A_{s}(z) \exp \left\{\frac{a_{s}}{\left(z_{0}-z\right)^{n}}\right\}\right| \leqslant \exp \left\{(1-\varepsilon) \frac{c_{1}}{r^{n}}\right\} \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{j}(z) \exp \left\{\frac{a_{j}}{\left(z_{0}-z\right)^{n}}\right\}\right| \leqslant \exp \left\{(1+\varepsilon) \frac{\gamma_{2} c_{1}}{r^{n}}\right\}, \quad j \neq s \tag{3.18}
\end{equation*}
$$

Substituting (3.1), (3.2), (3.17), (3.18) into (3.10), for all z satisfying $\left|z_{0}-z\right|=r \notin$ $E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right] \backslash\left(H_{1} \cup H_{2}\right)$, we obtain

$$
\begin{equation*}
1 \leqslant M_{6} r^{k} \exp \left\{(1+\varepsilon) \frac{\gamma_{2} c_{1}}{r^{n}}\right\}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k} \tag{3.19}
\end{equation*}
$$

where $M_{6}>0$ is a constant. Hence by (3.19), we obtain $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. On the other hand, by Lemma 2.7, we have $\sigma_{2}\left(f, z_{0}\right)=n$.

Case 2. $c_{1}<c_{2}$. Using the same reasoning as in Case 1, we can also obtain $\sigma_{0}\left(f, z_{0}\right)=n$.

Proof of Theorem 1.6. First we show that (1.4) can possess at most one exceptional analytic solution f_{0} in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$ of finite order. In fact, if f^{*} is another analytic solution of finite order of the equation (1.4), then $f_{0}-f^{*}$ is an analytic solution in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$ of finite order of the corresponding homogeneous equation of (1.4). This contradicts Theorem 1.4 and Theorem 1.5.

We assume that f is an infinite order analytic solution in $\overline{\mathbb{C}} \backslash\left\{z_{0}\right\}$ of the equation (1.4), where z_{0} is an essential singular point for f. By Lemma 2.10, it follows that $\sigma_{2}\left(f, z_{0}\right) \leqslant n$.

Now we prove that $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. By Lemma 2.1, there exist a set $E_{1} \subset(0,1)$ of finite logarithmic measure and a constant $\lambda>0$, such that for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1}$, we have (3.1). For each sufficiently small $\left|z_{0}-z\right|=r$, let $z_{r}=$
$z_{0}-r \mathrm{e}^{\mathrm{i} \theta_{r}}$ be a point satisfying $\left|f\left(z_{r}\right)\right|=\max _{\left|z_{0}-z\right|=r}|f(z)|$. By Lemma 2.5, there exist a constant $\delta_{r}>0$ and a set $E_{4} \subset(0,1)$ of finite logarithmic measure such that for all z satisfying $\left|z_{0}-z\right|=r \notin E_{4}$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have (3.2). Since $|f(z)|$ is continous in $\left|z_{0}-z\right|=r$, then there exists a constant $\lambda_{r}>0$ such that for all z satisfying $\left|z_{0}-z\right|=r$ sufficiently small and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\lambda_{r}, \theta_{r}+\lambda_{r}\right]$, we have

$$
\begin{equation*}
\frac{1}{2}\left|f\left(z_{r}\right)\right|<|f(z)|<\frac{3}{2}\left|f\left(z_{r}\right)\right| . \tag{3.20}
\end{equation*}
$$

On the other hand, for any given $\varepsilon(0<2 \varepsilon<n-\sigma)$, there exists $r_{0}>0$, such that for all $0<r=\left|z_{0}-z\right|<r_{0}$, we have

$$
\begin{equation*}
|F(z)| \leqslant \exp \left\{\frac{1}{r^{\sigma+\varepsilon}}\right\} \tag{3.21}
\end{equation*}
$$

Since $M_{z_{0}}(r, f) \geqslant 1$ as $r \rightarrow 0$, it follows from (3.20) and (3.21) that

$$
\begin{equation*}
\left|\frac{F(z)}{f(z)}\right| \leqslant 2 \exp \left\{\frac{1}{r^{\sigma+\varepsilon}}\right\} \quad \text { as } r \rightarrow 0 \tag{3.22}
\end{equation*}
$$

Set $\gamma=\min \left\{\delta_{r}, \lambda_{r}\right\}$.
(i) Suppose that $a_{j}(j=0, \ldots, k-1)$ satisfy the hypotheses of Theorem 1.4. Since a_{j} are distinct complex numbers, then there exists only $s \in\{0, \ldots, k-1\}$ such that for any given $\theta \in\left[\theta_{r}-\gamma, \theta_{r}+\gamma\right] \backslash\left(H_{1} \cup H_{2}\right)$, where H_{1} and H_{2} are definied above, we have

$$
\delta_{1}=\delta_{a_{s}}(\theta)=\max \left\{\delta_{a_{j}}(\theta): j=0, \ldots, k-1\right\}
$$

We have $\delta_{1}>0$ or $\delta_{1}<0$.
Case 1. $\delta_{1}>0$. Set $\delta_{2}=\max \left\{\delta_{a_{j}}(\theta): j \neq s\right\}$. Then $\delta_{2}<\delta_{1}$.
Subcase 1.1. $\delta_{2}>0$. From (3.1)-(3.4), (3.22) and (1.4), for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\gamma, \theta_{r}+\gamma\right] \backslash\left(H_{1} \cup H_{2}\right)$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \frac{\delta_{1}}{r^{n}}\right\} \leqslant B_{1} r^{s} \exp \left\{\frac{1}{r^{\sigma+\varepsilon}}\right\} \exp \left\{(1+\varepsilon) \frac{\delta_{2}}{r^{n}}\right\}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k} \tag{3.23}
\end{equation*}
$$

where $B_{1}>0$ is a constant. From (3.23), we get $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. This and the fact that $\sigma_{2}\left(f, z_{0}\right) \leqslant n$ yield $\sigma_{2}\left(f, z_{0}\right)=n$.

Subcase 1.2. $\delta_{2}<0$. From (3.1)-(3.3), (3.7), (3.22) and (1.4), for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\gamma, \theta_{r}+\gamma\right] \backslash\left(H_{1} \cup H_{2}\right)$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \frac{\delta_{1}}{r^{n}}\right\} \leqslant B_{2} r^{s} \exp \left\{\frac{1}{r^{\sigma+\varepsilon}}\right\}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k} \tag{3.24}
\end{equation*}
$$

Online first
where $B_{2}>0$ is a constant. From (3.24), we get $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. This and the fact that $\sigma_{2}\left(f, z_{0}\right) \leqslant n$ yield $\sigma_{2}\left(f, z_{0}\right)=n$.

Case 2. $\delta_{1}<0$. From (3.1), (3.2), (3.9), (3.22) and (1.4), for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\gamma, \theta_{r}+\gamma\right] \backslash\left(H_{1} \cup H_{2}\right)$, we have

$$
\begin{equation*}
1 \leqslant B_{3} r^{k} \exp \left\{\frac{1}{r^{\sigma+\varepsilon}} v\right\} \exp \left\{(1+\varepsilon) \frac{\delta_{1}}{r^{n}}\right\}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k}, \tag{3.25}
\end{equation*}
$$

where $B_{3}>0$ is a constant. From (3.25), we get $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. This and the fact that $\sigma_{2}\left(f, z_{0}\right) \leqslant n$ yield $\sigma_{2}\left(f, z_{0}\right)=n$.
(ii) Suppose that $a_{j}(j=0, \ldots, k-1)$ satisfy the hypotheses of Theorem 1.5. For any given $\theta \in\left[\theta_{r}-\gamma, \theta_{r}+\gamma\right] \backslash\left(H_{3} \cup H_{4}\right)$, where H_{3} and H_{4} are defined above, we have $\delta_{a_{s}}(\theta) \neq 0, \delta_{a_{l}}(\theta) \neq 0$ and $\delta_{a_{s}}(\theta)>\delta_{a_{l}}(\theta)$ or $\delta_{a_{s}}(\theta)<\delta_{a_{l}}(\theta)$.

Set $c_{1}=\delta_{a_{s}}(\theta)$ and $c_{2}=\delta_{a_{l}}(\theta)$.
Case 1. $c_{1}>c_{2}$. Here we also divide our proof in three subcases.
Subcase $1.1 c_{1}>c_{2}>0$. From (3.1), (3.2), (3.12), (3.13), (3.22) and (1.4), for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\gamma, \theta_{r}+\gamma\right] \backslash\left(H_{3} \cup H_{4}\right)$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \frac{c_{1}}{r^{n}}\right\} \leqslant B_{4} r^{s} \exp \left\{\frac{1}{r^{\sigma+\varepsilon}}\right\} \exp \left\{(1+\varepsilon) \frac{c_{3}}{r^{n}}\right\}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k} \tag{3.26}
\end{equation*}
$$

where $B_{4}>0$ is a constant. Hence by (3.26), we get $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. This and the fact that $\sigma_{2}\left(f, z_{0}\right) \leqslant n$ yield $\sigma_{2}\left(f, z_{0}\right)=n$.

Subcase 1.2. $c_{1}>0>c_{2}$. From (3.1), (3.2), (3.12), (3.15), (3.22) and (1.4), for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\gamma, \theta_{r}+\gamma\right] \backslash$ $\left(H_{3} \cup H_{4}\right)$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \frac{c_{1}}{r^{n}}\right\} \leqslant B_{5} r^{s} \exp \left\{\frac{1}{r^{\sigma+\varepsilon}}\right\} \exp \left\{(1+\varepsilon) \frac{\gamma_{1} c_{3}}{r^{n}}\right\}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k} \tag{3.27}
\end{equation*}
$$

where $B_{5}>0$ is a constant. From (3.27), we get $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. This and the fact that $\sigma_{2}\left(f, z_{0}\right) \leqslant n$ yield $\sigma_{2}\left(f, z_{0}\right)=n$.

Subcase 1.3. $0>c_{1}>c_{2}$. From (3.1), (3.2), (3.17), (3.18), (3.22) and (1.4), for all z satisfying $\left|z_{0}-z\right|=r \notin E_{1} \cup E_{4}, r \rightarrow 0$ and $\arg \left(z_{0}-z\right)=\theta \in\left[\theta_{r}-\gamma, \theta_{r}+\gamma\right] \backslash$ $\left(H_{3} \cup H_{4}\right)$, we obtain

$$
\begin{equation*}
1 \leqslant B_{6} r^{k} \exp \left\{\frac{1}{r^{\sigma+\varepsilon}}\right\} \exp \left\{(1+\varepsilon) \frac{\gamma_{2} c_{1}}{r^{n}}\right\}\left[\frac{T_{z_{0}}(\alpha r, f)}{r}\right]^{2 k} \tag{3.28}
\end{equation*}
$$

where $B_{6}>0$ is a constant. From (3.28), we get $\sigma_{2}\left(f, z_{0}\right) \geqslant n$. This and the fact that $\sigma_{2}\left(f, z_{0}\right) \leqslant n$ yield $\sigma_{2}\left(f, z_{0}\right)=n$.

References

[1] I. Amemiya, M. Ozawa: Non-existence of finite order solutions of $\omega^{\prime \prime}+e^{-z} \omega^{\prime}+Q(z) \omega=0$. Hokkaido Math. J. 10 (1981), 1-17.
zbl MR doi
[2] Z. Chen: The growth of solutions of $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$, where the order $(Q)=1$. Sci China, Ser. A 45 (2002), 290-300.

Zbl MR
[3] Z. Chen, K. Shon: On the growth of solutions of a class of higher order differential equations. Acta Math. Sci., Ser. B, Engl. Ed. 24 (2004), 52-60.

Zbl MR doi
[4] S. Cherief, S. Hamouda: Linear differential equations with analytic coefficients having the same order near a singular point. Bull. Iran. Math. Soc. 47 (2021), 1737-1749.

ZDI MR doi
[5] S. Cherief, S. Hamouda: Growth of solutions of a class of linear differential equations near a singular point. Kragujevac J. Math. 47 (2023), 187-201.

Zbl MR doi
[6] H. Fettouch, S. Hamouda: Growth of local solutions to linear differential around an isolated essential singularity. Electron. J. Diff. Equs. 2016 (2016), Article ID 226, 10 pages. Zbl MR
[7] S. Hamouda: The possible orders of growth of solutions to certain linear differential equations near a singular points. J. Math. Anal. Appl. 458 (2018), 992-1008.

Zbl MR doi
[8] W.K. Hayman: The local growth of power series: A survey of the Wiman-Valiron method. Can. Math. Bull. 17 (1974), 317-358.

Zbl MR doi
[9] K.-H. Kwon: Nonexistence of finite order solutions of certain second order linear differential equations. Kodai Math. J. 19 (1996), 378-387.
zbl MR doi
[10] I. Laine: Nevanlinna Theory and Complex Differential Equations. de Gruyter Studies in Mathematics 15. Walter de Gruyter, Berlin, 1993.
zbl MR doi
Authors' address: Meryem Chetti, Karima Hamani (correspoding author), Laboratory of Pure and Applied Mathematics, Department of Mathematics, Faculty of Exact Sciences and Computer Science, University of Mostaganem (UMAB), Site 2, Zaghloul, Mostaganem, Algeria, e-mail: meryem.chetti.etu@univ-mosta.dz, karima.hamani@univ-mosta.dz.

